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Background. Climate change is an important factor driving vegetation changes in arid areas. Identifying
the sensitivity of vegetation to climate variability is crucial for developing sustainable ecosystem
management strategies. Irtysh River is located in the westerly partition of China, and its vegetation cover
is more sensitive to climate change. However, previous studies rarely studied the changes in the
vegetation coverage of the Irtysh River and its sensitivity to climate factors from a spatiotemporal
perspective.

Methods. we adopted a vegetation sensitivity index (VSI) based on high-resolution remote sensing
datasets to study the sensitivity of vegetation to climatic factors in Irtysh River basin, then reveal the
driving mechanism of vegetation cover change.

Results. The results show that 88.09% of vegetated pixels show an increasing trend in vegetation
coverage, and the sensitivity of vegetation to climate change presents spatial heterogeneity. Sensitivity
of vegetation increases with the increase of coverage. Temperate steppe in the northern mountain and
herbaceous swamp and broadleaf forest in the river valley, where the NDVI is the highest, show the
strongest sensitivity, while the desert steppe in the northern plain, where the NDVI is the lowest, shows
the strongest memory effect (or the strongest resilience). Relatively, the northern part of this area is
more affected by a combination of precipitation and temperature, while the southern plains dominated
by desert steppe are more sensitive to precipitation. Central river valley dominated by herbaceous
swamp is more sensitive to TVDI. This study underscores that the sensitivity of vegetation cover to
climate change is spatially differentiated at the regional scale.
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16 Abstract

17 Background. Climate change is an important factor driving vegetation changes in arid areas. 

18 Identifying the sensitivity of vegetation to climate variability is crucial for developing 

19 sustainable ecosystem management strategies. Irtysh River is located in the westerly partition of 

20 China, and its vegetation cover is more sensitive to climate change. However, previous studies 

21 rarely studied the changes in the vegetation coverage of the Irtysh River and its sensitivity to 

22 climate factors from a spatiotemporal perspective.

23

24 Methods. we adopted a vegetation sensitivity index (VSI) based on high-resolution remote 

25 sensing datasets to study the sensitivity of vegetation to climatic factors in Irtysh River basin, 

26 then reveal the driving mechanism of vegetation cover change.

27

28 Results. The results show that 88.09% of vegetated pixels show an increasing trend in vegetation 

29 coverage, and the sensitivity of vegetation to climate change presents spatial heterogeneity. 

30 Sensitivity of vegetation increases with the increase of coverage. Temperate steppe in the 

31 northern mountain and herbaceous swamp and broadleaf forest in the river valley, where the 

32 NDVI is the highest, show the strongest sensitivity, while the desert steppe in the northern plain, 

33 where the NDVI is the lowest, shows the strongest memory effect (or the strongest resilience). 

34 Relatively, the northern part of this area is more affected by a combination of precipitation and 

35 temperature, while the southern plains dominated by desert steppe are more sensitive to 

36 precipitation. Central river valley dominated by herbaceous swamp is more sensitive to TVDI. 

37 This study underscores that the sensitivity of vegetation cover to climate change is spatially 

38 differentiated at the regional scale.
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40 Introduction
41 Vegetation covers nearly three-quarters of the land surface(Sarkar and Kafatos, 2004), which is the main body 

42 of the terrestrial ecosystem(Cramer and Leemans, 1993), and plays an important role in linking the soil and 

43 atmosphere through energy and mass transport(Deng et al., 2017). In the context of global climate change, on the 

44 one hand, vegetation is affected by climate change and becomes the sufferers of climate change. Besides, it acts as 

45 an "indicator" in global climate change research(Piao et al., 2006). On the other hand, vegetation is related to climate 

46 characteristics, and its change has a positive feedback effect on climate change (Liu et al., 2006; Sun et al., 2018). 

47 Therefore, monitoring and mapping the sensitivity of vegetation to current climate variability is crucial for 

48 projecting future vegetation dynamics and developing sustainable ecosystem management strategies.

49 Investigating the responses of vegetation to short-term climate anomalies is of great significance to mitigate the 

50 ecological, economic, and social consequences of future climate change (Huete and Alfredo, 2016). Much current 

51 understanding of vegetation’s respond to climate change is based on changes in mean climate state (Mearns et al., 

52 1997; Thomas et al., 2004). We consider that this mean state can only represent changes in the equilibrium state 

53 (e.g. due to overgrazing or long-term successional cycles (Clifford et al., 2011)) instead of anomalies resulting from 

54 short-term climate anomalies. However, the response of vegetation to changing climate is comprehensive and often 

55 varies dramatically between regions(Anav and Mariotti, 2011). Given the importance of identifying ecologically 

56 sensitive areas for ecosystem service provision (Egoh et al., 2020), a key knowledge gap exists in how to identify 

57 and then prioritize those regions that are more sensitive to climatic variability. However, a key issue must be 

58 addressed before we analyze the sensitivity of vegetation to climate variability, that is, how to describe vegetation 

59 sensitivity in a quantitative way. There are several ways defining the vegetation’s sensitivity to climate variability. 

60 For example, vegetation’s sensitivity refers to the degree and magnitude of vegetation response when the climate 

61 anomaly occurs(You et al., 2018) or the degree to which a system changes after a disturbance(Li et al., 2018). In this 

62 study, vegetation’s sensitivity is defined as the magnitude of vegetation response at the moment of the climate 

63 anomaly(Tilman, 1996). Additionally, Moulin S et al. (Moulin et al., 1997) found that due to the relatively slow 

64 growth of vegetation, the response of vegetation to climate change often lags, in that its state depends both on 

65 current disturbances and the residual effects of past climate conditions. This ‘memory effect’ should be considered 

66 when assessing the immediate response to short-term climate anomalies(De Keersmaecker et al., 2015). In this 

67 study, we describe memory effects as the amount of time required to resume the normal after stress (Lhermitte et al., 
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68 2010), or the persistence of trends in temporal changes of ecosystem properties(Dash et al., 2014; Simoniello et al., 

69 2008). 

70 Since the 1970s, the development of satellite remote sensing technology has made it possible for a human to 

71 conduct macro dynamic monitoring of earth vegetation from space (Pettorelli et al., 2014; Weng, 2002). In the past 

72 decades, there has been an increase in the availability of satellite data measuring climate and other ecologically 

73 relevant variables(Kerr and Ostrovsky, 2003). These data offer opportunities to characterize ecosystem sensitivity at 

74 high spatial resolution. Among various methods, Seddon et al. (Seddon et al., 2016) present a novel method to 

75 identify ecosystem sensitivity and memory effect to short-term climate variability by developing a vegetation 

76 sensitivity index (VSI) that explores the linkage between variability in vegetation productivity (defined as EVI) and 

77 three climate variables (namely air temperature, water availability, and cloud-cover) on monthly time scales. The 

78 vegetation sensitivity index is a useful metric to quantitatively assess the sensitivity of different ecosystems to 

79 climate variability (Huete, 2016; Willis et al., 2018) and simultaneously takes into account metrics standardizing for 

80 short-term climate effects and vegetation ‘memory’. Therefore, we apply this method to identify the sensitivity of 

81 vegetation to climate variability and reveal the potential influence of memory effects. Temperature and precipitation 

82 are usually the main climatic factors affecting vegetation activities (Li et al., 2015; Seddon et al., 2016; Yang et al., 

83 2015). Supply of water, quantified with moisture of the soil, is also a profound factor affecting vegetation activities 

84 in the arid area. And the temperature-vegetation dryness index (TVDI) originated from remote sensing data can 

85 reflect the variation in soil moisture on a finer scale(Grassini et al., 2010; Sandholt et al., 2002). So, we substitute 

86 the climatic factors in their model by temperature, precipitation, and TVDI. Additionally, as the normalized 

87 difference vegetation index (NDVI) can well reflect the vegetation chlorophyll content, leaf area, leaf biomass, net 

88 productivity, coverage and other surface vegetation coverage information (Bounoua et al., 2000; Goetz et al., 1999; 

89 Tieszen et al., 1997), and is most widely used in many vegetation indexes (Defries and Townshend, 1994; Myneni et 

90 al., 1997; Paruelo et al., 1997). Therefore, we chose NDVI instead of EVI to characterize vegetation coverage.

91 Drylands (including arid and semi-arid regions) occupy over 41% of the global land surface area and are 

92 inhabited by >2 billion people (Safriel et al., 2020).  Ecosystems in arid and semi-arid regions are more vulnerable 

93 to climatic disturbances(Rotenberg and Yakir, 2010). Irtysh River basin is located in the arid and semi-arid region in 

94 the northwest of China where water resources are scarce, and it is an important water source in this area and plays an 

95 important role in regional economic development and ecological protection(Ye and Bai, 2014). At the same time, 
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96 the Irtysh River is an international river, which has complicated interests with neighboring countries in the 

97 international distribution of water resources, prevention and control of water pollution, ecological maintenance and 

98 international regional cooperation. On this basis, this study selected Irtysh River basin, which is sensitive to 

99 environmental change, as the study area, analyzes its vegetation change and climate change characteristics, and 

100 identifies the area sensitive to climate change, which has important reference significance for the future how to deal 

101 with climate change and ecological civilization construction of the basin. 

102 Based on the remote sensing data, we used the Mann-Kendall non-parametric rank statistical test to analyze the 

103 vegetation dynamic and then calculated VSI to discuss the vegetation sensitivity. In this study, our aims are to (1) 

104 map the spatial trends of vegetation cover in 2000-2018; (2) investigate the controlling factors of vegetation 

105 sensitivity and resilience in Irtysh River basin.

106

107 Materials & Methods

108 Study area
109 Irtysh River basin is in the arid and semi-arid area of northwest China where water resources are scare 

110 (45°40′~48°27′N, 85°30′~91°2′E, Fig.1). The region relates to the Altai Mountains in the north and 

111 crosses into the northern edge of the fold system of the Junggar Basin in the south and is adjacent to Mongolia, 

112 Kazakhstan, and other countries in the East and West. A typical temperate continent cold climate(Ju et al., 2015; 

113 QiangJi and Wu, 2017) dominates this area, with annual mean temperature ranging from 3.6℃ to 3.9℃, and the 

114 cold air activities are frequent in winter and spring in mountainous areas, forming disasters such as blizzards, 

115 snowstorms, and avalanches now and then. The annual mean precipitation is about 217.1 mm, the precipitation 

116 increases gradually alone the increase of elevation, yet the northwest part is wetter than the southeast part in 

117 general(Shen et al., 2007). The vegetation in the study area is mainly desert meadow and grassland, accounting for 

118 91.58% of the whole vegetated area. The rest are herbaceous swamp distributed in and around the river valley, and 

119 broad-leaved forest or shrub scattered in or near the swamp area.

120

121 Data source and pre-processing
122 Meteorological Data

123 This study collected monthly precipitation and air temperature datasets covering the period of 2000–2018 from 

124 the China Meteorological Data Service Center (CMDC). Data of 72 meteorological stations in the territory of 
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125 Xinjiang province of China, where the study area located, were utilized to interpolate continuous surfaces data using 

126 the Anusplin4.2 interpolation program. The spatial resolution was set to 250 m in the interpolating. Among the 72 

127 meteorological stations, 7 are in the study area (Fig.1).

128 Remote sensing Data

129 Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI product (MOD13Q1) covering the period of 

130 2000-2018 were used to determine the variation of vegetation cover. This MOD13Q1 product was 16-day NDVI 

131 synthetic data using the Maximum Value Composite (MVC) method, and its pix size is about 250 m×250 m. We 

132 performed Savitzky-Golay filtering on the NDVI time series to obtain high-quality data, then MVC were applied to 

133 get monthly and yearly NDVI.

134 Temperature Vegetation Dryness Index (TVDI) can be used to characterize the degree of soil drought. This study 

135 mainly uses the method proposed by Sanholt I et al. and Yao et al. (Sandholt et al., 2002; Yao et al., 2004) to 

136 calculate TVDI. TVDI is a combination of vegetation index (VI) and land surface temperature (LST). Monthly 

137 TVDI were calculated using the MODIS NDVI and the 8-day composite MODIS temperature product (MOD11A2). 

138 The MOD11A2 product includes LST images of day and night, with a pix size about 1000 m×1000 m. The day LST 

139 was used in the study. Every 4 LST images covering the whole corresponding month were averaged to get the 

140 monthly LST time series data, and the pix size was resampled to 250 m×250 m to match the images of NDVI.

141 It is well known that there are ubiquitous data gaps in LST datasets because of non-overlapping satellite orbits, 

142 cloud contamination, instrumental malfunction (Chen et al., 2011; Hu et al., 2014). In this study, we applied a 

143 penalized least square method based on discrete cosine transforms (DCT-PLS) to fill data gaps in MODIS LST 

144 datasets(Liu et al., 2020), this method has been proved fast and robust to fill LST datasets. 

145 Mann-Kendall non-parametric rank statistical test

146 When using Mann-Kendall non-parametric test(Kendall, 1990; Mann, 1945) to test the possible trends of climatic 

147 elements and time series, we assume that H0 indicates that the time series （x1,x2 ,…, xn） are independent of the 

148 data sample, and there is no obvious trend; Assuming that H1 is a bilateral test, the distribution of xi and xj are 

149 different for all i, j (i≠j), the calculation formula of the statistical variable S of the test is as follows:

150                                                                                                                            𝑆 = ∑𝑛 ‒ 1𝑖 = 1
∑𝑛𝑘 = 𝑖 + 1

𝑆𝑔𝑛(𝑥𝑘 ‒ 𝑥𝑖)
151 （1）

152 Among them,
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153                                                                                   𝑆𝑔𝑛（(𝜃)）= {
1 𝜃 > 0
0 𝜃 = 0‒ 1 𝜃 < 0�

154 （2）

155 S is normal distribution, the mean is 0, and the variance is as follows:

156                               （3） 𝑉𝑎𝑟(𝑠) = [𝑛(𝑛 ‒ 1)(2𝑛 + 5) ‒ ∑𝑡𝑡(𝑡 ‒ 1)(2𝑡 + 5)] 18

157 Where t is the width of each unit. When n> 10, Zc converges to a standard normal distribution and can be 

158 calculated by the following formula.

159
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160 At a given  confidence level, when |Zc|>1.96, the changing trend reaches a significant level, |Zc|<1.96, the 𝛼
161 changing trend is not Significant; Zc>0, indicating that the changing trend is increasing, and Zc<0, it is decreasing.

162 Among them, the size of the changing trend can be expressed by Kendall slope, and its calculation formula is as 

163 follows:

164                                                                                            （5）𝛽 = 𝑀𝑒𝑑𝑖𝑎𝑛(
𝑥𝑖 ‒ 𝑥𝑗𝑖 ‒ 𝑗 )

165 In the formula, 1<j<i<n，β means slope, a positive value means “uptrend”, and a negative value means 

166 “downtrend”.

167 Identifying the sensitivity of vegetation to climate variability

168 The VSI is a novel and empirical metric developed by Seddon et al. (2016) that can quantify the sensitivity of 

169 different vegetation areas to climate variability (Huete, 2016; Willis et al., 2018). In this study, we tailored the 

170 empirical methodology to identify vegetation sensitive to climate variability on the Irtysh River basin. 

171 Firstly, for the climatic variables, we employed temperature, precipitation, and TVDI, instead of three climate 

172 variables as in Seddon et al. (2016). Furthermore, we included the one-month-lagged NDVI monthly data as a fourth 

173 variable in the regression to investigate the potential influence of memory effects driving vegetation dynamics.

174 Secondly, any month with a mean NDVI of <0.1 were excluded to reduce the potential impact of noisy data at 

175 low NDVI values, which are attributed to areas with extremely sparse or inexistent vegetation cover. And to remove 
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176 seasonal component underlying monthly time series, we de-trended the monthly data and then we standardized the 

177 de-trended data utilizing the Z-score standardization formula:

178                                                                                                             (6)                                                       𝑍𝑖,𝑗 =
𝑥𝑖,𝑗 ‒ 𝑥𝑗𝜎𝑗

179 Where xi,j is the detrended data in the jth month of the ith year, xj and are the mean and standard deviation of 𝜎𝑗
180 the variable x in the jth month of all years, respectively. 

181 Thirdly, in this study, the sensitivity of vegetation to climate variability on the Irtysh River basin was primarily 

182 calculated using AR1 multiple linear regression approach in each pixel, as follows:

183                                 (7)                                  𝑁𝐷𝑉𝐼𝑡 = 𝛼 × 𝑁𝐷𝑉𝐼𝑡 ‒ 1 + 𝛽 × 𝑇𝑒𝑚𝑡 + 𝛾 × 𝑃𝑟𝑒𝑡 + 𝛿 × 𝑇𝑉𝐷𝐼𝑡 + 𝜀𝑡 
184 Where is the standardized NDVI at time t,  is the standardized NDVI anomaly at time t-1, , 𝑁𝐷𝑉𝐼𝑡 𝑁𝐷𝑉𝐼𝑡 ‒ 1 𝑇𝑒𝑚𝑡
185  and  are the standardized temperature, precipitation, and TVDI at time t, respectively.  is the residual 𝑃𝑟𝑒𝑡 𝑇𝑉𝐷𝐼𝑡 𝜀𝑡
186 term at time t, and are coefficients for temperature, precipitation, TVDI and  of each pixel,  𝛼, 𝛽, 𝛾, 𝑎𝑛𝑑 𝛿 𝑁𝐷𝑉𝐼𝑡 ‒ 1

187 respectively. Each of  is a metric of ecosystem stability (Table 1; (De Keersmaecker et al., 2015)). 𝛼, 𝛽, 𝛾, 𝑎𝑛𝑑 𝛿 

188 Compared to the correlation coefficient which can only indicate whether the ecosystem responds to climate 

189 variability, the regressive coefficient can further reflect the response magnitude.

190 Fourthly, to eliminate the effects of co-linearity between four climate variables, the principal components 

191 regression (PCR) was also applied within each pixel to quantify the relative importance of each variable driving 

192 variations in the monthly NDVI (Seddon et al., 2016). The principal components that had significant relationships 

193 with climate (p < 0.1) were selected, and we subsequently multiplied the loading scores of each variable by the PCR 

194 coefficients. The product scores were summed to estimate the relative importance of each variable in driving 

195 monthly changes in NDVI, which provided an empirical approach for mapping the relative importance of climate on 

196 vegetation change (climate weights).

197 The climate weights from each variable were rescaled between 0 and 1 (using the minimum and maximum values 

198 of any of the climate coefficient values), to be used for calculations of vegetation sensitivity. To estimate the 

199 variations of both the climate variables and NDVI on these time series, we used the residuals of a linear model fitted 

200 to the mean-variance. Relationship of both the NDVI and climate variables for each pixel. We standardized these 

201 residuals to between 0 and 100 for each variable. Our sensitivity metrics are the log10-transformed ratios of NDVI 
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202 variability and each of the climate variables. Each ratio was then weighted according to the importance of the 

203 climate variable to EVI variability by multiplying it by the value of the regression coefficient (climate weights). 

204 Finally, we summed the sensitivity scores for each of our variables to identify areas of enhanced variability for the 

205 period of study. 

206                                        (8)𝑉𝑆𝐼 = 𝑇𝑒𝑚𝑤𝑒𝑖 × 𝑇𝑒𝑚𝑠𝑒𝑛𝑠 + 𝑃𝑟𝑒𝑤𝑒𝑖 × 𝑃𝑟𝑒𝑠𝑒𝑛𝑠 + 𝑇𝑉𝐷𝐼𝑤𝑒𝑖 × 𝑇𝑉𝐷𝐼𝑠𝑒𝑛𝑠
207 The VSI has no units and therefore provides relative information, wherein a high VSI value is associated with a 

208 high response rate of vegetation productivity to climate variability. The detailed algorithm for calculating VSI and 

209 the R script can be found in Seddon et al. (2016).

210

211 Results
212 Variances in vegetation cover and climatic factors

213 Based on the annual NDVI data of the study area in 2000-2018, we calculated the annually mean NDVI on a pixel 

214 scale and divided it into 5 levels (Fig.2a) to analyze its spatial pattern. Vegetation coverage in the study area 

215 increased from the southern plain to the northern mountain area. Vegetation in the plain area, except for the river 

216 valley, had low coverage (NDVI<0.2) and occupied 68.03% of the vegetated pixels. NDVI of the mountain areas in 

217 the north and some plain areas in the west is about 0.2-0.6, accounting for 24.08% of the vegetated pixels. The 

218 central valley area, which is where the wetland and broad-leaved forest distribute, showed high coverage 

219 (NDVI>0.6), accounting for 7.89% of the vegetated pixels.

220 In the period of 2000-2018, the annually averaged NDVI of the whole study area shows a significant increase 

221 trend (statistics Zc=2.17, P<0.05), the changing rateβis 0.0017 (Fig.3). Spatially, the NDVI of 70.28% of the 

222 vegetated pixels showed non-significant increase trend and they are mainly located in the low coverage region 

223 dominated by desert meadow and grassland (Fig.2b). 17.81% of the vegetated pixels showed a significant increasing 

224 trend, and are mainly located in the western part and central part in the south. Areas with NDVI showing decreasing 

225 trend are sparsely distributed in the northern piedmont area and part of the west end. For the changing rate β，the 

226 proportion of pixels with β>0 reached 89.04%. NDVI of areas in the central valley, mountains in the east and central 

227 plains of the south showed the most rapid increase(β>0.002), the proportion is 26.79%.The increasing rate was 

228 relatively low(0<β<0.001) for the plain of the east and southwest, and the central mountain of the south, which 

229 occupied 62.26% of the vegetated pixels.
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230 Climatic factors are the main driving forces for variation of vegetation. Therefor we performed Mann-Kendall 

231 tests on precipitation, temperature and TVDI data to reveal their changing trends separately. The results (Fig.4) 

232 showed that the precipitation and temperature in the study area showed a non-significant increasing trend from 2000 

233 to 2018, meaning whether condition in the study area were getting warmer and wetter. Relatively, TVDI in the study 

234 area showed a non-significant decreasing trend from 2000 to 2018, indicating that the soil moisture in the study area 

235 is gradually increasing. The increased precipitation and temperature and decreased TVDI indicate that the 

236 hydrothermal conditions and soils required for vegetation growth in the study area have been greatly improved in the 

237 past 19 years, which promoted the increasing of the NDVI for the whole study area.

238 Vegetation Memory effects

239 Vegetation memory effects have been widely reported in water-limited ecosystems at various time-scales (Los et 

240 al., 2006; Schwinning et al., 2004). Seddon et al. found that a one-month lag provided the best explanatory power 

241 for vegetation responses to variability on short-term timescales. Therefore, we included the one-month-lagged NDVI 

242 monthly data as a fourth variable in the regression to investigate the potential influence of memory effects driving 

243 vegetation dynamics. The areas with high variance explained by the t−1 variable in the AR1 model, indicating 

244 systems where memory effects play a more important role than contemporary climate conditions in determining 

245 vegetation cover (Fig.5). The larger the t-1 coefficient weight (that is, coefficient α), the stronger the memory effect, 

246 and the weaker the sensitivity (with lower VSI). 

247 Vegetation showed strong memory effects (α>0.4) across almost the whole study area (Fig.5), especially in some 

248 parts of the eastern plain where the coefficient reached more than 0.6, and the area with α>0.6 accounted for 27.27% 

249 of the vegetated pixels in the study area. Coefficient α of areas in the northwest, the border of the east and river 

250 valley in the middle is relatively small (α<0.4), indicating weaker memory effects, and the areas proportion is 

251 20.60%. Yet for most parts of the study area, the coefficient α is about 0.4-0.6, and the area proportion reached 

252 52.13%. Notably, vegetation with big NDVI showed weak memory effect in general, such as the herbaceous swamp 

253 and broadleaf forest in the river valley and grassland in the mountain area of the north border. In contrast, the desert 

254 grass in the plain area showed strong memory effect.

255 As shown in Fig.6, the memory effect tends to change along the gradient of NDVI and climatic factors. To 

256 identify the controlling factors for vegetation memory effects, we regressed α (t-1 coefficient weight) against three 

257 climatic factors (precipitation, temperature, and TVDI) and vegetation cover (defined as NDVI). And considering 

258 the hydrothermal conditions required for vegetation growth, we selected the mean NDVI, mean precipitation, mean 
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259 temperature, and mean TVDI of the growing season (GS) to participate in the regression. The results showed that 

260 vegetation memory effects (α) decreased logarithmically as NDVI increased (R2=0.67, P<0.05, Fig.6a). Relatively, 

261 vegetation memory effects (α) increased logarithmically as TVDI increased (R2=0.407, P<0.05, Fig.6d). 

262 Specifically, vegetation memory effects (α) presented a quadratic parabola relationship with both precipitation 

263 (R2=0.202, P<0.05, Fig.6b) and temperature (R2=0.155, P<0.05, Fig.6c). 

264 Vegetation sensitivity to climatic variables

265 Compared to strong memory effects, the VSI in the study area is rather low, with 60.69% of the vegetated pixels 

266 where VSI is less than 30 (Fig.7b). Spatially, areas of big VSI (VSI>30) generally overlap that of weak memory 

267 effects (α<0.4), such as the grassland in the north border and herbaceous swamp and broadleaf forest in the river 

268 valley, indicating that areas with higher NDVI usually shows weaker memory effects and higher sensitivity to 

269 climate variability over the past 19 years. Areas of the desert plain show low sensitivity (VSI>30) to climate 

270 variability, and overlap the areas of strong memory effects (α>0.4).

271 The relative importance of three climate variables (temperature, precipitation, and TVDI) to vegetation sensitivity 

272 also displayed clear spatially heterogeneity across the study area (Fig.8). Most areas are more sensitive to 

273 precipitation, mainly distributed in the southern and central plains dominated by desert meadow. While variation in 

274 vegetation cover (defined as NDVI) of the southeastern areas were mainly affected by a combination of precipitation 

275 and temperature, and the northern part of this area is affected by a combination of TVDI and temperature. 

276 Additionally, vegetation cover in the northwest areas was mainly driven by precipitation and TVDI. Remarkably, 

277 the central river valley dominated by herbaceous swamp was more sensitive to TVDI. And the mountain areas with 

278 higher elevations in the north are more sensitive to both temperature and precipitation.

279

280 Discussion
281 Disentangling the driving factors for variations in vegetation cover

282 Irtysh River basin is located in arid and semi-arid region. Scarce precipitation and high temperature lead to large 

283 evapotranspiration and low soil water storage in this area, which is not conducive to the growth of vegetation, 

284 especially in the low land of the southern plain. Therefore, most part of the study area is dominated by desert 

285 vegetation. However, as the altitude increases, the precipitation increases and temperature decreases (Navarro et al., 

286 2020), and this relieves the severe climatic restrictions. So, grassland in areas of high altitude, mainly the mountain 

287 areas in the north, is well developed and the vegetation coverage is also high (0.4<NDVI<0.6). The river valley can 
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288 rely on the rivers to supply ample water required for vegetation growth, so the herbaceous swamp and broadleaf 

289 forest with the highest NDVI (NDVI>0.6) are well developed in this area.

290 The results of the Mann-Kendall trend test of climatic factors show that the temperature and precipitation in the 

291 study area showed an increasing trend from 2000 to 2018, and the TVDI showed a decreasing trend. This is 

292 consistent with the findings of Huang et al (Huang et al., 2013). The analysis of the results indicate that the 

293 hydrothermal and soil conditions required for vegetation growth in the Irtysh River basin have been greatly 

294 improved. However, with the change of altitude gradient and climatic factors, the variation trend (Zc) and rate (β) of 

295 vegetation cover show obvious spatial heterogeneity. The increase of rainfall brings abundant water resources to the 

296 desert plain area in the southern study area, improves the available moisture content of the local soil, thus promoting 

297 the absorption of plant nutrients, which is conducive to the improvement of water utilization rate of plants, and 

298 greatly promotes the growth of vegetation and the increasing rate of local vegetation cover. The vegetation growth 

299 in the central valley, which is dominated by herbaceous marshes, mainly depends on rivers to supply groundwater to 

300 meet the requirements of soil moisture. In recent years, with the continuous strengthening of national ecological 

301 protection, the ecological water volume of Irtysh River has been well guaranteed (Yang et al., 2012; Ye and Bai, 

302 2014), which can timely recharge the groundwater aquifer in the valley area, thus increasing the soil moisture in this 

303 area, and TVDI presents a decreasing trend. In addition to the supply of rainfall, the vegetation cover in this region 

304 showed a significant trend of increase from 2000 to 2018, and the increase rate was also very fast. Studies (Jiang et 

305 al., 2017) have shown that the impact of air temperature on vegetation growth is topographically different. In the 

306 central river valley where it is relatively wet, elevated temperature can promote plant photosynthetic activity and 

307 thus lead to a positive response of vegetation growth. In the northern study region where it is relatively dry, increase 

308 of temperature can intensify the water deficit through elevated evaporation and thus causes a negative response of 

309 NDVI. In particular, although the climatic conditions in the study area showed a pattern of improvement, the impact 

310 of human activities on vegetation cover could not be ignored. The research results of Yang et al.(Han et al., 2013) 

311 showed that from 1990 to 2010, the overall landscape pattern of the Irtysh River Basin tended to be fragmented, 

312 with serious spatial heterogeneity, which was increasingly affected by human activities over time. The research 

313 results of this paper also reflect this phenomenon. The regions with different elevations have different responses to 

314 the same climatic factors.

315 Environmental impacts on vegetation memory effect during growth season

PeerJ reviewing PDF | (2020:11:55104:0:1:NEW 10 Nov 2020)

Manuscript to be reviewed



316 We can see in Fig.5 that areas with the strongest memory effects are generally located in the desert pain of the 

317 southeast, where the NDVI is the smallest and the drought the strongest. And areas with weakest memory effects is 

318 gathered in the mountain areas of the north and river valleys in the middle, where the NDVI is the biggest and the 

319 drought the weakest. This character in the matching between the memory effects and both of NDVI and drought can 

320 also be seen in the clean decreasing trend of metric α along with the increasing NDVI and also the increasing trend 

321 with the increasing TVDI (Fig.6a, 6d). Vegetation in the arid area or desert are usually characterized by their strong 

322 capability to coping with disturbances in climatic factors, this can be seen in the constant and largely stable low 

323 productivity conditions despite large climate variability and also strong cyclical variability with periods of very low 

324 and stable NDVI. So vegetation of these areas usually show strong memory effects. This contrasts to areas with high 

325 NDVI, such as the river valley and the mountain area, where the river water and the more precipitation can moderate 

326 the severe drought and provide better conditions for vegetation growth, yet the growth of vegetation is restricted by 

327 the variation in water supply.

328 In addition, vegetation memory effects in the study area does not show a clear linear relationship with temperature 

329 and precipitation, but we can see from the figure (Fig.6b, 6c) that there is an obvious inflection point in the image, 

330 which means there a threshold in both the precipitation and temperature effects on memory effects. This might be 

331 related to the co-effect of temperature and precipitation on vegetation. For areas in the arid region, altitude usually 

332 controls the spatial differentiation of precipitation and temperature, therefor relationship between the memory 

333 effects and climatic factors are branded with the influences of altitude on temperature and precipitation. Plain of low 

334 altitude is usually characterized by high temperature and scare precipitation, whereas mountain areas are usually 

335 characterized by low temperature and abundant precipitation. So, the limiting factor on the growth of vegetation 

336 changes gradually from precipitation to temperature along the variation in altitude, which results in vegetation 

337 changes in certain areas are co-affected of temperature and precipitation and the threshold in both the precipitation 

338 and temperature effects on memory effects. 

339 Spatial heterogeneity of VSI distribution

340 VSI reflects the sensitivity of vegetation cover to climate change, and we can identify regions that exhibits 

341 amplified responses to climate variability through VSI. While Memory effect measures the capability of vegetation 

342 returning to its normal state after suffering the disturbance. Specially, areas with low VSI values showed the largest 

343 memory effect (Seddon et al., 2016), which is consistent with our study results（Fig.5 and Fig.7a）.The desert plain 
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344 area in the south of the study area has low sensitivity to climate change and strong vegetation memory effect. When 

345 the adverse conditions for vegetation growth are generated due to the vicious climate development or other 

346 disturbances in the region, the vegetation will make a hysteresis response to such changes, so that the ecosystem can 

347 make timely adjustments to the environmental deterioration. Different types of vegetation respond differently. The 

348 main vegetation type is desert meadow, which is a short-lived plant that survives in arid areas by escaping drought 

349 (Guo et al., 2004; Lu et al., 2019). The ephemeral plants germinate and grow quickly in spring when the elevated 

350 temperature melts the frozen soil or the covering snow and complete their life cycle before the coming of the hot and 

351 dry summer. In addition, studies (J.Z. and H.J., 2015) have shown that the water content of soil at different depths is 

352 affected differently by precipitation. Among them, the water content of shallow soil (0-20cm) is most affected by 

353 precipitation. Desert meadow in arid and semi-arid areas have relatively short rooting system that mainly absorb 

354 moisture from shallow soil, so the vegetation changes in this area are more sensitive to precipitation. 

355 In contrast to the desert plain area in the south, the central Irtysh River valley showed higher sensitivity and 

356 weaker memory effect. The central river valley area is dominated by herbaceous swamps, which are typical low-

357 level swamps, with year-round accumulation of water or drenched soil (H.Y. et al., 2020), and the water supply 

358 mainly depends on the Irtysh River. The local vegetation is dominated by perennial plants such as caress and 

359 gramineous plants. Many plants have short root systems and mainly absorb shallow soil water, which are highly 

360 dependent on soil moisture conditions. Therefore, when the amount of river water decreases, the soil water content 

361 of the swamp will also decrease, exerting a hard impact on the growth of herbs. Additionally，TVDI is an index 

362 reflecting soil moisture, smaller TVDI indicates that the wetter soil (Sandholt et al., 2002), so the vegetation on the 

363 site is more sensitive to TVDI. 

364 It is worth noting that the northern mountain regions show strong sensitivity to climate change (VSI>50 in some 

365 areas). And the vegetation variation in this area is mainly affected by the combined effects of temperature and 

366 precipitation. Compared to the powerful ability of the desert plants in coping the severe drought, temperate steppe in 

367 the mountain area is well developed because the elevated altitude relieves both the restrictions of scarce 

368 precipitation and high temperature and provides hydrothermal conditions suitable for the grass plants, which makes 

369 variations in the coverage of temperate steppe are sensitive to both the precipitation and temperature.

370

371 Conclusions
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372 This study applied a comprehensive new method to quantify the sensitivity and memory effects of vegetation in 

373 the Irtysh River basin to climate change based on high temporal and spatial resolution datasets, and further reveal 

374 the mechanism of vegetation response to climate change at the regional scale. What’s more, we applied a fast and 

375 robust method (DCT-PLS) to fill data gaps in MODIS LST datasets in order to make the calculation results of TVDI 

376 more accurate. For the period of 2000-2018, the variation trend of precipitation, temperature and TVDI all showed 

377 that the climate condition of the Irtysh River basin had been greatly improved, and the vegetation coverage also 

378 showed overall increasing trend. From the south to the north of the study area, with the change of topographic and 

379 geomorphic features, the memory effect of vegetation and its sensitivity to different climatic factors showed obvious 

380 spatial heterogeneity. It is mainly manifested in the following aspects, the memory effect of vegetation in the 

381 southern desert plain was stronger and the plants there are more sensitive to precipitation, while the herbaceous 

382 swamp and broad-leaf forest in the central valley showed weaker memory effect and were more sensitive to TVDI. 

383 The temperate steppe in the northern mountain is highly sensitive to climate change and were more affected by the 

384 combination of both precipitation and temperature. Factors influencing the memory effect of vegetation were also 

385 analyzed. These results will help us locate different ecological protection environment types more accurately in the 

386 future basin management process, and develop optimal adaptive ecological protection strategies to protect this 

387 vulnerable ecosystem.
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1 Table 1

2 Interpretation of the coefficients in the AR1 multiple linear regression approach

3

Coefficient Implication Meaning of absolute value Meaning of sign

𝛼 Revealing the 

potential influence of 

memory effects 

driving vegetation 

dynamics.

A large absolute value indicates low 

resilience, which means that vegetation 

slowly recovers from previous 

disturbance.

Positive value of  shows NDVI is similar 𝛿
to the previous anomaly.

Negative value of  shows NDVI is similar 𝛿
to the previous anomaly but with the 

opposite trend.

 𝛽/ 𝛾/𝛿
Climatic sensitivity 

index denoting the 

magnitude of 

immediate response 

of vegetation to the 

contemporary 

variation in climate 

variable.

Large absolute values indicate low 

resistance to 

temperature/precipitation/TVDI.

Positive Higher 

temperature/precipitation/TVDI than 

average induces a positive NDVI response 

(higher NDVI).

Negative Lower 

temperature/precipitation/TVDI than 

average induces a negative NDVI 

response (lower NDVI).
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Figure 1
Overview of the Irtysh River basin

Overview of the Irtysh River basin
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Figure 2
Distribution map of annual average NDVI levels, NDVI change trend Zc value and
change rate β value

(A) Distribution map of annual average NDVI levels in the study area from 2000 to 2018 and
Spatial distribution of variance in vegetation cover; (B) NDVI change trend Zc value and (C)
change rate β value spatial distribution map. Characterizing change trend of each vegetated
pixel in the study area.
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Figure 3
Interannual variation curve of overall NDVI in the study area from 2000 to 2018.

Interannual variation curve of overall NDVI in the study area from 2000 to 2018.
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Figure 4
Interannual variation curves of overall precipitation, temperature, and TVDI in the study
area from the period 2000-2018.

Interannual variation curves of overall precipitation (A), temperature (B), and TVDI (C) in the
study area from the period 2000-2018.
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Figure 5
Spatial distribution of t-1 (AR1) coefficient weight

Spatial distribution of t-1 (AR1) coefficient weight (that is, coefficient α) from monthly
multiple regression between vegetation cover (defined as NDVI), vegetation cover at t-1, and
three climatic variables. Characterizing the memory effects of vegetation cover in the Irtysh
River basin during 2000-2018.
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Figure 6
Correlations between α (t-1 coefficient weight) and mean growing season climatic
factors

Correlations between α (t-1 coefficient weight) and mean growing season (A)NDVI,
(B)precipitation, (C)temperature, (D)TVDI in the Irtysh River basin during 2000-2018. The
green curves indicate the fitted regression lines.
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Figure 7
Distribution of Vegetation sensitivity index (VSI) in Irtysh River basin during 2000-2018

(A) Spatial distribution of Vegetation sensitivity index (VSI) in Irtysh River basin during
2000-2018. The index ranges from 0(low sensitivity) to 100(high sensitivity). (B) VSI
distribution histogram, insert panel of violin plot shows the frequency distribution of pixel VSI
values.
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Figure 8
RGB composite of climate weights

RGB composite of climate weights from monthly multiple regression between vegetation
cover (defined as NDVI), vegetation cover at t-1, and three climatic variables. Notably,
temperature, red; TVDI, green; and precipitation, blue.
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	 to test the possible trends of climatic 147 elements and time series,

