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Central Asia is one of the driest regions in the world with a unique water cycle and a
complex moisture transport process. However, there is little information on the
precipitation δ18O content in Central Asia . We compiled a precipitation δ18O database from
47 meteorological stations across Central Asia to reveal its spatial-temporal
characteristics. We determined the relationships between precipitation δ18O and
environmental variables and investigated the relationship between δ18O and large-scale
atmospheric circulation. The Central Asia meteoric water line was established as δ2H =
7.30 δ18O + 3.12 (R2=0.95, n=727, p<0.01), and precipitation δ18O ranged from +2‰ to
−25.4‰ with a mean of -8.7‰. The precipitation δ18O over Central Asia was related to
environmental variables. The δ18O had a significant positive correlation with temperature,
and the δ18O-temperature gradient ranged from 0.28‰/℃ to 0.68‰/℃. However, the
dependence of δ18O on precipitation was unclear; a significant precipitation effect was only
observed at the Zhangye and Teheran stations, showing δ18O-precipitation gradients of
0.20‰/mm and -0.08‰/mm, respectively. Latitude was always significantly correlated
with δ18O, when considering geographical controls on δ18O, and both latitude and longitude
were significantly correlated with δ18O in winter, with δ18O/LAT and δ18O/ALT gradients of
−0.42‰/° and −0.001‰/m, respectively. The relationship between δ18O and large-scale
atmospheric circulation suggested that the moisture in Central Asia is mainly transported
by westerly circulation and is indirectly affected by the Indian monsoon. Meanwhile, the
East Asian monsoon may affect the precipitation δ18O content in westerly and monsoon
transition regions. These results improve our understanding of the precipitation δ18O and
moisture transport in Central Asia, as well as the paleoclimatology and hydrology
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processes in Central Asia.
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14 Abstract

15 Central Asia is one of the driest regions in the world with a unique water cycle and a complex 

16 moisture transport process. However, there is little information on the precipitation δ18O content 

17 in Central Asia. We compiled a precipitation δ18O database from 47 meteorological stations 

18 across Central Asia to reveal its spatial-temporal characteristics. We determined the relationships 

19 between precipitation δ18O and environmental variables and investigated the relationship 

20 between δ18O and large-scale atmospheric circulation. The Central Asia meteoric water line was 

21 established as δ2H = 7.30 δ18O + 3.12 (R2=0.95, n=727, p<0.01), and precipitation δ18O ranged 

22 from +2‰ to −25.4‰ with a mean of -8.7‰. The precipitation δ18O over Central Asia was 

23 related to environmental variables. The δ18O had a significant positive correlation with 

24 temperature, and the δ18O-temperature gradient ranged from 0.28‰/℃ to 0.68‰/℃. However, 

25 the dependence of δ18O on precipitation was unclear; a significant precipitation effect was only 

26 observed at the Zhangye and Teheran stations, showing δ18O-precipitation gradients of 

27 0.20‰/mm and -0.08‰/mm, respectively. Latitude was always significantly correlated with 

28 δ18O, when considering geographical controls on δ18O, and both latitude and longitude were 

29 significantly correlated with δ18O in winter, with δ18O/LAT and δ18O/ALT gradients of 

30 −0.42‰/° and −0.001‰/m, respectively. The relationship between δ18O and large-scale 

31 atmospheric circulation suggested that the moisture in Central Asia is mainly transported by 

32 westerly circulation and is indirectly affected by the Indian monsoon. Meanwhile, the East Asian 

33 monsoon may affect the precipitation δ18O content in westerly and monsoon transition regions. 

34 These results improve our understanding of the precipitation δ18O and moisture transport in 

35 Central Asia, as well as the paleoclimatology and hydrology processes in Central Asia. 
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36 Introduction

37 Stable water isotopes, including δ18O, and δ2H, are critical indicators of global and regional 

38 water cycles and paleoclimatic investigations improve our understanding of hydrological and 

39 atmospheric processes (Dansgaard, 1964; Craig and Gordon, 1965; Song et al., 2007; 

40 Sophocleous, 2002; Zhang et al., 2004; Yao et al., 2013). Precipitation is a critical variable of the 

41 global hydrological cycles. The isotope composition of precipitation from different sources 

42 varies and can be used as natural tracers to determine the sources and moisture transport of water 

43 vapor as well as water cycle processes in different climatic regions (Yamanaka et al., 2007; Li et 

44 al., 2012; Dansgaard, 1953; Chen, 2014; Zhang and Wang, 2016). 

45 In 1961, the International Atomic Energy Agency (IAEA), in conjunction with the World 

46 Meteorological Organization (WMO), initiated the Global Network of Isotopes in Precipitation 

47 (GNIP) on a global scale to monitor the stable isotope composition in monthly precipitation. The 

48 number of observation stations has since gradually increased. In terms of the spatial distribution, 

49 the GNIP observation stations are mainly concentrated in low-latitude wet regions, with few 

50 stations inland and in arid regions. For example, there are only ten GNIP stations that record 

51 δ18O in Central Asia and surrounding regions, including three stations in the arid region of 

52 Northwest China (i.e., the Urumqi, Hetian, and Zhangye stations) (Gu, 2012). However, most 

53 recording stopped in the mid-1990s (Liu et al., 2014) and information on the stable isotope 

54 composition of precipitation in Central Asia and the surrounding regions is limited. 

55 Since the 1980s, China has become expert in the observation and investigation of stable 

56 isotope compositions in precipitation, mostly focusing on the Tibetan Plateau (Gao et al., 2011; 

57 Tian et al., 1997; Tian et al., 2001; Yao et al., 2006). Similar to the GNIP database, the Tibetan 

58 Network for Isotopes in Precipitation (TNIP) was established to observe and monitor the Tibetan 

59 Plateau and the surrounding regions; the China Network of Isotopes in Precipitation and Rivers 
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60 (CHIRP) was developed for nationwide observation (Yao et al., 2009; Liu et al., 2014). In 2004, 

61 the Chinese Network of Isotopes in Precipitation (CHNIP) was started by the Chinese Ecosystem 

62 Research Network (CERN) (Song et al., 2007). However, there were only two CHNIP stations in 

63 Northwest China (the Fukang and Cele stations). An observation network was established in 

64 2012 around the Tianshan Mountains (TSNIP) to investigate the types of precipitation isotopes 

65 in the high mountains over Central Asia, (Wang et al., 2016). 

66 Few studies have investigated precipitation isotopes around the Tibetan Plateau and 

67 Northwest China. Using observations and simulations, Yao et al. (2013) systematically examined 

68 the spatial-temporal distribution of precipitation δ18O over the Tibetan Plateau and determined its 

69 relationship with the mechanisms of the westerlies, Indian monsoons, and transitions in between. 

70 Central Asia is one of the largest arid regions in the world and includes five Central Asian 

71 countries and the arid region of Northwest China. The topography is complex, with desert and 

72 oases coexisting. Precipitation is the main source of water for the mountainous regions but is 

73 unevenly distributed (Chen, 2012; Yao et al., 2014). The moisture source, transport path, and 

74 atmospheric processes are complex and are particularly sensitive to climate change in the unique 

75 mountain-basin structure of Central Asia (Chen, 2014). Few studies have reported the changes 

76 and mechanisms of moisture transport processes in Central Asia (Huang et al., 2015, 2018; Shi 

77 et al., 2008; He et al., 2016; Chen et al., 2010; Yao et al., 2020). Previous studies have mainly 

78 focused on the effects of spatial-temporal characteristics, compositions, and climatic controls on 

79 precipitation isotopes on a regional scale, such as in the Tianshan Mountains and at Urumqi 

80 station (Yao et al., 1999; Kong et al., 2013, 2016; Liu et al., 2015; Wang et al., 2016, 2017; Li et 

81 al., 2017; Zhang and Wang, 2018). However, only a few studies have been conducted on the 

82 composition of stable isotopes in the precipitation over the Central Asian region. 
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83 Central Asia has a unique water cycle and complex moisture transport processes. We 

84 compiled a database of information from 47 stations to evaluate precipitation δ18O over Central 

85 Asia to reveal its spatial-temporal characteristics. We determined the relationships between 

86 precipitation δ18O and local factors, such as geography (latitude and altitude) and climatic 

87 parameters (temperature and precipitation). We also investigated the relationship between δ18O 

88 and large-scale atmospheric circulation. 

89 Materials & Methods

90 We studied the precipitation isotopes data (δ18O and δ2D) from Central Asia to 

91 comprehensively evaluate the processes and characteristics of the composition of the stable 

92 isotopes in the precipitation of that region.

93 From the observed monthly precipitation, δ18O and δ2D was obtained from 47 observation 

94 stations over Central Asia, including 12 stations of the GNIP, 22 stations of the TSNIP (Wang et 

95 al., 2016), two TNIP stations (Yao et al., 2013), two CHNIP stations (Liu et al., 2014), and nine 

96 stations from reference studies (Figure 1 and Table 1). 

97 The Kabul station had the longest data record, with monthly data starting in the 1960s and 

98 continuous data for 1962-1964, 1967-1975, and 1982-1989. The Urumqi station kept monthly 

99 data starting in 1986 and had continuous data for 1961-1976, 1979-1981, 1986-1987, and 2000-

100 2004. Among the stations from which data was collected, five GNIP stations (Teheran, Kabul, 

101 Astrakhan, Urumqi, and Zhangye stations) took samples for more than 10 years and data were 

102 available for interannual variability studies (Figure 1). Furthermore, eight GNIP stations 

103 (Teheran, Kabul, Saratov, Barabinsk, Astrakhan, Urumqi, Hetian, and Zhangye stations) were 

104 sampled for more than 30 months and data were available to evaluate the relationship of 

105 precipitation δ18O with temperature and precipitation over Central Asia (Figure 1). Spatial 

106 patterns of observed precipitation δ18O over Central Asia were available from all stations. All 
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107 precipitation δ18O data were employed with respect to the Vienna standard mean ocean water 

108 (VSMOW) and were shown in precipitation amount-weighted values. In addition, meteorological 

109 variables, including precipitation amount and air temperature, were recorded at each observation 

110 station. 

111 The precipitation δ18O was determined by atmospheric characteristics and their dynamics. 

112 We selected three atmospheric characteristic indices to discuss their effects on the precipitation 

113 δ18O over Central Asia, including the westerly circulation index (WCI), East Asian summer 

114 monsoon index (EASMI), and Indian monsoon index (IMI). Monthly EASMI and IMI were 

115 obtained from Dr. Jianping Li’s webpage (http://ljp.gcess.cn/dct/page/65610) (Li et al., 2002; 

116 2003). 

117 Temperature averages are calculated for monthly/annual analyses, and the corresponding 

118 precipitation amounts are calculated as monthly/annual data for each observation station. A 

119 stepwise linear regression analysis technique was employed to fit the precipitation δ18O with 

120 geographical parameters. The following geographical parameters were considered: altitude 

121 (ALT, m), latitude (LAT, °N), and longitude (LON, °E). The Pearson correlation coefficient was 

122 used to investigate the relationship between precipitation δ18O and meteorological variables or 

123 atmospheric circulation indices. 

124 Results and Discussion

125 Local Meteoric Water Lines (MWL)

126 The local meteoric water lines (MWLs) of precipitation, δ2H, and δ18O, provide important 

127 information on the water cycle, water vapor sources, and water transport (Jonesl et al. 2007; Lutz 

128 et al. 2011). A Central Asia MWL (CAMWL) was established as δ2H = 7.30δ18O + 3.12 

129 (R2=0.95, n=727, p<0.01) (Figure 2) based on 727 precipitation groups. The slope of the 

130 CAMWL was slightly lower than that of the global MWL (GMWL), which was eight (Craig, 
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131 1961) and the Chinese MWL of 7.48 (Liu et al., 2014). Differences in the GMWL slope often 

132 occur because of deviations in humidity at the source of moisture or evaporation. Central Asia is 

133 located in the Eurasian hinterland, and has a significant variation in the annual cycle and 

134 alternating dry or wet seasons. A low LMWL slope is associated with non-equilibrium 

135 conditions that affect falling raindrops during dry conditions (Liu et al., 2014), leading to the 

136 potential for significant sub-cloud evaporation. 

137 The precipitation δ18O over Central Asia ranged from +2‰ to −25.4‰ with a mean of 

138 −8.7‰, and δ2H ranged from −4.2 ‰ to −191.4‰ with a mean of −67.1 ‰. 

139 Seasonal variations in precipitation δ18O 

140 The arid Central Asian region is affected by monsoons and westerlies, resulting in annual 

141 differences in climatic variables and precipitation δ18O. The variation in the annual air 

142 temperature represents a continental climate. The maximum and minimum temperatures occur in 

143 July and January, respectively. In this study, the temperature variation was unimodal, and the 

144 precipitation amount represented two distribution types (Figure 2). The three precipitation 

145 patterns observed in different regions are shown in Figure 3. (1) Maximum precipitation in 

146 occurred in the summer, with summer precipitation accounting for 41.4% of the total 

147 precipitation. These stations (including Hetian, Zhangye, Barabinsk, and Urumqi stations) are 

148 mainly distributed in northern Central Asia and are primarily influenced by the intensity and 

149 location of the westerly circulation. (2) Maximum precipitation values in winter and spring, with 

150 winter and spring precipitation accounting for 39.6% and 37.8% of the total precipitation, 

151 respectively, while the summer precipitation accounted for only 6.4% of the total precipitation. 

152 These stations (including the Kabul and Teheran stations) are mainly located in southern Central 

153 Asia and are primarily influenced by the Indian monsoon. (3) A well-distributed seasonal 

154 precipitation pattern was observed at Astrakhan and Saratov stations. These are present in 

PeerJ reviewing PDF | (2020:11:55326:1:0:NEW 5 Mar 2021)

Manuscript to be reviewed

Ines
Highlight

Ines
Sticky Note
strange - GMWL is defined as the line of slope 8, and you can only compare differences in the local MWLs

Ines
Highlight
not clear - first two distribution types, and then three precipitation patterns; what are the two distribution types?



155 northwestern Central Asia and are primarily influenced by airflow from the Arctic. This result 

156 also highlighted the complexity of the spatial–temporal variations in precipitation in Central 

157 Asia. 

158 The annual temperature and precipitation influenced the annual precipitation δ18O cycle. 

159 The maximum δ18O occurred from June to August (JJA). Maximum precipitation δ18O at the 

160 Urumqi, Hetian, Barabinsk, and Teheran stations were -5.4‰, 0‰, 2‰, and -0.3‰ in August, 

161 respectively. The maximum values at the Zhangye and Kabul stations occurred in July. The 

162 maximum values occurred in June and September, respectively, at the Saratov and Astrakhan 

163 stations. All minimum values occurred from December to February (DJF). From January to July, 

164 the δ18O values in precipitation were continuously high but gradually declined from August to 

165 December. The maximum and minimum values appeared in the summer and winter, 

166 respectively. Therefore, the δ18O content in precipitation was higher in summer than in winter, 

167 and the seasonal pattern of the δ18O in precipitation reflected the climate regime during the 

168 annual cycle. In winter, air masses were relatively cold and dry and the amount of precipitation 

169 was very low, while in summer, the opposite was true.  

170 Spatial characteristics of precipitation δ18O 

171 Figure 4 shows the spatial distribution of precipitation δ18O throughout the year, and for 

172 summer and winter seasons at each station in Central Asia. The maximum value of the annual 

173 mean δ18O (−1.47‰) was at Cele station, located in southern Xinjiang, and the minimum value 

174 (−18.6‰) was observed at Hami station. For the summer months, the maximum δ18O value (2.8 

175 ‰) was observed at Cele station, and the minimum value (−13.4‰) was observed at Altay 

176 station, located in northeastern Central Asia. The maximum δ18O value (−7.7 ‰) during the 

177 winter months was observed at the Teheran station, located in southern Central Asia, and the 

178 minimum value (-35.3‰) was observed at the Dabancheng station. 
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179 There were remarkable spatial differences in precipitation δ18O over Central Asia. The 

180 spatial distribution of precipitation δ18O was mainly affected by the thermodynamics of water 

181 vapor condensation during the Rayleigh fractionation process and included meteorological 

182 elements, water vapor transport, and geographic factors (Dansgaard, 1964; Yurtsever and Gat, 

183 1981; Rozanski et al., 2003). 

184 Several studies have verified that altitude and latitude are the main geographic factors that 

185 affect changes in temperature and water vapor condensation, and can be referred to as 

186 geographic factor effects of precipitation δ18O (Liu et al., 2009; Yao et al., 2013). The correlation 

187 of precipitation δ18O with latitude, altitude, and longitude was investigated using partial 

188 correlation analysis, and the correlation coefficients (CC) were 0.53 (p < 0.05), 0.32 (p < 0.05), 

189 and 0.17, respectively, indicating that latitude is the most significant factor. In summer, latitude 

190 was significantly correlated with precipitation δ18O (CC = 0.54, p < 0.05), while both latitude 

191 and longitude were significantly correlated with precipitation δ18O in winter (CC = 0.31, p < 

192 0.05; CC = 0.67, p < 0.01, respectively). For the annual δ18O, the δ18O/latitude gradient was -

193 0.42‰/º, implying that the precipitation δ18O was reduced by approximately 0.42‰ for every 

194 one-degree variation in latitude, which was larger than the gradient in China (-0.22‰/º). 

195 Similarly, the δ18O/altitude gradient was -0.001‰/m, which was lower than the global value of -

196 0.0022‰/m and the value of -0.0016‰/m in China (Liu et al., 2009; Bowen and Wilkinson, 

197 2002). In Central Asia, altitudes range from -18 to 4,200 m, with a complex topography and 

198 various climatic characteristics. 

199 Several researchers have constructed models to explain the relationship between 

200 precipitation δ18O and geographic factors (Liu et al, 2009; Yao et al, 2013), including the Bowen 

201 and Wilkinson (BW) model (Bowen and Wilkinson, 2002). To confirm the effects of altitude and 
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202 latitude on precipitation δ18O over Central Asia, we evaluated the relationship between 

203 precipitation δ18O and geographical factors using stepwise regression analysis. 

204 In Central Asia, geographical controls on precipitation δ18O were best expressed by a 

205 stepwise linear regression, including altitude (ALT, m), latitude (LAT, °N) and longitude (LON, 

206 °E): 

207 δ18O = (−0.179) × LAT + (−0.022) × LON + 0.00085 × ALT (R2 = 0.51, p < 0.05)                                                                                   

208 (1)

209 The best model accounting for JJA δ18O included both altitude (ALT, m) and latitude (LAT, 

210 °N): 

211 δ18O = (−0.632) × LAT + (−0.002) × ALT + 23.851 (R2 = 0.64, p < 0.05) (2)

212 The DJF δ18O model was expressed by linear regression as: 

213 δ18O = (−0.482) × LAT + (−0.280) × LON + (−0.001) × ALT + 23.891 (R2 = 0.73, p < 0.01) 

214 (3)

215 Our model comprehensively explained the effect of altitude, latitude, and longitude on 

216 precipitation δ18O over Central Asia, and revealed that the variation in precipitation δ18O 

217 depended on geographical factors at each station. These results showed that our models were 

218 suitable for use in Central Asia. 

219 We used the aforementioned models to obtain the spatial distribution of precipitation δ18O 

220 over Central Asia (Figure 5). The annual precipitation δ18O gradually decreased as the latitude 

221 increased (Figure 5a). In the summer, higher δ18O values were observed in southwest Central 

222 Asia and lower δ18O values were observed in northern Central Asia and the Pan-Third Polar 

223 region (including the Tibetan Plateau, Iranian Plateau, and Tianshan Mountains) (Figure 5b). 

224 This pattern shows the effects of latitude and altitude on precipitation δ18O. However, 

225 precipitation δ18O in Central Asia was higher than that in the Tibetan Plateau (Figure 5b). This 

226 was mainly due to the transport of moist air originating from the Arabian Sea and the Bay of 
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227 Bengal into Central Asia, which resulted in more summer precipitation (Zhao et al., 2014). A 

228 strong anti-cyclonic pattern was noted in the Arabian Sea, Indian subcontinent, and the Bay of 

229 Bengal, and was associated with a strong southerly flow controlling the Indian subcontinent and 

230 extending north up to the valley between the Iranian Plateau and Tibetan Plateau regions. 

231 Furthermore, the valley between the Iranian Plateau and the Tibetan Plateau is below 1,500 m, 

232 and the anomalous southerlies can transport moisture into Central Asia (Zhao et al., 2014; Zhao 

233 and Zhang, 2016). The cyclonic pattern observed in Central Asia was associated with this 

234 pattern, and an anomalous southwesterly wind may have transported moisture into Central Asia. 

235 Tian et al. (2001) indicated that there was a different moisture source between the northern and 

236 southern Tibetan Plateau, and that the northern limit of the summer monsoon was north of the 

237 Yarlung Zangbo River located in the middle of the Tibetan Plateau. 

238 In the winter, precipitation δ18O gradually decreased with increasing longitude (Figure 5c). 

239 The δ18O values were higher in Central Asia. The moisture transported from the Eurasian 

240 continent and the Mediterranean Sea into northern Central Asia generated more winter 

241 precipitation and  westerly wind was needed to transport moist air into inland regions. 

242 Correlation between precipitation δ18O and meteorological variables

243 We investigated correlations between monthly precipitation δ18O, monthly air temperature 

244 (Figure 6), and precipitation at eight stations in Central Asia (Figure 7). As shown in the figure, 

245 monthly precipitation δ18O at each station had a significant positive correlation with temperature 

246 (CC = 0.51–0.96, p < 0.01). Moreover, the latitude effect with δ18O gradually increased as the 

247 temperature increased. The effect of temperature was the strongest at the Barabinsk station, 

248 followed by those at the Urumqi, Hotan, Zhangye, Saratov, and Kabul stations, while it was the 

249 weakest at the Astrakhan and Teheran stations. The gradients between δ18O and air temperature 

250 ranged from 0.28‰/℃ at the Saratov and Teheran stations to 0.68‰/℃ at the Hetian station. 
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251 These results were similar to global mid- and high-latitudes with gradients of 0.55‰/℃ 

252 (Rozanski et al., 1993) and elsewhere in China with gradients of 0.36‰/℃ (Gu, 2011). 

253 Significant positive correlations between precipitation δ18O and precipitation were observed 

254 at four stations (Zhangye, Barabinsk, Hetian, and Urumqi), and only one station had a significant 

255 negative correlation (Teheran station). Correlations for other stations were not significant. These 

256 results reveal an indeterminant dependence of precipitation δ18O on precipitation, which is in 

257 accordance with the insignificant effect of precipitation in inland regions (Gu, 2012). The δ18O–

258 precipitation gradients ranged from -0.08‰/mm (Teheran station) to 0.20 ‰/mm (Zhangye 

259 station). In addition, the Zhangye and Teheran stations had a significant precipitation effect as a 

260 result of their location on the edge of the East Asian monsoon and Indian monsoon regions, 

261 respectively. 

262 The Urumqi station has the longest and most systematic GNIP observations in Central Asia, 

263 with an observation period spanning from 1986 to 2003. Based on a subset of selected predictors, 

264 we established a model using stepwise regression analysis and the corresponding monthly 

265 temperature and precipitation data. The δ18O model in Urumqi station was expressed by linear 

266 regression as: 

267 δ18O = (−0.009) × P + 0.417 ×T − 15.53 (R2 = 0.69, p < 0.01)           (4)

268 We reconstructed and estimated the monthly precipitation δ18O time series from 1985 to 2013 at 

269 Urumqi station (Figure 8a). The reconstructed precipitation δ18O was high-positively correlated 

270 with the observed values at Urumqi stations (R = 0.83, p < 0.01), and the results clearly depicted 

271 the seasonal cycle of precipitation δ18O, except for some values during extreme cold or hot 

272 months. Furthermore, the reconstructed precipitation δ18O values for most spring and autumn 

273 seasons are similar to the observations. This indicates that basic fractionation mechanisms can be 

274 reflected using the reconstructed model. The reconstructed model indicates that the temperature 
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275 effect of precipitation δ18O values was reflected in Urumqi Station. Several previous studies 

276 confirmed the temperature effect of precipitation isotopes existed in arid Central Asia (Yao et al., 

277 1999, 2013; Wang et al.,2016). Thus, the selected control factors and established regressions can 

278 be used to reconstruct the long-term variation in precipitation δ18O, and also act as a proxy of an 

279 historic environment. In High Asia, the climatic controls on precipitation isotopes was used as a 

280 base for ice core sampling (Tian and Yao, 2016). In Central Asia, the δ18O of ice cores were in 

281 good agreement with temperatures at nearby stations, which indicates its value in paleoclimate 

282 reconstruction using ice cores (Tian et al., 2006; Zhang and Wang, 2018). 

283 Relationship of precipitation δ18O with general atmospheric 

284 circulation

285 To reveal the relationship between precipitation δ18O and large-scale atmospheric 

286 circulation, we analyzed the correlation between precipitation δ18O at each station using long-

287 term observation data and atmospheric circulation (e.g., IMI, SASMI, and WCI). 

288 Our results showed that the precipitation δ18O at the Zhangye station was positively 

289 correlated with the EASMI (R = 0.62, p < 0.05), indicating that the East Asian summer monsoon 

290 has an important effect on precipitation δ18O in Zhangye. It is located on the eastern side of the 

291 arid northwest China and at the northeastern edge of the Tibetan Plateau as well as at the 

292 transition zone between the East Asian monsoon and westerlies. The East Asian monsoon can 

293 affect the precipitation δ18O in the westerly and monsoon transition regions. 

294 The precipitation δ18O was negatively correlated with the IMI at both the Urumqi and 

295 Teheran stations (R = 0.57 and 0.41, respectively, p < 0.05), revealing an important effect of the 

296 Indian monsoon on precipitation δ18O. In general, the stronger the monsoon, the lower the δ18O 

297 value, and vice versa. The Teheran station is close to the Indian Ocean and is one of the main 

298 moisture paths for the Indian monsoon moving towards the north. Therefore, precipitation δ18O 
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299 at the Teheran station was mainly influenced by the Indian monsoon. However, Urumqi is 

300 located in the Asian hinterland and is indirectly influenced by the Indian monsoon. At Urumqi, 

301 precipitation δ18O is affected by an anomalous moisture transport path through a multi-step 

302 process. A weakened Indian monsoon can cause an anomalous cyclone in the middle and upper 

303 troposphere in Central Asia, resulting in cooling, which is directly correlated with the increased 

304 precipitation in Xinjiang (Zhao et al., 2014). Furthermore, the Indian monsoon affects moisture 

305 transport from the Bay of Bengal and the Arabian Sea to Xinjiang through a two-step process 

306 (Zhao et al., 2014). The extreme summer precipitation in northern Xinjiang was controlled by 

307 moisture sources originating from the Indian Ocean, which was closely related to a stronger 

308 meridional circulation (Huang et al. 2017). The anomalous circulation can also transport some 

309 moisture from the Indian Ocean along the eastern periphery of the Tibetan Plateau to North 

310 Xinjiang (Huang et al., 2017). 

311 The moisture in Central Asia is mainly transported by the westerly circulation from the 

312 North Atlantic Ocean and the Eurasian continent. The westerly circulation is one of the most 

313 important factors affecting precipitation δ18O over Central Asia. However, we found a weak 

314 positive correlation between precipitation δ18O and the WCI index. This may be related to the 

315 moisture transported by the westerly circulation, which originates from the Atlantic and Arctic 

316 oceans and dissipates along the way. The water vapor transported by the westerly is exhausted by 

317 the time it reaches Central Asia because of substantial evapotranspiration and evaporation below 

318 the clouds in arid regions. 

319 The precipitation d-excess parameter can provide supplementary information to 

320 precipitation δ18O and δ2H values, and it is largely controlled by the moisture source and water 

321 transport paths. Thus, it may be the most important indicator to represent the regional moisture 

322 source and atmospheric circulation (Merlivat and Jouzel, 1979). In addition, the precipitation d-
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323 excess is closely related to the re-evaporation of raindrops during condensation and precipitation, 

324 and is affected by temperature and relative humidity during evaporation (Merlivat and Jouzel, 

325 1979; Jouzel et al., 1982, 1997; Wang et al., 2014). In Central Asia, the precipitation d-excess 

326 values ranged from +21.66 ‰ to -8.5‰, with an average of 8.5 ‰. The temporal variations in 

327 precipitation d-excess shows more positive values in spring and more negative values in summer 

328 and the opposite pattern for δ18O. This variation is in agreement with variations in the conditions 

329 under which the moisture source evaporates. There is a similar seasonal pattern in precipitation 

330 d-excess and δ18O of Central Asia and that of the westerly climate regime zone (Yao et al., 

331 2009). However, there is a dissimilarity with the annual cycle in Lhasa, which is affected by 

332 southwest monsoon air mass (Wang et al., 2014). This demonstrates that the moisture transported 

333 to Central Asia was derived predominantly from the westerlies and the polar air masses. 

334 Moreover, the high precipitation d-excess values showed that recycled moisture derived from 

335 local sources makes a significant contribution to precipitation, especially in Central Asia. Yao et 

336 al (2020) also suggested that the warming and increased moisture content of the atmosphere 

337 contributed to the local moisture cycle and increased precipitation recycling in eastern Central 

338 Asia. 

339 Conclusions

340 We established the CAMWL and analyzed the spatial–temporal characteristics of precipitation 

341 δ18O and its relationship with meteorological variables and geographical factors based on the 

342 precipitation δ18O values observed at 47 stations over Central Asia, with information from GNIP, 

343 TNIP, CHNIP, and TSNIP databases and reference studies. In addition, we revealed the 

344 relationship between precipitation δ18O and large-scale atmospheric circulation. We made the 

345 following conclusions:
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346 (1) The CAMWL was established as δ2H = 7.30δ18O + 3.12 (R2=95, p<0.01) for 727 groups 

347 of monthly precipitation δ18O over Central Asia. The precipitation δ18O over Central Asia ranged 

348 from +2‰ to -25.4‰ with a mean of -8.7‰.

349 (2) The precipitation δ18O over Central Asia was related to meteorological factors. It had a 

350 significant positive correlation with temperature, with δ18O-temperature gradients ranging from 

351 0.28‰/℃ to 0.68‰/℃. However, the dependence of δ18O on precipitation was unclear, with a 

352 significant effect on precipitation observed only at the Zhangye and Teheran stations, showing 

353 δ18O-precipitation gradients of 0.20‰/mm and -0.08‰/mm, respectively.

354 (3) In summer, the latitude was significantly correlated with precipitation δ18O (CC = 0.54, 

355 p < 0.05), while in winter, both latitude and longitude were significantly correlated. The gradient 

356 of δ18O/LAT and δ18O/ALT were -0.42‰/º and -0.001‰/m, respectively.

357 (4) The precipitation δ18O at the Zhangye station showed a significantly positive correlation 

358 with the EASMI, and a negative correlation with the IMI at the Urumqi and Teheran stations. In 

359 addition, there was a weakly positive correlation between δ18O and the WCI. Our results suggest 

360 that the moisture in Central Asia is mainly transported by westerly circulation and is indirectly 

361 affected by the Indian monsoon. Furthermore, the East Asian monsoon can affect the 

362 precipitation δ18O in westerly and monsoon transition regions. 

363
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Table 1(on next page)

Summary data of the precipitation sampling stations over Central Asia

GNIP = Global Network of Isotopes in Precipitation; TNIP = Tibetan Network for Isotopes in
Precipitation; CHNIP = Chinese Network of Isotopes in Precipitation; TSNIP = Tianshan
Network of Isotopes in Precipitation; and TGS = Tianshan Glaciological Station, Chinese
Academy of Sciences.
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1 Table 1. Summary data of the precipitation sampling stations over Central Asia

No Station
Latitude 

(°N)

Longitude 

(°E)

Altitude 

(m)

Precipitation 

(mm)

Temperature 

(℃)
Database

1 Urumqi 43.78 87.62 918 304 7.4 GNIP

2 Hetian 37.13 79.93 1375 209 9.1 GNIP

3 Zhangye 38.93 100.43 1483 154 7.8 GNIP

4 Kabul 34.57 69.21 1860 330 11.6 GNIP

5 Barabinsk 55.33 78.37 120 389 1 GNIP

6 Astrakhan 46.25 48.03 -18 228 10.5 GNIP

7 Saratov 51.56 46.03 166 490 6.6 GNIP

8 Teheran 35.68 51.32 1200 227 16.7 GNIP

9 Tashkent 41.27 69.27 428 478 13.9 GNIP

10 Teheran East 35.74 51.58 1350 297 15.4 GNIP

11 Novosibirsk 55.03 82.9 162 479 2.5 GNIP

12 Telavi 41.93 45.48 590 679 13.1 GNIP

13 Taxkorgen 37.77 75.27 3100 115 1.6 TNIP

14 Delingha 37.37 97.37 2981 186 2.2 TNIP

15 Fukang 44.29 87.93 460 167 7.5 CHNIP

16 Cele 37.02 80.73 1306 51 12.9 CHNIP

17 Yining 43.95 81.33 662.5 298.9 9.5 TSNIP

18 Jinghe 44.62 82.9 320.1 112.1 8.2 TSNIP

19 Kuytun 44.4 84.87 562 183.5 8.5 TSNIP

20 Shihezi 44.32 86.05 442.9 226.9 7.8 TSNIP

21 Caijiahu 44.2 87.53 440.5 153.8 6.5 TSNIP

22 Qitai 44.02 89.57 793.5 200.9 5.4 TSNIP

23 Wuqia 39.72 75.25 2175.7 188.7 7.7 TSNIP

24 Akqi 40.93 78.45 1984.9 237.7 6.8 TSNIP

25 Bayinbuluke 43.03 84.15 2458 280.5 -4.2 TSNIP

26 Baluntai 42.73 86.3 1739 220.4 7 TSNIP

27 Balikun 43.57 93.05 1677.2 230.5 2.7 TSNIP

28 Yiwu 43.27 94.7 1728.6 104.4 4.2 TSNIP

29 Aksu 41.17 80.23 1103.8 80.4 10.8 TSNIP

30 Baicheng 41.78 81.9 1229.2 136.6 8.2 TSNIP

31 Kuqa 41.72 82.97 1081.9 76.7 11.3 TSNIP

32 Luntai 41.78 84.25 976.1 78.6 11.6 TSNIP

33 Korla 41.75 86.13 931.5 59.2 12 TSNIP

34 Kumux 42.23 88.22 922.4 59.9 9.8 TSNIP

35 Dabancheng 43.35 88.32 1103.5 76.7 6.9 TSNIP

36 Turpan 42.93 89.2 34.5 15.4 15.1 TSNIP

37 Shisanjianfang 43.22 91.73 721.4 22.6 12.5 TSNIP
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38 Hami 42.82 93.52 737.2 43.7 10.3 TSNIP

39 UG1 43.1 86.84 3693 460 -5.6 TGS

40 Zongkong 43.11 86.89 3404 400 -4.6 TGS

41 Daxigou 43.11 86.86 3539 458 -5 TGS

42
Altay 47.73 88.08 735 193 4.5

Tian et al., 

2001

43
Gaoshan 43.1 86.83 3545 390 -4.3

Kong et al., 

2013

44
Houxia 43.28 87.8 2100 424 1.5

Kong et al., 

2013

45 Yuejinqiao 43.12 87.05 2526 330 -2.5 Yao et al., 1999

46 Yingxiongqiao 44.37 87.2 1920 210 2.3 Sun et al., 2015

47
Yushugou 43.08 93.95 1670 94.3 18.6

Wang et al., 

2015

2 Note: GNIP = Global Network of Isotopes in Precipitation; TNIP = Tibetan Network for Isotopes in Precipitation; CHNIP = 

3 Chinese Network of Isotopes in Precipitation; TSNIP = Tianshan Network of Isotopes in Precipitation; and TGS = Tianshan 

4 Glaciological Station, Chinese Academy of Sciences. 
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Figure 1
Locations of the sampling stations over Central Asia
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Figure 2

Linear δD–δ18O relationships (CAMWL) based on all precipitation measurements over
Central Asia
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Figure 3

Seasonal patterns of observed precipitation δ18O, precipitation amount (P), and
temperature (T) at different stations. For each station, data were averaged over the
observation periods.
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Figure 4
Spatial patterns of annual (top), JJA (middle), and DJF (bottom) observed precipitation
δ18O at meteorological stations over Central Asia.
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Figure 5

Spatial distribution of annual (a), JJA (b), and DJF (c) mean estimated δ18O in
precipitation based on the model using spatial variables
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Figure 6

Regression of observed precipitation δ 18O with temperature over Central Asia
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Figure 7

Regression of observed precipitation δ18O with amount of precipitation over Central
Asia.
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Figure 8

Reconstruction of monthly δ18O time series during 1986–2013 based on the regression
model established for Urumqi station.
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