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ABSTRACT
Background. Lung adenocarcinoma (LUAD) is the leading histological subtype of non-
small cell lung cancer (NSCLC).
Methods. In the present study, the gene matrixes of LUAD were downloaded from
The Cancer Genome Atlas to infer immune and stromal scores with the ‘Estimation
of Stromal and Immune cells in Malignant Tumor tissues using Expression data’
(ESTIMATE) algorithm and identified immune-related differentially expressed genes
(DEGs) between the high- and low-stromal/immune score groups. Next, all DEGs were
subjected to univariate Cox regression and survival analyses to screen out prognostic
biomarkers in the tumor microenvironment (TME), and were validated in the Gene
Expression Omnibus database. Single-sample gene set enrichment analysis (ssGSEA)
was performed to assess the level of tumor-infiltrating immune cells (TIICs) and
immune functions, and GSEA was used to identified pathways altered by prognostic
biomarkers.
Results. Survival analysis showed that LUAD in the high-immune and stromal
score group had a better clinical prognosis. A total of 303 immune-related DEGs
were detected. Univariate Cox regression and survival analyses revealed that P2Y
purinoceptor 13 (P2RY13) was a favorable factor for the prognosis of LUAD. ssGSEA
and Spearman correlation analysis demonstrated that P2RY13 was highly correlated
with various TIICs and immune functions. Several immune-associated pathways were
enriched between the high- and low-expression P2RY13 groups.
Conclusion. P2RY13 may be a potential prognostic indicator and is highly associated
with the TME in LUAD. However, further experimental studies are required to validate
the present findings.

Subjects Bioinformatics, Computational Biology, Immunology, Oncology, Respiratory Medicine
Keywords Lung adenocarcinoma, Tumor microenvironment, Immune, P2RY13

INTRODUCTION
Lung cancer is the most commonmalignancy globally. It was estimated that nearly 234,000
new cases would be diagnosed per year, and accounted for 13 and 14% of all new cancer
cases in women and men, respectively (Barta, Powell & Wisnivesky, 2019; De Groot et al.,
2018). Among them, ∼85% of patients were diagnosed with non-small cell lung cancer
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(NSCLC), which is mainly comprised of the adenocarcinoma histological type (65%) (Bray
et al., 2018; Yu, Zhang & Zhang, 2020).

The immune system plays a vital role in the development and progression of malignant
tumors (Chen et al., 2019b; Chen et al., 2019c; Kurbatov et al., 2020). Immunotherapy is a
novel approved treatment for numerous tumors, which has revolutionized cancer treatment
and has achieved satisfactory results. It acts through enhancing the function of the immune
system to fight against tumors, and is highly associated with the tumor microenvironment
(TME). The TME plays a vital role in the oncogenesis, progression and prognosis of cancer
(Chen et al., 2019a). The TME is a complex system that consists of immune cells, stromal
cells and extracellular matrix (Roma-Rodrigues et al., 2019). Of these, the immune and
stromal cells are the most important components of the TME (Xiong et al., 2018). Stromal
cellsmainly consist of adipocytes, fibroblasts andmesenchymal stromal cells, while immune
cells mainly comprise macrophages, natural killer cells and lymphocytes (Roma-Rodrigues
et al., 2019). The immune cells in the TME could recognize malignant cells and eradicate
cancer cells through immune surveillance (Corthay, 2014). However, in tumors, immune
escape often occurs by avoiding recognition of tumor-associated antigens, which could
facilitate the development, infiltration and metastasis of tumors (Lakshmi Narendra et al.,
2013).

With the assistance of cytokines and chemokines, immune and stromal cells could
regulate tumor behavior and influence the response of therapy. Numerous studies have
shown that immune cells, stromal cells and immune-related biomarkers could be used
as parameters for clinical decision, and assessment of therapeutic effect and prognosis.
For example, Xu et al. (2020) reported that DEAH-box helicase 37, a biomarker highly
associated with innate immune reactions and inflammation, impacted the prognosis of
lung adenocarcinoma (LUAD) and the immune tolerance by activating the function
of regulatory T cells and T cells. Yi et al. (2021) used 17 immune-related biomarkers
to construct a prognostic signature for predicting the 3- and 5-year overall survival of
patients with LUAD. The signature showed a good prediction performance. Additionally,
the signature also could be used for the prediction and assessment of the efficacy of
immunotherapy. Due to the aforementioned reasons, identifying prognostic biomarkers
associated with TME immunity is important for the understanding and treatment of
tumors.

Conventional detection technologies such as flow cytometry and immunohistochemistry
are not capable of systematically obtaining consistent and accurate data of diverse immune
and stromal cells simultaneously due to the restriction of the channel of markers (Zhou et
al., 2019; Rohr-Udilova et al., 2018). Yoshihara et al., (2013) developed a novel tool called
the ‘Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression
data’ (ESTIMATE) algorithm for inferring the level of infiltrating stromal and immune
cells through calculating the immune and stromal score. Several reports regarding glioma
(Jia et al., 2018), colon cancer (Alonso et al., 2017), clear cell renal cell carcinoma (Chen et
al., 2019b; Chen et al., 2019c) and breast cancer (Priedigkeit et al., 2017) have shown a good
effectiveness of the ESTIMATE algorithm for calculating the immune and stromal score.
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The present study applied the ESTIMATE algorithm to assess the gene expression profiles
of LUAD obtained from The Cancer Genome Atlas (TCGA) (https://www.cancer.gov) to
calculate immune and stromal scores. Next, differentially expressed genes (DEGs) between
the high- and low-immune/stromal score groups were identified. The DEGs were then
subjected to univariate Cox regression and survival analyses to screen prognostic immune-
related biomarkers, which were validated in the Gene Expression Omnibus (GEO) dataset
(https://www.ncbi.nlm.nih.gov).

MATERIAL AND METHODS
Data source and processing
The fragments per kilobase of transcript per million mapped reads level of gene-expression
matrixes of patients with LUAD were obtained from TCGA. The raw data of the mRNA
expression matrix of GSE68465 were collected from the GEO database and normalized
with the ‘affy’ package in R 3.6.3 (https://www.r-project.org). The clinicopathological
parameters of each patient were also downloaded. Cases lacking pathological diagnosis
were excluded.

ESTIMATE algorithm-derived immune and stromal scores
As described previously (Chen et al., 2019b; Chen et al., 2019c), the immune and stromal
scores of each sample were calculated with the package ‘ESTIMATE’ in R. Next, the scores
of patients in TCGA dataset were evaluated with the package ‘survminer’ to infer the
optimal cut-off value, which divided patients into high- or low-immune/stromal score
groups. Kaplan–Meier plot and log-rank test were performed to construct a survival curve
to illustrate the association of immune/stromal scores and overall survival of patients with
LUAD. Patients in the GEO dataset were classified into high- or low-immune/stromal
score groups according to the optimal cut-off value, and survival analysis was performed.

Expression analysis of DEGs
Using | log fold-change (FC) | >1.2 and false discovery rate (FDR) <0.05 as the criteria,
the Bioconductor package ‘edgeR’ was used to determine DEGs between high- and low-
immune/stromal score groups in TCGA dataset. The overlapping DEGs were utilized for
further analysis.

Functional enrichment analysis and protein-protein interaction (PPI)
network construction
All the overlapping DEGs were used for Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) analyses. FDR < 0.05 was set as the threshold. In
addition, a PPI network of all the overlapping DEGs was obtained from Search Tool for
the Retrieval of Interacting Genes/Proteins (https://string-db.org) with a confidence >0.9
as the threshold, and was reconstructed with Cytoscape version 3.6 (https://cytoscape.org).

Identification of prognostic immune-related biomarkers
All the overlapping DEGs in TCGA dataset were subjected to univariate Cox regression
analysis to identify prognosis-related genes. Survival analysis was applied to compare
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the survival difference between high- and low-expression of DEGs. Similarly, univariate
Cox regression and survival analyses of DEGs were also performed in the GEO dataset to
validate the result in TCGA dataset. Genes meeting the criteria (univariate Cox regression
analysis, P < 0.01; survival analysis, P < 0.05) in both datasets were selected as prognostic
biomarkers for further research.

Group comparisons of the expression levels of biomarkers among different clinical
characteristics were performed with Student’s t -test. Univariate and multivariate Cox
regression models were conducted to identify whether the expression of biomarkers was
an independent prognostic factor for LUAD.

Single-sample gene set enrichment analysis (ssGSEA)
ssGSEA was performed to assess the level of tumor-infiltrating immune cells (TIICs)
and immune functions with the BiocManager package ‘Gene Set Variation Analysis’.
The method for ssGSEA was based on a rank value of each gene, which defined a score
representing the degree of absolute enrichment of a particular gene set in each sample.
In total, 28 specific gene sets (15 immune cell gene sets and 13 immune function gene
sets) were acquired from other studies (Charoentong et al., 2017; Shi et al., 2020; Zuo et al.,
2020). The association of biomarkers with TIICs and immune functions were investigated
with Spearman correlation analysis.

Association of biomarkers with immunomodulators and patients’
response to immunotherapy
In the present study, several key immunomodulators [cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4), intercellular adhesion molecule 1, inducible T-cell costimulatory,
interferon- γ , lymphocyte activating gene 3, T cell immunoreceptor with Ig and ITIM
domains, natural killer gene 2A, programmed cell death protein 1 (PD-1), programmed
death-ligand 1 (PD-L1), T-cell immunoglobulin and mucin-domain containing-3 and V-
domain Ig suppressor of T cell activation] were quantified. Student’s t -test and Spearman
correlation analysis were performed to determine the association of immunomodulators
and immune/stromal scores as well as prognostic biomarkers.

The Cancer Immunome Atlas (https://tcia.at/) is a public database, which analyzes
next-generation sequencing data to present immune landscapes and anti-genomes of 20
solid tumors, and calculates the immunophenoscore (IPS) (Charoentong et al., 2017). The
IPS value is ranked from 0 to 10, and is positively correlated with tumor immunogenicity.
Furthermore, the IPS could reflect the response to immune checkpoint inhibitors treatment.
The present study analyzed two types of IPS values (IPS: PD-1/PD-L1/PD-L2 blocker and
IPS: CTLA-4 blocker) to investigate the different responses to anti-PD-1/PD-L1 and anti-
CTLA-4 treatment between patients with low- and high-stromal score/immune score/P2Y
purinoceptor 13 (P2RY13) level with Wilcoxon signed-rank test.

GSEA
To determine the potential signaling pathways altered by prognostic biomarkers, GSEA
was performed with FDR<0.05 as the threshold.
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Figure 1 Flow diagram of the present study. TCGA, The Cancer Genome Atlas; GEO, Gene Expression
Omnibus; DEGs, differentially expressed genes; ssGSEA, single-sample gene set enrichment analysis.

Full-size DOI: 10.7717/peerj.11319/fig-1

RESULTS
Patient cohorts
A total of 896 LUAD samples (465 samples in TCGA dataset and 431 samples in the GEO
dataset) were identified. The detailed demographic and baseline characteristics of these
896 patients with LUAD are presented in Table 1. The flow diagram of the present study is
shown in Fig. 1.

Evaluation of immune and stromal scores
Using the ESTIMATE algorithm, the present study calculated the immune and stromal
scores of patients in both the GEO and TCGA datasets. The optimal cut-off value for
immune score and stromal score was 1,795.5 and 13.5, respectively, which divided patients
into high- and low-immune/stromal score groups. Survival analysis in TCGA dataset
demonstrated that the prognosis of patients with LUAD with high-stromal/immune scores
was better than that of patients with low-stromal/immune scores (Figs. 2A and 2C), which
was similar to the results obtained in the GEO dataset (Figs. 2B and 2D).

In addition, the immune scores were significantly different among different tumor-node-
metastasis (TNM) stages and tumor sizes in both TCGA dataset (TNM stage, P = 0.039;
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Table 1 The baseline characteristics of lung adenocarcinoma patients in this study.

Parameter TCGA set GEO set

Gender
Female 254(54.62%) 216(50.12%)

Male 211(45.38%) 215(49.88%)
Age
<65 232(49.89%) 226(52.44%)
≥65 233(50.11%) 205(47.56%)

TNM stage
I 261(56.12%) 270(62.65%)
II 106(22.80%) 100(23.20%)
III 74(5.92%) 61(14.15%)
IV 84(18.06%) 0

Tumor size
T1 159(34.19%) 145(33.64%)
T2 248(53.33%) 244(56.61%)
T3 40(8.60%%) 27(6.73%)
T4 18(3.87%) 11(3.02%)

Lymph node
N0 309(66.45%) 292(67.75%)
N1-3 156(33.55%) 139(32.25%)

Metastasis
M0 441(94.84%) 431(100%)
M1 24(5.16%) 0

EGFR mutation
No 174(37.42%) 0
Yes 69(15.05%) 0
NA 221(47.53%) 431(100%)

KRAS mutation
No 34(7.32%) 0
Yes 17(3.66%) 0
NA 414(89.02%) 431(100%)

Stromal score
Low 178(38.28%) 95(22.04%)
High 287(61.72%) 336(77.96%)

Immune score
Low 294(63.23%) 323(74.94%)
High 171(36.77%) 108(25.06%)

Survival status
Alive 310(66.67%) 202(46.87%)
Dead 155(33.33%) 229(53.13%%)
Total 465(100%) 431(100%)

Notes.
TCGA, The Cancer Genome Altas; GEO, Gene Expression Omnibus; NA, represents information not available.
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tumor sizes, P < 0.001; Fig. S1) and the GEO dataset (TNM stage, P = 0.046; tumor sizes,
P = 0.045; Fig. S2). The stromal scores were significantly different among tumor sizes in
the GEO dataset (P = 0.014; Fig. S2), whereas in TCGA dataset there were no differences
(P = 0.210; Fig. S1). There was no statistically significant difference in immune or stromal
scores between patients who were < 65 and ≥65 years of age; between female and male
patients; between patients with and without lymph node metastasis; between patients
with and without distant metastasis; or between patients with and without epidermal
growth factor receptor (EGFR)/KRAS proto-oncogene, GTPase (KRAS) mutation (data
not shown). Furthermore, no difference in stromal scores was observed among different
TNM stages.

Functional enrichment analysis and PPI network
A total of 195 downregulated and 108 upregulated overlapping DEGs were identified
between the high- and low-immune/stromal score groups in TCGA dataset (Fig. 3A).
Next, KEGG and GO analyses were performed to illustrate the role of 303 overlapping
DEGs. KEGG analysis demonstrated that 17 pathways were enriched in these DEGs,
including ‘Cytokine-cytokine receptor interaction’, ‘Chemokine signaling pathway’ and
‘B cell receptor signaling pathway’, which were highly associated with the immune system
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(Fig. 3B). In GO analysis, 34 terms (four terms of molecular function, five terms of cellular
component and 25 terms of biological processes) were identified (Table S1).

For exploring the interactions among 303 overlapping DEGs, a PPI network was
constructed, which consisted of 98 nodes (90 upregulated and 8 downregulated DEGs) and
395 edges (Fig. 3C).

P2RY13 is an immune-related prognostic biomarker
Univariate Cox regression and survival analyses were applied to determine the best
prognosis-related genes. The results of the univariate Cox regression analysis showed that,
among 303 DEGs, 24 genes in TCGA dataset and 20 genes in the GEO dataset exhibited
P < 0.001 (Fig. 4A and 4B). In addition, survival analysis demonstrated that 30 genes in
TCGA dataset and 21 genes in the GEO dataset had an important effect on the prognosis
of LUAD (data not shown). Subsequently, immune-related prognostic biomarkers were
identified with the criteria univariate Cox regression analysis, P < 0.01 and survival
analysis, P < 0.05 in both sets, and it was found that only one gene (P2RY13) met the
aforementioned criteria: Univariate Cox regression analysis: TCGA dataset, hazard ratio
(HR) = 0.736, 95% confidence interval (CI) = 0.601–0.900, P = 0.003 (Fig. 4A) and GEO
dataset, HR = 0.474, 95% CI [0.278–0.811], P = 0.006 (Fig. 4B); and survival analysis:
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Figure 4 Identification of a prognostic biomarker. (A and B) Genes with P < 0.01 in univariate Cox
regression analysis in (A) TCGA and (B) GEO datasets. (C and D) Survival analysis of P2Y purinoceptor
13 in (A) TCGA and (D) GEO datasets. The difference in survival was compared with the log-rank test.
P < 0.05 was considered to indicate a statistically significant difference. TCGA, The Cancer Genome Atlas;
GEO, Gene Expression Omnibus.

Full-size DOI: 10.7717/peerj.11319/fig-4

TCGA dataset, P = 0.006 (Fig. 4C) and GEO dataset, P < 0.001 (Fig. 4D). Therefore,
P2RY13 was selected as a prognostic biomarker for further investigation.

Correlation between P2RY13 and clinical characteristics
As shown in Figs. 5A and 5B, the expression of P2RY13 in patients with high
stromal/immune score was significantly upregulated in TCGA dataset (stromal score,
P < 0.001; immune score, P < 0.001), which was in agreement with the results obtained
in the GEO dataset (stromal score, P < 0.001; immune score, P < 0.001). In both datasets,
patients with stage I/II had higher P2RY13 expression level (TCGA dataset, P = 0.045;
GEO dataset, P = 0.039). Similar results were observed in patients with T1/T2. In addition,
the P2RY13 expression level of patients with lymph node metastasis in TCGA dataset was
significantly decreased (P = 0.037). However, in the GEO dataset, there was no difference
between patients with or without lymph node metastasis (P = 0.293). In TCGA dataset,
no difference was observed between patients with or without EGFR mutation (Fig. S3A).
A similar phenomenon was found in patients with or without KRAS mutation (Fig. S3A).

Univariable Cox regression analysis in two datasets revealed that the expression level of
P2RY13 was a meaningful factor influencing the prognosis of patients with LUAD (TCGA
dataset, HR = 0.615, 95% CI [0.433–0.873], P = 0.006; GEO dataset, HR=0.631, 95%
CI=0.487–0.819, P < 0.001) (Table 2). In addition, multivariable Cox regression analysis
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indicated that P2RY13 was an independent prognosis-related factor (TCGA dataset, HR=
0.601, 95% CI [0.423–0.856], P = 0.005; GEO dataset, HR= 0.760, 95% CI [0.582–0.994],
P = 0.045) (Table 2).

Next, the expression of P2RY13 at the protein level was investigated with the online
database The Human Protein Atlas (https://www.proteinatlas.org). The results of
immunohistochemistry showed that the representative protein expression of P2RY13
in LUAD tissues was downregulated (Figs. S3C and S3D). The prognostic value of P2RY13
at the protein level was explored with Clinical Proteomic Tumor Analysis Consortium
(National Cancer Institute; https://proteomics.cancer.gov/programs/cptac), and the results
revealed that a high P2RY13 protein level predicted improved prognosis (P = 0.021; Fig.
S3B).
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Table 2 Univariate andmultivariate Cox regression analysis in TCGA and GEO set.

univariate Cox regression multivariate Cox regression

Covariate No, HR(CI 95%) P HR(CI 95%) P

TCGA set
Age 0.236 0.059

<65 232 reference reference
≥65 233 1.214(0.881–1.674) 1.375(0.989–1.913)

Gender 0.561 0.741
Female 254 reference reference
Male 211 1.098(0.801–1.506) 0.947(0.687–1.306)

TNM stage <0.001 0.500
I/II 367 reference reference
III/IV 158 2.617(1.881–3.643) 1.177(0.733–1.888)

Tumor size <0.001 0.037
T1/T2 407 reference reference
T3/T4 58 2.424(1.608–3.654) 1.637(1.030–2.601)

Lymph node <0.001 <0.001
N0 309 reference reference
N1-3 156 2.872(2.090–3.946) 2.533(1.717–3.737)

Metastasis 0.007 0.197
M0 441 reference reference
M1 24 2.086(1.222–3.560) 1.498(0.811–2.766)

P2RY13 0.006 0.005
Low 232 reference reference
High 233 0.615(0.433–0.873) 0.601(0.423–0.856)

GEO set
Age 0.032 0.053

<65 226 reference reference
≥65 205 1.331(1.024–1.729) 1.300(0.996–1.697)

Gender 0.010 0.164
Female 216 reference reference
Male 215 1.410(1.084–1.833) 1.215(0.924–1.598)

TNM stage <0.001 0.022
I/II 370 reference reference
III/IV 61 3.547(2.595–4.848) 1.628(1.072–2.474)

Tumor size <0.001 <0.001
T1/T2 389 reference reference
T3/T4 38 3.293(2.264–4.787) 2.299(1.520–3.478)

Lymph node <0.001 <0.001
N0 292 reference reference
N1-3 139 2.747(2.107–3.568) 2.099(1.501–2.935)

P2RY13 <0.001 0.045
Low 215 reference reference
High 216 0.631(0.487–0.819) 0.760(0.582–0.994)

Notes.
TCGA, The Cancer Genome Altas; GEO, Gene Expression Omnibus; HR, hazard ratios; CI, confidence interval.

Lin et al. (2021), PeerJ, DOI 10.7717/peerj.11319 11/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.11319


aDCs
B_cells
CD8+_T_cells
DCs
iDCs
Macrophages
Mast_cells
Neutrophils
NK_cells
pDCs
Tfh
Th1_cells
Th2_cells
TIL
Treg
APC_co_inhibition
APC_co_stimulation
CCR
Check−point
Cytolytic_activity
HLA
Inflammation−promoting
MHC_class_I
Parainflammation
T_cell_co−inhibition
T_cell_co−stimulation
Type_I_IFN_Reponse
Type_II_IFN_Reponse

State
Age
Gender
Stage
Tumor_size
Metastasis
Lymph_node
StromalScore
ImmuneScore

ImmuneScore
High
Low

StromalScore
High
Low

Lymph_node
N−3
N0

Metastasis
M0
M1

Tumor_size
T1
T2
T3
T4

Stage
I
II
III
IV

Gender
Female
Male

Age
Age<65
Age>=65

State
Alive
Dead

−4

−2

0

2

4

Im
m

un
e 

ce
lls

Im
m

un
e 

fu
nc

tio
ns

Immune functions

A

B

C

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**

**
**
**aD

C
s

B
_cells

C
D

8+_T_cells
D

C
s

iD
C

s
M

acrophages
M

ast_cells
N

eutrophils
N

K
_cells

pD
C

s
Tfh
Th1_cells
Th2_cells
TIL
Treg
A

PC
_co_inhibition

A
PC

_co_stim
ulation

C
C

R
C

heck−point
C

ytolytic_activity
H

LA
Inflam

m
ation−prom

oting
M

H
C

_class_I
Parainflam

m
ation

T_cell_co−inhibition
T_cell_co−stim

ulation
Type_I_IFN

_R
eponse

Type_II_IFN
_R

eponse

P2RY13
StromalScore
ImmuneScore

0.2

0.4

0.6

0.8

** ** ** ** ** ** ** ** ** ** **

C
TLA

4

IC
A

M
1

IC
O

S

IFN
G

LA
G

3

TIG
IT

N
K

G
2A

PD
1

PD
L1

TIM
3

V
ISTA

P2RY13

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

IP
S 

va
lu

e:
 P

D
-1

/P
D

-L
1/

PD
-L

2 
bl

oc
ke

r

Th
e 

re
la

tiv
e 

pr
ob

ab
ili

ty
 to

 re
sp

on
d 

to
 a

nt
i-P

D
-1

/P
D

-L
1 

tre
at

m
en

t

IP
S 

va
lu

e:
 C

TL
A

-4
 b

lo
ck

er
Th

e 
re

la
tiv

e 
pr

ob
ab

ili
ty

 to
 re

sp
on

d 
to

 a
nt

i-C
TL

A
-4

 tr
ea

tm
en

t

Immune cells

D E

Correlation

C
or

re
la

tio
n

** P<0.01

** P<0.01

Wilcoxon test

0

2

4

6

8

P2RY13 level

P<0.001

0

2

4

6

8

P=0.036

P2RY13 level

Wilcoxon test

High 

Low

Figure 6 P2RY13 is associated with tumor-infiltrating immune cells, immune functions and
immunomodulators. (A) Distribution of 28 gene sets, including 15 immune cell gene sets and 13 immune
function gene sets. (B) Spearman correlation analysis revealed the correlation of P2RY13 as well as
immune and stromal scores with 28 gene sets. (C) Spearman correlation analysis revealed the correlation
of P2RY13 with 11 immunomodulators. (D and E) Relative probabilities to respond to anti-programmed
cell death protein 1/programmed death-ligand 1 and anti-cytotoxic T-lymphocyte-associated protein
four treatment in patients with lung adenocarcinoma with high and low P2RY13 expression. The data are
presented as the mean standard deviation, and were compared with Wilcoxon signed-rank test. aDCs,
activated dendritic cells; iDCs, immature DCs; pDCs, plasmacytoid DCs; Tfh, T follicular helper cells; Th1,
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human leukocyte antigen; CCR, C-C chemokine receptor; APCs, antigen presenting cells; MHC, major
histocompatibility complex; IPS, immunophenoscore; P2RY13, P2Y purinoceptor 13.
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P2RY13 is associated with TIICs and immune functions
ssGSEA was performed to evaluate the level of TIICs and immune functions. The
distribution of 28 gene sets, including 15 immune cell gene sets and 13 immune function
gene sets, is presented in Fig. 6A. Spearman correlation analysis revealed a strong positive
correlation between the expression level of P2RY13 and 28 gene sets (Fig. 6B). In addition,
the association between the immune and stromal scores and these 28 gene sets was
statistically significant (Fig. 6B).

Association of P2RY13 with immunomodulators and patients’ response
to immunotherapy
The present study quantified 11 immunomodulators, all of which were significantly
upregulated in the high-stromal/immune score group (Fig. S4A and S4B). Furthermore,
P2RY13 was positively correlated with all the 11 immunomodulators (Fig. 6C).

Lin et al. (2021), PeerJ, DOI 10.7717/peerj.11319 12/20

https://peerj.com
https://doi.org/10.7717/peerj.11319/fig-6
http://dx.doi.org/10.7717/peerj.11319#supp-5
http://dx.doi.org/10.7717/peerj.11319#supp-5
http://dx.doi.org/10.7717/peerj.11319


Next, the responses to anti-PD-1/PD-L1 and anti-CTLA-4 treatment among different
groups were explored. Both the IPS: PD-1/PD-L1/ PD-L2 blocker and the IPS: CTLA-4
blocker were higher in patients with LUAD with high P2RY13 expression level (Figs. 6D
and 6E), indicating that the relative probabilities to respond to anti-PD-1/PD-L1 and
anti-CTLA-4 treatment were higher in patients with high P2RY13 expression level. Similar
results were observed in patients with high-stromal/immune score (Figs. S4C and S4D).

GSEA
For exploring the changes in KEGG pathways between the high- and low-expression
level of P2RY13 groups, GSEA analysis was performed. The result indicated that 26
pathways were enriched (Fig. 7A). Of note, in patients with high P2RY13 expression, a few
immune-related pathways were identified, including ‘B cell receptor signaling pathway’, ‘T
cell receptor signaling pathway’, ‘Intestinal immune network for IgA production’, ‘Natural
killer cell-mediated cytotoxicity’, ‘Primary immunodeficiency’, ‘Chemokine signaling
pathway’ and ‘Cytokine-Cytokine receptor interaction’ (Fig. 7B).

DISCUSSION
The TME is a regulatory factor in the tumorigenesis, progression and prognosis of cancer,
which consists of various types of cells and cellular components (Roma-Rodrigues et al.,
2019). Previous studies have demonstrated that immune and stromal cells can markedly
affect tumor progression and response to treatment, and are able to predict prognosis (Chen
et al., 2019b; Chen et al., 2019c; Maekawa et al., 2008). Understanding the changes in the
TME, and the identification of biomarkers in the TME may contribute to the development
of novel strategies for diagnosis, therapy and prognosis assessment.

In the current study gene matrixes of LUADwere downloaded from the GEO and TCGA
databases, and the ESTIMATE algorithm was applied to infer the infiltrating immune and
stromal cells in the TME by calculating immune and stromal scores. The results indicated
that patients with LUADwith high immune/stromal scores had improved clinical outcomes
than those with low immune/stromal scores.

Next, TME-related DEGs were identified between the high- and low-stromal/immune
score groups, which may contribute to the changes in the TME. A total of 303
overlapping DEGs were identified. Functional enrichment analysis revealed that 17
pathways were enriched in those 303 DEGs, including ‘Cytokine-cytokine receptor
interaction’, ‘Chemokine signaling pathway’, ‘B cell receptor signaling pathway’, ‘Primary
immunodeficiency’ and other immune-related pathways, indicating that those 303 DEGs
were highly associated with immunity and immune function. Next, the 303 overlapping
DEGs were subjected to univariate Cox regression and survival analyses to determine
potential prognostic biomarkers in the TME. The results demonstrated that patients with
LUAD with low P2RY13 expression level exhibited worse clinical outcomes than those of
patients with high P2RY13 expression level, indicating that P2RY13 may be a potential
TME-related biomarker for estimating the clinical outcome of LUAD. Furthermore, it was
found that, in both datasets, the expression level of P2RY13 in patients with at III/IV stage
and T3/4 was significantly downregulated. In addition, the expression level of P2RY13
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Figure 7 Gene set enrichment analysis between patients with high and low P2RY13 expression. (A)
A total of 26 Kyoto Encyclopedia of Genes and Genomes pathways were enriched. (B) In total, seven
immune-related pathways were enriched in patients with high P2RY13 expression level. P2RY13, P2Y
purinoceptor 13.

Full-size DOI: 10.7717/peerj.11319/fig-7

in patients with lymph node metastasis in TCGA dataset was significantly decreased.
However, there was no difference in P2RY13 expression between patients with and without
lymph node metastasis in the GEO dataset. Univariate and multivariate Cox regression
analyses demonstrated that P2RY13 was an independent prognosis-related factor for
LUAD. The aforementioned results indicated that P2RY13 was a key factor influencing the
development and prognosis of LUAD. It was also identified that P2RY13 was upregulated
in the high-stromal/immune score group, and it was highly associated with the infiltration
of various immune cells in the TME and the expression of several immunomodulators. In
addition, numerous immune-associated pathways were enriched in patients with LUAD
with high P2RY13 level, indicating that P2RY13 may produce a marked effect on LUAD
through influencing the TME and tumor immunization.

P2RY13 is a G protein-coupled receptor that responds to extracellular purine and
pyrimidine nucleotides, and is involved in the negative regulation of adenylate cyclase
activity (Pérez-Sen et al., 2017). Purinergic receptors (PRs) consist of P1Rs (A1, A2A,
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A2B and A3) and P2Rs (P2RY1, 2, 4, 6 and 11-14, and P2RX1-7) (Graner, 2018). P2Rs
participate in the metabolism of extracellular ATP, which is a damage-associated molecular
pattern and the main source of adenosine in the TME (Graner, 2018; Jacob et al., 2013).
High levels of extracellular ATP generate an inflammatory environment in the tumor,
which enhances tumor progression and inhibits immune cells, and ultimately represses
tumor antigen presentation, influences the populations and functions of immune cells,
and inhibits antitumor immunity (Burnstock, 2017; Dwyer, Kishore & Robson, 2020). In
addition, previous studies suggested that purinergic signaling could modulate energy
metabolism and several intracellular trophic pathways to regulate tumor growth, invasion
and metastasis (Burnstock, 2017; Dwyer, Kishore & Robson, 2020).

Several studies have reported that P2RY13 was a key regulator of cholesterol transport
and hepatic high-density lipoprotein endocytosis (Jacquet et al., 2005; Fabre et al. 2010),
and was involved in bone formation and remodeling (Pérez-Sen et al., 2017), as well as
in cell survival and neuroprotection (Pérez-Sen et al., 2015). Animal experiments showed
that P2RY13 could protect hosts from viral infections, indicating that P2RY13 may
be associated with inflammatory and immune reactions (Zhang et al., 2019; Shen et al.,
2020). Additionally, P2RY13 was shown to bind to Ca2+ to mediate the release of several
pro-inflammatory cytokines in the microglia and astrocytes, which are the main immune
cells in the central nervous system, thus preventing the proliferation of astroglia (Quintas
et al., 2018). The present study found that the expression level of P2RY13 in LUAD tissues
was downregulated. However, previous studies reported that P2RY13 expression in acute
myeloid leukemia was increased, and regulated cyclic adenosine monophosphate-mediated
cytarabine resistance (Aroua et al., 2020; Maiga et al., 2016). To date, there is no basic
research on the role of P2RY13 in LUAD, nor studies on the role of P2RY13 on the TME
or immune reactions in LUAD. Therefore, additional in vitro and in vivo experiments are
required.

The present study demonstrated that P2RY13 was a favorable factor for the prognosis
of patients with LUAD, which is in line with previous findings (Li et al., 2018; Fan et al.,
2020). Li et al. (2018) investigated the prognostic value of several pyrimidine metabolic
rate-limiting enzymes, and found that P2RX1, P2RX7, P2RY12, P2RY13 and P2RY14 were
highly associated with the overall survival of patients with LUAD. In the present study, in
addition to finding the prognostic value of P2RY13, its association with immunological
functioning was also explored, and it was found that P2RY13 was a prognostic factor for
LUAD and it was highly associated with the immune system in LUAD. TCGA database was
used in a previous study to identify 374DEGs between high- and low-immune/stromal score
groups with FDR<0.05 as the criterium, and 4 prognostic DEGs [C-C motif chemokine
receptor (CCR)2, CCR4, P2RY12 and P2RY13]. The intersection of the top 30 genes in the
PPI network and genes with P < 0.05 in univariate Cox regression analysis were selected. By
contrast, the present study used |log FC|>1.2 and FDR<0.05 as the criteria to determine 303
DEGs between high- and low-immune/stromal score groups, and P < 0.01 in univariate
Cox regression analysis as well as P < 0.05 in survival analysis were the criteria set to
screen immune-related prognostic biomarkers. In addition, the results were validated in
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the GEO dataset, and it was found that only P2RY13 met the aforementioned criteria in
both datasets.

The present study has certain limitations. First, the present study is a retrospective study,
and all the cases were retrospective samples. Thus, validation in prospective samples is
required. Second, all the samples were collected from a public database. In addition, in
the GEO dataset, no stage-IV patients were enrolled, which may lead to potential selection
bias. Therefore, additional LUAD cases, particularly stage-IV patients, are needed. Third,
although the relative probabilities to respond to anti-PD-1/PD-L1 and anti-CTLA-4
treatment were predicted to be higher in patients with high P2RY13 expression levels, there
was no treatment-related data presented. Therefore, data on treatment is necessary. Finally,
the association of P2RY13 with immune cells and immune function was investigated by
bioinformatics, which revealed that P2RY13 was highly associated with several immune
cells and immune functions. However, certain immune cells and immune functions were
pro-tumor, and various were antitumor. Thus, additional basic and clinical studies are
required to explore and validate the role of P2RY13 in immune cells and the immune
system.

In summary, the ESTIMATE algorithm was applied in the present study to infer the
immune and stromal scores of patients with LUAD, which were highly associated with the
prognosis of LUAD. In addition, P2RY13 was identified as a potential prognostic indicator,
which was highly associated with the TME in LUAD. However, additional in vitro and in
vivo experiments are required to validate the present findings.
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