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ABSTRACT
Plant adaptation under climate changes is critical to the maintenance of terrestrial
ecosystem structure and function. Studying the response of the endophytic community
to climate warming is a novel way to reveal the mechanism of host environmental
adaptability because of the prominent role endophytes play in host nutrient acquisition
and stress tolerance. However, host performance was generally neglected in previous
relevant research, which limits our understanding of the relationships between the
endophytic community and host responses to climate warming. The present study
selected two plants with different responses to climate warming. Elymus nutans is more
suitable for growing in warm environments at low altitude compared to Kobresia
pygmaea. K. pygmaea and E. nutans were sampled along an altitude gradient in the
natural grassland ofQinghai-Tibet Plateau,China. Root endophytic bacterial and fungal
communities were analyzed using high throughput sequencing. The results revealed
that hosts growing in more suitable habitats held higher endophytic fungal diversity.
Elevation and host identity significantly affected the composition of the root endophytic
bacterial and fungal community. 16S rRNA functional prediction demonstrated that
hosts that adapted to lower temperatures recruited endophytic communities with
higher abundance of genes related to cold resistance. Hosts that were more suitable for
warmer and drier environments recruited endophytes with higher abundance of genes
associated with nutrient absorption and oxidation resistance. We associated changes in
the endophytic community with hosts adaptability to climate warming and suggested
a synchronism of endophytic communities and hosts in environmental adaptation.

Subjects Ecology, Microbiology, Molecular Biology, Mycology, Plant Science
Keywords Qinghai-Tibet Plateau, Elevation gradient, Climate warming, Root endophytic
community, Kobresia pygmaea, Elymus nutans

INTRODUCTION
Plant endophytes are microorganisms that colonize the intercellular space of plants and
establish a harmonious association with their host plants (Odelade & Babalola, 2019). The
genome of the host and its microbiome are considered a unit according to the hologenome

How to cite this article Wei X, Jiang F, Han B, Zhang H, Huang D, Shao X. 2021. New insight into the divergent responses of plants to
warming in the context of root endophytic bacterial and fungal communities. PeerJ 9:e11340 http://doi.org/10.7717/peerj.11340

https://peerj.com
mailto:huangding@cau.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.11340
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.11340


theory (Zilber-Rosenberg & Rosenberg, 2008). Studies on plant-associated microbiota
recently exhibited phenomenal expansion in the areas of natural and agricultural ecosystems
due to their great potential in improving host fitness, including nutrient acquisition (Van
der Heijden et al., 2016), stress tolerance (Liu et al., 2020a; Liu et al., 2020b) and disease
defense (Dini-Andreote, 2020; Carrión et al., 2019). Endophytic community diversity was
closely associated with multiple ecosystem functions (Laforest-Lapointe et al., 2017).

Recently, great attention has been paid to the environmental problems caused by climate
warming in terrestrial ecosystems, such as the loss of biodiversity, changes in vegetation
composition and community succession. Climate changes also affect plant ranges and
allow some species to expand or narrow their ranges (Morin, Viner & Chuine, 2008). The
formation of new interspecific relationships between plant species under climate change
may drive these ecological processes (Little et al., 2016), and endophytes may modulate
the interspecific interactions and vegetation composition (Porras-Alfaro & Bayman, 2011;
Jackrel et al., 2020).

Plant endophytic communities are dynamic and variable among seasons (Li, Yang &
Zhao, 2005) and environments (Laforest-Lapointe, Messier & Kembel, 2016) and reflect the
adaptability of plants to changing environments. The recent ‘‘cry for help’’ hypothesis
suggests that plants selectively recruit beneficial microbes from their surroundings under
biotic or abiotic stress (Neal et al., 2012; Liu & Brettell, 2019). Pseudomonas colonization
in the roots of the desert plant Alhagi sparsifolia increased under drought conditions and
promoted drought resistance (Zhang et al., 2020). Different plant species show unique
abilities in the process of recruitment. For example, most plants form symbioses with
arbuscular mycorrhizal fungi (AMF) to increase phosphorus availability. Arabidopsis
thalian, which lose the ability of symbiosingwithAMF, recruitHelotiales andColletotrichum
tofieldiae under phosphorus-limited conditions (Almario et al., 2017; Hiruma et al., 2016).

However, studies on the impacts of climate change on plant endophyte communities
are insufficient and many findings are conflicting. Endophytes and their hosts are
‘‘communities of interest’’. Previous studies focused only on endophytic communities
and host responses to climate change were generally neglected (Qian et al., 2018; Cordier
et al., 2012), which limits our understanding of the ecological significance of endophytic
community changes. Host selection is critical because plant species (Yao et al., 2019;
Laforest-Lapointe, Messier & Kembel, 2016) and compartments (leaf, stem, root) of the
same plant greatly affect endophytic community composition (Qian et al., 2019). Fujimura
also concluded that the conflicting results between studies on the effects of warming
on endophytic communities may due to differences in host responses (Fujimura, Egger
& Henry, 2008). Therefore, plant species that are sensitive to climate changes should
be selected to examine the responses of endophyte communities and improve our
understanding of plant-microbe interactions and elucidate the mechanisms of plant
adaptation to climate change from the perspective of endophytes.

The Qinghai-Tibet Plateau is the highest plateau in the word, and it is experiencing
rapid climate warming at rate more than twice the global level (Ma et al., 2017), which
threatens biodiversity and ecosystem function in this area. Kobresia pygmaea and Elymus
nutans are two common plants in the Qinghai-Tibet Plateau that respond differently to
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climate warming. Kobresia pygmaea is a carpet-like sedge species that is highly adaptable
to high-altitude environments, and it primarily grows on the alpine meadow of the
Qinghai-Tibet Plateau between altitudes of 3,000 m and 6,000 m (Wu et al., 2017; Miehe
et al., 2008). The K. pygmaea alpine meadow, which is dominated by K. pygmaea, covers
17% of the total area of the Qinghai-Tibet Plateau (Miehe et al., 2008), which makes it
an important species in maintaining the stability of the local ecosystem. Elymus nutans is
a dominant and constructive grass of meadow steppe, and it is characterized by strong
drought, cold and pest resistance. It is widely distributed and survives at elevations ranging
from 450 m to 4,500 m. E. nutans is better suited to low altitudes and warmer habitats
than K. pygmaea, and an increase in temperature from high to low elevations promotes
the growth of E. nutans (Qi et al., 2020). K. pygmaea primarily grows at high altitudes in
humid and cold habitats (Wu et al., 2017). Warming increased the proportion of Elymus
nutans and decreased the proportion of K. pygmaea in alpine grassland ecosystems (Liu et
al., 2018; Niu et al., 2019).

The present study examined the adaptability of plants to climate warming by analyzing
changes in endophytic community diversity and composition. We used elevation gradients
where climatic conditions, vegetation and soil characteristics show regular changes over
short geographic distances to investigate the responses of terrestrial ecosystems to climate
warming (Korner, 2007). K. pygmaea and E. nutans were sampled along an elevation
gradient in the Qinghai-Tibet Plateau, and the root endophytic bacterial and fungal
communities were analyzed based on the high-throughput sequencing. The innovation
of this study lies in the selection of the two hosts with opposing responses to climate
warming to elucidate how endophytic communities change during the promotion or
inhibition of host growth by climate warming. We addressed the following questions: (1)
how endophytic community diversity in the roots of K. pygmaea and E. nutans changed
with climate warming (decreasing elevation); (2) whether climate warming affected
endophytic community composition in K. pygmaea and E. nutans; and (3) how changes in
the endophytic community explain host responses to climate warming.

MATERIALS AND METHODS
Study site and sampling
Fieldwork was performed in August 2019 in the middle of the Qilian Mountains (37.68◦N,
100.75◦E) near Qilian County, which is located in the northeastern part of Qinghai
Province, China. With an average elevation over 3,000 m, this area experiences a typical
plateau continental climate. The mean annual and growing season temperatures (from
June to August) are 1 ◦C and 13 ◦C, respectively. The annual mean precipitation is 480mm,
with 80% occurring during the growing season. The climate and vegetation composition
change significantly with elevation in the Qilian Mountains. We sampled at elevations
of 3 350 m, 3,460 m, 3,570 m, 3,680 m, and 3,800 m above sea level (a.s.l.) on the south
slope of the mountain. The temperature decreases and the precipitation increases with
increasing altitude in this area (Jin et al., 2017; Li et al., 2018). According to the vegetation
investigation, the grassland was classified as alpine meadows at elevations of 3,350 m, 3,460
m, and 3 570 m and alpine shrub meadows at elevations of 3,680 m and 3,800 m.
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We defined three plots at each elevation, with each plot 20 m away from the other
plots. The roots of K. pygmaea and E. nutans were sampled around each plot. K. pygmaea
always aggregates in grasslands and forms slightly yellow green patches because of its dense
network of roots, which are produced clonally. Therefore, patches of K. pygmaea and
clumps of E. nutans were dug using a sterilized shovel from a depth of 10 cm. We reserved
the belowground parts, including the soil and roots, when sampling, and separated the
roots after transported to the laboratory. We reserved the belowground parts, including
the soil and roots, when sampling, and separated the roots after transport to the laboratory.
Five individuals of each plant species per plot composed one sample, which resulted in 30
root samples (2 species × 5 elevations × 3 replicates). All samples were placed in labeled
sterile plastic bags and immediately stored in an incubator with dry ice. Samples were
transported to the laboratory and stored at −80 ◦C until further processing. The roots of
K. pygmaea and E. nutans were separated in the laboratory using sterilized scissors and
brushes then transferred to 50-mL sterile centrifuge tubes containing 30 mL of 0.01 M
sterilized PBS (136 mMNaCl, 8 mMNa2HPO4, 2 mMKH2PO4, 2.6 mMKCl, pH 7.2). The
tubes were placed on a shaking platform (180 rpm) for 20 min to remove the soil attached
to the root. The roots were rinsed in deionized water and surface sterilized according to the
following steps: immersion in sterile water twice for 30 s, 75% ethanol for 1 min, 3.25%
sodium hypochlorite for 3 min, 75% ethanol for 30 s, sterile water for 1 min, and a final
rinse with sterile water. The surface-sterilized roots were stored in a freezer at −80 ◦C.

Genomic DNA extraction, amplification and purification
Endophytic genomic DNA was extracted from 0.5 g of frozen surface-sterilized roots
using the MOBIO PowerSoil R© DNA Isolation Kit (MOBIO Laboratories, Carlsbad, CA,
USA). The integrity and purity of the extracted DNA were tested on 1% agarose gels,
and a NanoDrop One was used to measure the concentration and purity of the extracted
DNA. The 16S rRNA gene V5-V7 region was amplified using the primers 799F (5′-
AACMGGATTAGATACCCKG-3′) and 1193R (5′-ACGTCATCCCCACCTTCC-3′) with a
12-bp barcode (Horton et al., 2014). The primer set 799F-1193R reduces co-amplification
levels of mitochondrial gene during endophytic 16S rRNA gene PCR amplification (Wang
et al., 2018). The internal transcribed spacer 1(ITS1) region of fungal rRNA was amplified
using the forward primer 5′-CTTGGTCATTTAGAGGAAGTAA-3′ and the reverse primer
5′-GCTGCGTTCTTCATCGATGC-3′ (Horton et al., 2014). Primers were constructed by
Invitrogen (Carlsbad, CA, USA). A 50-µL reaction containing 25 µL of 2× PremixTaq
(Takara Biotechnology, Dalian Co. Ltd., China), 1 µL of each primer (10 mM) and 3 µL
of DNA template (20 ng/µL) was used for PCR amplification in a BioRad S1000 (Bio-Rad
Laboratory, CA). The following thermal cycling process was used: 5 min at 94 ◦C for
initialization; 30 cycles of denaturation at 94 ◦C for 30 s; annealing at 52 ◦C for 30 s;
extension at 72 ◦C for 30 s; and final elongation at 72 ◦C for 10 min. The PCR products of 3
replicates of each sample were mixed, and 1% agarose gel electrophoresis was used to detect
the quality of the PCR products. The products were mixed in equidensity ratios according
to GeneTools analysis software (version 4.03.05.0, SynGene). An EZNA Gel Extraction Kit
(Omega, USA) was used for purification of the mixed PCR products.
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Library preparation and sequencing
Libraries were processed with the NEBNext R© UltraTM DNA Library Prep Kit for Illumina R©

(New England Biolabs, USA). The libraries were assessed using a Qubit@ 2.0 fluorometer
(Thermo Scientific) and an Agilent Bioanalyzer 2100 system, and sequenced on the
Illumina HiSeq 2500 platform to generate 250-bp paired-end reads. High-quality
clean reads were obtained following the Trimmomatic quality control process (V0.33,
http://www.usadellab.org/cms/?page=trimmomatic). The clean paired-end reads from
which the barcodes and primers were removed, were merged using FLASH (V1.2.11,
https://ccb.jhu.edu/software/FLASH/). Effective clean tags were retained after filtering the
spliced sequences using Trimmomatic software.

OTU cluster and species annotation
Usearch software (V8.0.1517, http://www.drive5.com/usearch/) was applied for
sequence analysis. Sequences with ≥97% similarity were assigned to the same
operational taxonomic unit (OTU). Singletons were removed using usearch (http:
//www.drive5.com/usearch/manual/chimera_formation.html) after OTU clustering,
and the chimera sequences were detected and removed using the UCHIME de
novo algorithm (http://www.drive5.com/usearch/manual/uchime_algo.html). The
Greengenes (http://greengenes.secondgenome.com/) and UNITE V8.0 databases were
consulted based on the RDP Classifier algorithm and the assign_taxonomy.py script
(http://qiime.org/scripts/assign_taxonomy.html) in QIIME for taxonomic annotation
(the confidence threshold was set to 0.8). OTUs that were annotated as chloroplasts or
mitochondria (16S rRNA) and could not be annotated at the kingdom level were removed.

Data analysis
The Shannon index of the endophytic bacterial and fungal communities was calculated
using QIIME (V1.9.1), and the Kruskal-Wallis test at the P < 0.05 level was used to examine
the effects of elevation and species on the diversity of endophytic bacterial and fungal
community. Nonmetric multidimensional scaling (NMDS) analysis based on Bray-Curtis
distance was performed to visualize the dissimilarities of endophytic bacterial and fungal
community composition in different species and at different elevations. Permutational
multivariate analysis of variance (PerMANOVA) using the ‘‘Anosim’’ function in R (3.6.1)
with 999 random permutations was performed to compare differences in endophytic
community structure between plant species and elevations. The correlations of elevation
and the relative abundances of the top 20 genera were analyzed using the Spearmanmethod.
Samples from different elevations were combined for further analysis of the differences in
endophytic bacterial and fungal communities between the two plant species. The linear
discriminant analysis (LDA) effect size (LEfSe) method with a threshold of 4 was used to
investigate indicator species that exhibited significant differences in relative abundance
between plant species. KEGG functional analysis of endophytic bacteria was performed
using Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) (Langille et al., 2013). We also analyzed genes associated with cold
resistance, antioxidant enzymes (catalase, peroxidase and superoxide dismutase), nitrogen
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metabolism (nitrogen fixation, nodulation protein, nitrogen regulatory protein, and
nitrate reductase) and phosphorus metabolism (phosphatase). Ca2+ signaling (Monroy,
Sarhan & Dhindsa, 1993), cold shock proteins, HSP20 family proteins (Elkelish et al., 2020),
glutathione (Liu et al., 2020a) glycerol-3-phosphate acyltransferases (Gomes et al., 2000),
glycine betaine (Annunziata et al., 2019; Chen & Murata, 2011), glycosyltransferases (Shi
et al., 2020), protein kinases (histidine kinase, serine protein kinase, and tyrosine kinase)
(Martín & Busconi, 2001), trehalose (Liu et al., 2020b), nitric oxide (Farnese et al., 2016),
and antioxidant enzymes (Baier et al., 2019) have been reported to improve plant cold
resistance.

RESULTS
Diversity of endophytic bacterial and fungal communities
The rarefaction curves of the Shannon index reached a saturation plateau in all samples,
which suggested that the sampling was sufficient to obtain most of the OTUs (Fig. S1). We
found a higher Shannon index of the root endophytic bacterial and fungal communities
in K. pygmaea than E. nutans. Elevation significantly affected the Shannon index of root
endophytic bacteria in K. pygmaea, but not E. nutans (Fig. 1A). The Kruskal-Wallis test
revealed that elevation had a significant effect on the Shannon index of root endophytic
fungi in E. nutans (P = 0.021) but not K. pygmaea (P > 0.05). The Shannon index of
endophytic fungi in E. nutans roots decreased significantly with increasing altitude, but an
inconspicuous increasing trend was observed for K. pygmaea roots (Fig. 1B). There was no
significant difference in the Shannon index of root endophytic fungi between K. pygmaea
and E. nutans at lower elevations (3,350–3,570 m). The Shannon index of root endophytic
fungi was much higher in K. pygmaea than E. nutans at higher elevations (3,680 and 3,800
m).

Community compositions of endophytic bacteria and fungi
TheNMDS ordination (Fig. 2) and analysis of similarities (ANOSIM) (Table 1) showed that
endophytic bacterial and fungal community composition in K. pygmaea was significantly
different from that in E. nutans (R= 0.78, P = 0.001; R= 0.58, P = 0.001) (Figs. 2A, 2B).
Elevation also obviously influenced root endophytic bacterial and fungal communities
in E. nutans (R= 0.42, P = 0.001; R= 0.84, P = 0.001) (Figs. 2C, 2D) and K. pygmaea
(R= 0.76, P = 0.001; R= 0.98, P = 0.001) (Figs. 2E, 2F). The root endophytic bacterial
community composition in K. pygmaea was more sensitive to elevation than E. nutans,
which was validated by the R value of ANOSIM (Table 1). Greater the R values indicate a
more significant influence of altitude on community composition. The endophytic fungal
community was more sensitive to elevation than the bacterial community for each species.
Plant identity had a greater influence on the endophytic bacterial community than the
fungal community.

Proteobacteria was the predominant phylum in E. nutans and K. pygmaea roots
(Fig. S2A). The average relative abundance of Proteobacteria was 58% in K. pygmaea roots,
which was much lower than E. nutans (80%). Actinobacteria was the subdominant phylum
in K. pygmaea roots and accounted for 30% of the bacterial reads, which was much higher
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Full-size DOI: 10.7717/peerj.11340/fig-1

Table 1 Significance test of community composition differences among elevations and hosts deter-
mined by permutational multivariate analysis of variance using distance matrices (PERMANOVA) ac-
cording to Bray-Curtis distances.

Anosim

R P

E. nutans 0.416 0.001
Elevation

K. pygmaea 0.756 0.001Bacteria

Host species E. nutans vs K. pygmaea 0.78 0.001
E. nutans 0.84 0.001

Elevation
K. pygmaea 0.984 0.001Fungi

Host species E. nutans vs K. pygmaea 0.579 0.001

than its abundance in E. nutans roots (1.4%). There were significant differences in root
endophytic bacterial community composition at the order level between K. pygmaea and
E. nutans (Fig. 3A). For E. nutans roots, Pseudomonadales was the most abundant order,
with the relative abundance ranging from 36% to 69% along the elevation gradient. The
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endophytic bacterial community composition was more uniform in K. pygmaea roots than
E. nutans roots. Rhizobiales accounted for 20% of the total community abundance, and
there was no obvious difference between elevations. Pseudomonadales was highly abundant
(50%) at the elevation of 3,800 m, and Pseudonocardiales showed low abundance at this
elevation.

Most endophytic fungi in all samples belonged to Ascomycetes, with average 76% for
E. nutans roots and 61% for K. pygmaea (Fig. S2B). Helotiales were the dominant order in
E. nutans roots and were more abundant at high altitudes, which was different from that
in K. pygmaea (Fig. 3B). Pleosporales were more abundant in K. pygmaea roots than E.
nutans roots, especially at lower altitudes (3,350–3,570 m). Agaricales were enriched in K.
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pygmaea roots at higher altitudes (3,680 m and 3,800 m) and more abundant in E. nutans
roots (Fig. 3B). The relative abundance of Hypocreales in K. pygmaea roots were 18.55%
and 8.1% at 3 350 m and 3,460 m, respectively, which was higher than E. nutans roots at
the same elevations (Fig. 3B).

We compared the abundances of the top 20 OTUs which covered more than 50%
of the total reads in all samples at different altitudes and found that plants tended to
be enriched with specific endophytes at different elevations (Figs. S3A– S3D). Species
with significant differences in relative abundance between K. pygmaea and E. nutans were
analyzed according to LEfSe (Fig. 4). The results indicated that bacterial species belonging to
Actinobacteria (Frankiales, Pseudonocardiales and Micromonosporales) and Rhizobiales
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Figure 4 Cladograms of LEfSe showing bacterial and fungal taxa with significant differences in rela-
tive abundance betweenK. pygmaea and E. nutans. The filled circles from inside to outside indicate the
taxonomic levels with phylum, class, order, family, genus, and species. Circles or nodes shown in color
corresponding to different plant species represented a significantly more abundant group. Yellow circles
indicate species with no significant differences in relative abundance.

Full-size DOI: 10.7717/peerj.11340/fig-4

(Rhizobiaceae) were highly enriched in K. pygmaea roots, and Gammaproteobacteria
(Burkholderiaceae), Pseudomonadales (Pseudomonadaceae) and Flavobacteriales
(Flavobacteriaceae) were highly enriched in E. nutans roots (Fig. 4A). Fungal species
belonging to Dothideomycetes (Pleosporales), Eurotiomycetes (Chaetothyriales), and
Sordariomycetes (Coniochaetales, Hypocreales) were highly enriched in K. pygmaea roots,
and Helotiales (Hyaloscyphaceae, Helotiaceae) and Tremellales (Bulleribasidiaceae) were
highly enriched in E. nutans roots (Fig. 4B).
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Table 2 Spearman correlation analysis between elevation and the relative abundance of bacterial and
fungal at genus level.

Genus K. pygmaea E. nutans

R P R P

Bacteria Pseudomonas 0.731 0.002 0.153 0.587
Pantoea 0.633 0.011 0.556 0.031
Rhizobium −0.546 0.035 0.011 0.969
Acidibacter −0.676 0.006 −0.207 0.458
Actinophytocola −0.524 0.045 0.022 0.938
Cryptosporangium −0.676 0.006 −0.016 0.954
Serratia 0.535 0.040 0.491 0.063
Sphingomonas −0.262 0.346 0.644 0.010
Paenibacillus 0.742 0.002 0.764 0.001

Fungi Mycena 1.000 0.000 −0.700 0.188
Mortierella 0.900 0.037 −0.900 0.037
Cistella 0.700 0.188 −0.900 0.037
Ilyonectria 0.900 0.037 −0.800 0.104
Sebacina 0.900 0.037 −0.700 0.188
Leptosphaeria 0.975 0.005 −0.616 0.269

The correlations of the relative abundances of the top 20 genera and elevation were
analyzed (Table 2). For bacterial communities, the relative abundances of Pantoea,
Sphingomonas, and Paenibacillus in E. nutans roots showed positive correlations with
elevation. The relative abundances of Pseudomonas, Pantoea, Serratia, and Paenibacillus
in K. pygmaea roots was positively correlated with elevation, and Rhizobium, Acidibacter,
Actinophytocola, and Cryptosporangium was negatively correlated with elevation. For
fungal communities, the relative abundances of Mortierella and Cistella showed negative
correlations with elevation in E. nutans roots. The relative abundances of Mycena,
Mortierella, Ilyonectria, Sebacina, and Leptosphaeria showed positive correlations with
elevation in K. pygmaea roots.

The results of 16S rRNA functional prediction indicated that the endophytic bacterial
community in E. nutans roots had a higher abundance of genes associated with nitrogen
fixation, phosphatase activity and antioxidase activity and a lower abundance of genes
associated with cold resistance than K. pygmaea roots (Fig. 5). Genes associated with
nutrient absorption, including nitrogen fixation, nodulation, and phosphatase activity,
were enriched in K. pygmaea roots at higher elevations. These genes were enriched at lower
elevations in E. nutans roots, (Fig. S4).

DISCUSSION
Diversity of the endophytic community along an elevation gradient
Most studies on the influence of climate change on plant associated microbial communities
overlooked host responses and did not link the responses of hosts and endophytes (Qian
et al., 2018; Cordier et al., 2012). Therefore, the significance of changes in the endophytic
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Figure 5 Differences in relative abundance of functional genes associated with cold resistance, nitro-
gen absorption, phosphatase and antioxidase betweenK. pygmaea and E. nutans.
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community of the host in response to climate change were not well explained. Two plant
species showing contrasting responses to climate warming were selected in the present
study to fill in this knowledge gap. The increase in endophytic fungal diversity in E.
nutans and decrease in K. pygmaea with warming (i.e., decreasing elevation) indicated that
the endophytic fungal diversity of plants growing in suitable environments was higher
than plants growing in unsuitable habitats. Our findings demonstrated that changes in
endophytic fungal diversity under climate warming were closely related to host adaption,
and endophytic diversity decreased when the climate became unfavorable for plant
growth. A previous study indicated that endophytic diversity in sugar maple seedlings
was higher within its natural range than at the edge of species’ elevational range (Wallace,
Laforest-Lapointe & Kembel, 2018), which was consistent with the results of our study. We
hypothesized that the loss of endophytic diversity in adverse environments was related to
host selection. The symbiotic relationships between the host and some endophytes break
down, and some endophytes that are beneficial to host survival are selectively enriched
(Werner et al., 2018).

Plant adaptability to environmental changes is very complex and affected by many
factors. We just found a phenomenon that fungal diversity was higher in the habitat that
suitable for host growth. However, no direct cause-and-effect relationship between fungal
diversity and host adaptation was demonstrated in the present study. Whether higher
endophytic diversity contributes to host growth is worthy to study in the future.

Species and elevation significantly affected the root endophytic
bacterial and fungal communities
Previous studies indicated that plant endophytes showed significant host preferences
(Toju, Kurokawa & Kenta, 2019; Yao et al., 2019). Different plant species sharing similar
environments recruit different microbial communities in roots (Aleklett et al., 2015), which
may be related to the metabolic characteristics of the host. Because root exudates contain
important factors that shape endophytic microbiome assembly, such as salicylic acid (Lebeis
et al., 2015) and jasmonic acid (Carvalhais et al., 2015). Environmental parameters are also
key factors that cause changes in the endophytic community (Carper et al., 2018; Bei et al.,
2019; Chen et al., 2019). Climate characteristics, soil nutrients and vegetation composition
change along altitude gradients may cause variations in the endophytic community (Cai
et al., 2020; Zarraonaindia et al., 2015). Plant species and altitude significantly affected
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the root endophytic bacterial and fungal community composition in the present study.
The bacterial community composition was affected more strongly by plant species, and
elevation more strongly affected the fungal community. Previous studies also concluded
that fungal communities were more susceptible to geographic distance than bacterial
communities (Coleman-Derr et al., 2016;Meiser, Bálint & Schmitt, 2014).

Among the endophytic bacteria, Proteobacteria was the predominant phylum in E.
nutans and K. pygmaea roots, which was consistent with many other studies involving
different plant species (Bulgarelli et al., 2012; Beckers et al., 2017; Carrell & Frank, 2015).
However, K. pygmaea roots had a higher abundance of Actinobacteria than E. nutans
roots. At the order level, the relative abundances of Pseudonocardiales, Frankiales and
Rhizobiales in K. pygmaea roots were much higher than E. nutans roots. However, E.
nutans roots had a higher abundance of Pseudomonadales. These root endophytes have
been reported to promote host plant growth and help plants resist biotic and abiotic
stress (Hasegawa et al., 2006; Santoyo et al., 2016). Pseudomonas participates in nitrogen
fixation (Yan et al., 2008) and iodoacetamide (IAA) synthesis (Taghavi et al., 2009), which
promote plant growth. In addition to symbiosis with leguminous plants, Rhizobium acting
as an endophyte of nonleguminous plants promote nitrogen and phosphorus uptake and
improve the photosynthetic rate (Yanni et al., 2001; Chi, 2006). Helotiales, which promote
phosphorus absorption in nonmycorrhizal plants (Almario et al., 2017), were enriched
in E. nutans roots. Some genera, such as Mortierella, showed positive correlations with
elevation in K. pygmaea but negative correlations with elevation in E. nutans, which also
reflected the host selectivity to endophytes.

Functional differences of root endophytic bacteria in K. pygmaea and
E. nutans
Chilling stress is an important environmental factor that affects plant growth and
geographical distribution (Lv et al., 2018), which is especially true on the Qinghai-Tibet
Plateau. A previous study also demonstrated that temperature and altitude factors primarily
affected the distribution of alpine meadow grass (Zhang et al., 2020). Symbiosis with
bacteria that could improve the cold tolerance of the host represents a survival strategy in
alpine regions with high elevations (Acuna-Rodriguez et al., 2020; Tiryaki, Aydin & Atici,
2019). Beirinckx et al. (2020) also indicated that the root microbiome promoted maize
growth under chilling conditions. The present study provided new insight into the role of
endophytic bacteria in host adaptation to climate warming in terms of bacterial functional
genes associated with cold resistance and nutrient absorption.

The study area in the present study exhibited a cold and wet climate at high altitudes
and a warm and dry climate at low altitudes. Temperature is the main factor affecting
plant growth at high elevations. Increased recruitment of bacteria with cold resistance
ability in K. pygmaea roots made it more adaptable to high altitude than E. nutans although
the abundance of genes associated with nutrient uptake was higher in E. nutans than
K. pygmaea. Because the expression of these genes and the enzymes activity involved in
nutrient absorption are restricted by low temperatures. Therefore, symbiosis with high
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abundance of these endophytes in E. nutans cost plant carbohydrates without getting the
expected return at high altitudes.

The outcomes of symbiosis with microbiomes are environmentally dependent (Rubin
et al., 2020). For example, arbuscular mycorrhizal fungi significantly enhance phosphorus
absorption and promote plant growth in phosphorus deficient soils, but the contribution
of mycorrhizal pathways to phosphorus uptake in plants is weakened under high P soil
condition (Chu et al., 2020). Climate warming relieves cold stress at high elevations and
exacerbates heat and drought stress at lower elevations (Reinhardt et al., 2011;Moyes et al.,
2013). With climate warming or decreasing altitude, plant growth is freed from the cold
limitation. Selectively symbiosis with bacteria that have the ability to facilitate host nutrient
absorption, such as nitrogen fixation and phosphorus solubilization, in E. nutans roots
made this plant more adaptable to warming environments than K. pygmaea.

Endophytes do not always establish harmonious symbioses with plant hosts. They also
cause host disease and other adverse effects. There in a ‘balance of antagonisms’ relationship
between fungal and plant partners (Schulz & Boyle, 2005). We only focused on the ‘‘good’’
side of endophytes for their importance in maintaining a stable symbiotic relationship.
Exploring beneficial roles of endophytes to their hosts in special environments such as the
Qinghai-Tibet Plateau contributes a lot to the development and application of microbial
resources. However, functional prediction alone is not sufficient to directly demonstrate
the role of endophytic bacteria in host responses to climate changes. Further studies should
concentrate more on the interactions between endophytic community and host to rich our
understanding of responses of terrestrial ecosystem to global warming.

CONCLUSIONS
The present study demonstrated that the diversity of the endophytic community was
higher in hosts growing in habitats that were conducive to its growth. K. pygmaea, with
higher endophytic diversity and greater abundance of genes associated with cold resistance,
was suited for growth in cold areas at high altitudes, and its growth was suppressed
by warming. Higher endophytic diversity and greater abundance of genes associated with
nutrient absorption and oxidation resistance in warmer environments (lower altitude) may
contribute to the growth of E. nutans under global warming (Fig. 6). We also found that the
relative abundances of the same taxa in different hosts showed different correlations with
elevation, which demonstrated that the ability to recruit endophytes differed between the
hosts when the habitat changed. Our study highlights the importance of plant endophytes
in the responses of terrestrial ecosystems to climate change.
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Figure 6 Frame diagram of response of endophytic bacterial and fungal community to altitude. The
proportion of Elymus nutans in vegetation community as well as its endophytic fungal diversity decreased
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sity showed a slight increase trend with elevation increasing. The Shannon index of root bacterial and fun-
gal community in Kobresia pygmaea were higher than that in Elymus nutans. Besides, bacteria in Kobresia
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