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Understanding the factors underpinning species abundance patterns in space and time is
essential to implement effective cave conservation actions. Yet, the methods employed to
monitor cave biodiversity still lack standardization, and no quantitative assessment has
yet tried to optimize the amount and type of information required to efficiently identify
disturbances in cave ecosystems. Using a comprehensive monitoring dataset for tropical
iron caves, comprising abundance measurements for 33 target taxa surveyed across 95
caves along four years, here we provide first evidence-based recommendations to
optimize monitoring programs seeking to follow target species abundance through time.
We found that seasonality did not influence the ability to detect temporal abundance
trends. However, in most species, abundance estimates assessed during the dry season
resulted in a more accurate detection of temporal abundance trends, and at least three
surveys were required to identify global temporal abundance trends. Finally, we identified
a subset of species that could potentially serve as short-term disturbance indicators.
Results suggest that iron cave monitoring programs implemented in our study region could
focus sampling efforts in the dry season, where detectability of target species is higher,
while assuring data collection for at least three years. More generally, our study reveals
the importance of long-term cave monitoring programs for detecting possible disturbances
in subterranean ecosystems, and for using the generated information to optimize future
monitoring efforts.
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Abstract

Understanding the factors underpinning species abundance patterns in space and time is essential 
to implement effective cave conservation actions. Yet, the methods employed to monitor cave 
biodiversity still lack standardization, and no quantitative assessment has yet tried to optimize the
amount and type of information required to efficiently identify disturbances in cave ecosystems. 
Using a comprehensive monitoring dataset for tropical iron caves, comprising abundance 
measurements for 33 target taxa surveyed across 95 caves along four years, here we provide first 
evidence-based recommendations to optimize monitoring programs seeking to follow target 
species abundance through time. We found that seasonality did not influence the ability to detect 
temporal abundance trends. However, in most species, abundance estimates assessed during the 
dry season resulted in a more accurate detection of temporal abundance trends, and at least three 
surveys were required to identify global temporal abundance trends. Finally, we identified a 
subset of species that could potentially serve as short-term disturbance indicators. Results suggest
that iron cave monitoring programs implemented in our study region could focus sampling efforts
in the dry season, where detectability of target species is higher, while assuring data collection for
at least three years. More generally, our study reveals the importance of long-term cave 
monitoring programs for detecting possible disturbances in subterranean ecosystems, and for 
using the generated information to optimize future monitoring efforts. 
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Introduction

Quantifying long-term changes in abundance of cave-dwelling organisms and identifying 
indicator species, reflecting the health status of subterranean ecosystems, are among the 
fundamental research goals of modern subterranean conservation biology (Mammola et al., 
2020). For instance, the lack of knowledge about the factors underpinning abundance patterns in 
space and time are among the main impediments to the effective protection of cave fauna 
(Cardoso et al., 2011). Long-term studies in caves are scarce (Di Russo et al., 1997; Salvidio et 
al., 2019), and most previous efforts assessing community-level responses have evaluated 
population dynamics (Bichuette & Trajano, 2003; Ferreira et al., 2005; Lunghi, 2018), ecological 
niches (Mammola & Isaia, 2016; Mammola, Piano & Isaia, 2016), or temporal and spatial 
variation (Tobin, Hutchins & Schwartz, 2013; Ferreira et al., 2015; Owen et al., 2016; Paixão, 
Emanuelle Arantes Ferreira & Paixão, 2017; Mammola & Isaia, 2018; Ferreira & Pellegrini, 
2019; Pellegrini, Faria & Ferreira, 2020). Few studies have evaluated the influence of 
anthropogenic disturbance on cave biodiversity (Bernardi, Souza-Silva & Ferreira, 2010; 
Pellegrini & Lopes Ferreira, 2012; Faille, Bourdeau & Deharveng, 2015; Cajaiba, Cabral & 
Santos, 2016; Pellegrini et al., 2016; Jaffé et al., 2018).

Due to the unique characteristics of subterranean environments, an important fraction of 
cave fauna exhibits adaptations for life in these extreme environments (Pipan & Culver, 2013). 
Some of these species are obligate subterranean dwellers and often comprise narrow-range 
endemic and threatened species (Harvey, 2002), so stringent legislation has been put in place in 
some countries to protect them (Harvey et al., 2011; Culver & Pipan, 2014). In Brazil, companies
executing projects that could potentially impact cave ecosystems are required by law to assess the
extent of impacts and implement control, monitoring and/or compensation measures (CONAMA,
1986; Decree, 2008; MMA/ICMBio, 2019). After environmental licenses are granted, some caves
are included in long-term monitoring programs, ultimately seeking to detect possible disturbances
on subterranean fauna. These studies generate comprehensive biological databases containing 
valuable information for numerous caves sampled over long periods of time (Jaffé et al., 2016, 
2018; Trevelin et al., 2019). However, although many recommendations have been made to 
monitor cave biodiversity (Eberhard, 2001; NPS, 2015; Culver & Sket, 2016), methods still lack 
standardization, and no quantitative assessment has yet tried to optimize the amount and type of 
information required to efficiently identify disturbances in cave ecosystems. This is nevertheless 
essential to design systematic, repeatable, and intensive surveys of cave-dwelling organisms, 
allowing the formulation of evidence-based management decisions (Wynne et al., 2018, 2019). 

In Brazil, most cave monitoring programs have focused on assessing temporal changes in 
relative abundance in a set of selected species (ativoambiental, 2019; BRANDT, 2019). However,
the temporal frequency of field surveys, the impact of seasonal fluctuations in population size, 
and the sample sizes needed to detect temporal changes in population abundance, are yet to be 
systematically assessed. Moreover, the selection of species surveyed in these monitoring 
programs is not based on their usefulness as disturbance bio-indicators. Here we aim to fill these 
gaps, taking advantage of a comprehensive cave monitoring dataset containing abundance 
measurements for target target taxa surveyed across iron caves along four years.

Material & Methods

Study Area
The study was performed in the Serra dos Carajás region, southeast of the state of Pará, in the 
Brazilian Amazon. This region is within the limits of the Floresta Nacional de Carajás, a 
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protected area of 400,000 ha allowing sustainable use. The caves analyzed in this study are 
located in two highlands known as Serra Norte and Serra Sul (Fig. 1). These two regions harbor 
banded ironstone formations known as cangas, unique campo rupestre ecosystems resembling 
mountain savannas (Zappi et al., 2019), and one of the world’s largest deposits of iron ore 
(Poveromo, 1999). 

Database
We used data generated by independent environmental consulting companies, so our study did 
not involve any field work. Vale S.A., a mining company, began operations in the region more 
than two decades ago (Souza-Filho et al., 2019), and has conducted numerous caves surveys over
the last years as part of a large monitoring program related to environmental licensing processes. 
All surveys where authorized by Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais 
Renováveis (IBAMA), under licenses ABIO 455/2014 (Projeto Ferra Carajás S11D nº 
02001.000711/2009-46) and ABIO 639/2015 (Projeto Ferro Serra Norte – Estudo Global das 
Ampliações das minas N4 e N5 nº 02001.002197/2002-15). We compiled the data generated in 
these surveys to collect information from 33 target taxa across 95 caves, surveyed between 
August 2015 and September 2019. The selection of species included in these monitoring 
programs was based on the following criteria, as stated in environmental assessment reports 
(Vale, 2015, 2017): Large body size and easy to identify in the field, abundant and showing a 
wide distribution range, resolved taxonomic classification (at least to the morpho-species level), 
and short life cycles allowing the rapid detection of changes in population dynamics (see Table 1 
for the full list of target taxa and their ecological classification). All the selected species were 
actively surveyed during each field trip, so absences represent true absences rather than missing 
data. In each cave, the absolute abundance of each target taxa was quantified at least once during 
the rainy and the dry season, and sometimes multiple times in one year. Sampling was performed 
through an active visual search throughout the caves, aiming to cover all available micro-habitats 
(spaces under rocks, small cracks, moist soil, etc.) and organic deposits (litter, logs, carcasses, 
guano, etc.). Animals were collected with the aid of tweezers and brushes, and all individuals 
found in each cave were counted to estimate abundance per species, as performed in other studies
(Silva, Martins & Ferreira, 2011; Ferreira et al., 2015; Bento et al., 2016; Pellegrini & Ferreira, 
2016; Paixão, Emanuelle Arantes Ferreira & Paixão, 2017; Ferreira & Pellegrini, 2019; Souza-
Silva, Iniesta & Ferreira, 2020). 

Environmental conditions and landscape metrics 
External and internal environmental conditions were monitored during the entire period across 
caves. Monitored variables included the deviation in average bimonthly rainfall in relation to the 
expected from a 20-years series (in mm, retrieved from small weather stations located in nearby 
mines S11D e N4E), and mean internal temperature (ºC) on the date of the surveys (retrieved 
from portable data loggers placed in the most distant location from cave entrances). We also 
recorded the Area (meters2) of each studied cave as an additional internal condition widely known
to influence biodiversity patterns in these ecosystems (Jaffé et al., 2016, 2018). Using 30m 
resolution land-cover maps from 2015 to 2019 (Souza et al., 2020), we then quantified a suit of 
landscape metrics, including the proportional amount of forest, canga and mining land covers 
surrounding caves, and topographic distance to the nearest mine (see details in Supplemental 
Table S1). These were all calculated at two different spatial scales (circular buffers with 500 and 
1000 m radius), using the R packages landscapemetrics (Hesselbarth et al., 2019) and 
TopoDistance (Wang, 2020). Two of these metrics directly captured possible disturbance of 
subterranean environments that could account for changes in the abundance of the studied 
species: Mining cover and distance to the nearest mine. 
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Assessing drivers of community composition across caves
Aiming to quantify how environment, cave, and landscape variables influenced overall 
community composition, we ran a partial redundancy analysis (RDA) controlling for differences 
between both highlands (Serra Norte and Serra Sul), using the vegan package (Oksanen et al., 
2019). The community composition matrix containing relative abundances for each taxa was used
as response variable and predictor variables included year, season, microclimate and landscape 
metrics (Legendre & Legendre, 1998). The highland where caves were located was specified as a 
conditional variable on the model to control for the effect of cave´s geographical location. 
Microclimate and landscape variables were standardized, community composition was Hellinger-
transformed, and permutation tests were used to assess significance of marginal effects (Legendre
& Legendre, 1998).

Assessing the influence of seasonality on the detection of temporal abundance trends
One of the main goals of cave monitoring programs was to assess changes in species abundance 
over time, and thereby identify species with declining or increasing populations in a particular 
cave. To understand how seasonality influenced the detection of abundance trends over time, we 
ran linear models containing the total number of observed individuals as the response variable 
and the interaction between sampling date and season. If seasonality influences temporal 
abundance trends, we would expect to find significant interaction terms. No significant 
interactions, on the other hand, would indicate that the trends can be detected regardless of the 
season when the surveys where performed. To prevent overfitting, linear models were ran for taxa
and caves represented by at least five surveys in each season (final sample size was 16 taxa and 
50 caves). Given the large number of models we used the Benjamini & Hochberg approach to 
adjust p-values, employing the p.adjust function from the stats R package (R, 2020). 

Assessing the influence of sampling effort on the detection of temporal abundance trends
Given the extensive field exposure of people and elevated costs associated with cave monitoring 
programs, it is important to quantify how the sampling effort influences the detection of temporal
abundance trends. To do so we compared linear model coefficients of models fitted with the full 
dataset with those of models fitted with reduced datasets. We first split the data by season and ran
linear models containing the total number of observed individuals as the response variable and 
sampling date as predictor. In these full models we included observations for all sampling dates, 
and excluded taxa and caves represented by less than three surveys per season. We then ran linear
models on data subsets containing a reduced number of observations (ranging between two and 
the maximum number of sampling dates found in each cave and taxa). For each data subset 
containing a given number of observations (surveys) we performed ten random samplings 
without replacement, to ensure the sampling of different sampling dates. Finally, we compared 
coefficients from full models with those of subset models using root mean squared error (rmse), 
implemented through the rmse function from the Metrics R package (Hamner & Frasco, 2018). 
Lower values of rmse indicate more similar model coefficients.

Identifying disturbance indicator species 
Given the life history variation between species and their different susceptibility to habitat 
disturbance, it is essential to identify indicator species that show a rapid response to disturbance 
in order to optimize monitoring programs. By focusing on these indicator species, monitoring 
programs could survey caves more efficiently, thereby making resources available to study more 
caves or other aspects of cave biodiversity requiring attention. Here we tried to identify 
disturbance indicator species by assessing the relationship between disturbance metrics and 
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species abundance patterns. We first modeled patterns of relative abundance across all caves, 
using the function manyglm from the R package mvabund (Wang et al., 2012). It uses a 
multivariate generalized linear model (GLM) to make inferences by fitting separate GLMs to a 
common set of explanatory variables, and testing significance through resampling-based 
hypothesis testing. We ran negative binomial GLMs containing abundance as the response 
variable and sampling season nested in year, distance to mine and mining cover as predictor 
variables. Significance p-values were calculated using 999 resampling iterations via PIT trap 
resampling, adjusted for multiple testing using a step-down resampling procedure (Wang et al., 
2012). We then used univariate coefficient estimates and significance for individual species, to 
identify specific responses to disturbance metrics (distance to mine and mining cover). 

We then assessed the relationship between disturbance metrics and temporal trends in 
species abundance within each cave. To do so we ran linear models containing the total number 
of observed individuals as the response variable and sampling date as predictor, excluding taxa 
and caves represented by surveys spanning less than three years (some caves where surveyed 
multiple times in a single year but these where only included in this analysis if surveys spanned at
least three different years). We then used the model coefficients for each species at each cave, 
representing temporal abundance trends (positive coefficients showing an increase and negative 
coefficients a decrease in abundance through time), to run a second set of linear models 
regressing temporal abundance trends on disturbance metrics. These second set of models thus 
contained as response variable the model coefficients representing temporal abundance trends for 
each species at each cave, and distance to mine and mining cover (at different spatial and 
temporal scales) as predictors. To prevent overfitting we excluded species represented by less 
than ten coefficients (caves), and only constructed models containing a single predictor. We then 
ran likelihood-ratio tests, where we compared each model with a null model containing no 
predictors, and selected those predictor variables resulting in a significant decrease in the model’s
log-likelihood. Finally, we retrieved and plotted coefficients and p-values for these best-fitting 
models. All data and R scripts are available in GitHub 
(https://github.com/rojaff/cave_monitoring).

Results

Overall community composition was weakly influenced by seasonality, cave size, environmental 
conditions, and the composition and configuration of landscapes surrounding caves, as more than 
87% of variance in community composition remained unexplained by these factors (Table 2).

Seasonality did not influence the ability to detect species abundance trends over time, since 
the interaction effect between sampling date and season was not significant in any taxa nor cave 
(Fig. 2). Increasing the number of samples resulted in more similar model coefficients between 
full and subset models, and root mean squared errors usually stabilized after three surveys (Fig. 
3). However, in most species the dry season datasets allowed a more accurate detection of 
temporal abundance trends, as revealed by lower root mean squared errors (Fig. 3). 

Whereas relative abundance was associated to at least one disturbance metric in 22 species 
(Fig. 4), temporal trends in abundance were found associated with disturbance metrics in only 
five species (Fig. 5). Overall, two taxa displayed consistent responses across effects, which 
makes them potential indicator species for cave monitoring programs: The troglobiont Charinus 
ferreus, which appeared negatively affected by disturbance, and a species belonging the 
Theraphosidae family, which seem to be favored by disturbance (Table 3).
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Discussion

By analyzing abundance measurements for 33 target taxa surveyed across 95 caves along four 
years, we found that overall community composition was weakly influenced by seasonality, cave 
size, environmental conditions, and the composition and configuration of landscapes surrounding 
caves. Furthermore, our results show that seasonality did not influence the ability to detect 
abundance trends over time. However, in most species, abundance estimates assessed during the 
dry season resulted in a more accurate detection of temporal abundance trends, and at least three 
surveys were required to identify global temporal abundance trends. Finally, we identified a 
subset of species that could potentially serve as short-term disturbance indicators, some showing 
consistent responses in different analyses.

Subterranean communities have been shown to be affected by seasonality, environmental 
conditions, cave characteristics, and the structure of surrounding landscapes (Simões, Souza-
Silva & Ferreira, 2015; Pellegrini et al., 2016; Bento et al., 2016; Mammola & Isaia, 2018; 
Salvidio et al., 2019; Pellegrini, Faria & Ferreira, 2020; Rabelo, Souza-Silva & Ferreira, 2020). 
However, our results reveal that overall community composition was only weakly influenced by 
these factors, as our model explained merely 13% of total variation in community composition 
(Table 2). In contrast, previous work have found that cave morphology, microclimate, cave depth,
and sampling date explain up to 50% of the variation in community structure in limestone and 
marble caves (Tobin, Hutchins & Schwartz, 2013; Lunghi, Manenti & Ficetola, 2014). Our 
results thus suggest that other factors, not considered in our analyses, play an important role 
structuring subterranean communities of iron caves. Inter-specific interactions, for instance, are 
known to have a profound influences on community structure (Ferreira & Martins, 1999; 
Mammola, Piano & Isaia, 2016). Alternatively, biological samples collected in iron caves may 
not capture the dynamics of the entire subterranean habitat, comprised by a network of fissures 
and voids and traditionally referred to as Milieu Souterrain Superficiel (MSS) (Culver & Pipan, 
2014; Mammola et al., 2016; Mammola, 2018). For instance, most of the surveyed caves were 
larger than 5x5 m (Fig. S1), so they did not represent suitable sampling sites for the MSS 
(Mammola et al., 2016).

Even though seasonality affected overall community composition, it did not influence the 
ability to detect species abundance trends over time. External climatic conditions are increasingly
attenuated at higher cave depths (Tobin, Hutchins & Schwartz, 2013), so species occurring in the 
inner portions of caves appear to have life cycles decoupled from external seasons, whereas 
species inhabiting the outermost portions of caves seem to be more strongly affected by 
seasonality (Di Russo et al., 1997; Gunn, Hardwick & Wood, 2000; Bichuette & Trajano, 2003; 
Ferreira et al., 2015; Mammola, Piano & Isaia, 2016; Lunghi, 2018). Recognizing the impact of 
seasonality on species detection, the current Brazilian legislation stipulates that cave biodiversity 
surveys need to comprise at least two sampling events, one during the dry and one during the 
rainy season (MMA, 2017). It is worth emphasizing that these sampling requirements targeted a 
more accurate estimation of species richness, but not the continuous monitoring of focus species 
in time. Two sampling events are likely insufficient to obtain reliable species richness estimates 
for highly diverse caves (Auler & Piló, 2015; Wynne et al., 2018), so some authors have argued 
for the estimation of optimal sample sizes based on species accumulation curves (Trajano & 
Bichuette, 2010; Trajano, 2013). Our results provide the first evidence-based recommendations to
optimize sampling efforts of monitoring programs seeking to assess target species abundance 
through time. Specifically, our findings suggest that monitoring efforts aiming to detect changes 
in abundance through time do not need to sample during two different seasons each year (Fig. 2). 
Sampling efforts of such monitoring programs could thus be optimized by performing more 
focused surveys and by surveying a larger number of caves during the same period each year. 
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Importantly, restricting sampling to a single season could substantially attenuate the negative 
impact of cave visitation by researchers on subterranean communities (Pellegrini & Ferreira 
2016, Pellegrini & Lopes Ferreira 2012, Bernardi et al. 2010).

Although the composition and spatial distribution of subterranean communities can 
remain constant over periods of several years (Salvidio et al., 2019), our results suggest that 
sampling during at least three years is necessary to detect temporal changes in abundance patterns
in most of our focus species (Fig. 3). We note that our dataset only spans a period of four years 
(although some caves were sampled multiple times during the same season/year), so it cannot 
capture longer temporal changes in abundance. We also caution that these results cannot be 
generalized to all subterranean fauna, as different life histories and generation times will 
ultimately determine how fast these organisms respond to disturbances (Ferreira, 2005; 
Mammola et al., 2016; Culver & Pipan, 2019). Sampling in different seasons did not influence 
the ability to detect general abundance trends over time, but the dry season datasets allowed a 
more accurate detection of temporal abundance trends in most species. These results suggest 
higher detection probabilities in the dry season for the subset of species where RMSE curves 
show a steeper decrease during the dry season (Fig. 3). Interestingly, this was the case for the 
troglobitic amblypygid Charinus ferreus, a species that is difficult to detect like other 
troglobionts (Wynne et al., 2018; Lunghi, 2018). Our results thus suggest that monitoring 
programs focusing on terrestrial subterranean fauna from our study region could concentrate 
sampling activity in the dry season, where most species seem to be easier to detect. Likewise, our
findings highlight the importance of implementing long-term monitoring efforts spanning at least 
three years.

The concept of indicator species in ecosystem management relies on the idea of 
identifying taxa responsive to environmental change, that could inform policies, protocols, and 
best practices (Carignan & Villard, 2002). Such environmental indicators (McGeoch, 1998) seek 
to provide cost and time effective guidelines to address pressing conservation issues, such as 
those faced by large-scale mining projects (Sonter, Ali & Watson, 2018). Assessing the response 
of subterranean fauna to anthropogenic disturbance nevertheless requires access to long-term 
cave monitoring datasets, which are remarkably rare for tropical caves (McGeoch, 1998; 
Carignan & Villard, 2002; Mammola et al., 2020). Here we identified 20 taxa where overall 
abundance responded to cave disturbance, and five where temporal abundance trends where 
associated with disturbance. Only two taxa displayed consistent responses across effects, which 
makes them candidate indicator species for cave monitoring programs: Charinus ferreus and a 
species belonging the Theraphosidae family (Table2). Both are arachnids, a group that was 
recently identified as biodiversity indicator for iron caves (Trevelin et al., 2019). Being a top 
predator restricted to cave ecosystems, the first species is a well-known troglobitic Amblypygi 
(Giupponi & de Miranda, 2016). Its strong and consistent response to disturbances (Figs. 4 and 5)
suggest the species is associated with pristine and undisturbed ecosystems, which makes it an 
ideal disturbance indicator. Theraphosidae spiders, on the other hand, are sedentary sit-and-wait 
predators from the epigea, rarely occupying subterranean environments for reproduction or 
shelter (Fonseca-Ferreira, Zampaulo & Guadanucci, 2017). Our results suggest that they 
apparently benefit from disturbance to opportunistically colonize caves, or alternatively, that 
disturbances in the surrounding external habitats are forcing them to look for shelter inside the 
caves. The species nevertheless awaits formal taxonomic description, which currently limits its 
usefulness as an indicator species.

Effect sizes of disturbance on overall abundance and temporal abundance trends where 
generally small, suggesting that some effects could have remained undetected because they 
would require sampling over longer time periods (Di Stefano, 2001; Legg & Nagy, 2006). For 
instance, the ability to detect trends in tropical bat population abundance was shown to be 
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dependent on the duration of the monitoring efforts, and only long programs (> 20 years) showed 
sufficient statistical power to reliably detect abundance trends (Meyer et al., 2010). This could 
explain why some of our focus species did not exhibit coherent responses across analyses, like 
the troglobionts Pyrgodesmidae sp. and Escadabiidae sp., or opportunistic colonizers like the 
anuran Leptodactylus pentadactylus or Pristimantis fenestratus. Although empirical evidence 
from long-term cave monitoring efforts focusing on invertebrates is scarce (Faille, Bourdeau & 
Deharveng, 2015; Cajaiba, Cabral & Santos, 2016; Owen et al., 2016), our results thus suggest 
that longer monitoring efforts are needed to detect disturbance responses in most cave-dwelling 
species.

Conclusions

Our study reveals the importance of long-term cave monitoring programs for detecting possible 
disturbances in subterranean ecosystems, and for using the generated information to optimize 
future monitoring efforts. Results show that iron cave monitoring programs implemented in our 
study region could focus sampling efforts in the dry season, where detectability of target species 
is higher, while assuring data collection for at least three years. Charinus ferreus was identified as
the most promising short-term disturbance indicator species.
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Table 1(on next page)

List of surveyed taxa and their ecological classification.
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Table 1: List of surveyed taxa and their ecological classification.

Class Order Family Species
Ecological 
Classification

Malacostraca Isopoda Scleropactidae
Circoniscus carajasensis 

Campos-Filho & Araujo, 2011
Troglobiont

Amphibia Anura Craugastoridae
Pristimantis cf. fenestratus 

(Steindachner, 1864)
Trogloxene

Leptodactylidae
Leptodactylus pentadactylus 

(Laurenti, 1768)
Accidental

Arachnida Amblypygi Phrynidae
Heterophrynus longicornis 

Butler, 1873
Troglophile

Charinidae
Charinus ferreus Giupponi & 

Miranda, 2016
Troglobiont

Araneae Araneidae Alpaida sp.1 Troglophile

Pholcidae Mesabolivar spp. Troglophile

Prodidomidae Prodidomidae sp. Troglobiont

Salticidade Astieae sp.1 Troglophile

Scytodidae
Scytodes eleonorae Rheims & 

Brescovit, 2001
Troglophile

Theraphosidae Theraphosidae Troglophile

Theridiosomatida

de
Plato spp. Troglophile

Opiliones Cosmetidae
Roquettea singularis Mello-

Leitão, 1931
Troglophile

Roquettea sp. Troglophile

Escadabiidae Escadabiidae sp.1 Troglobiont

Escadabiidae sp.2 Troglobiont

Gagrellinae Prionostemma sp. Troglophile

1

1

1

2

2
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Stygnidae Protimesius sp. Troglophile

Stygnidae sp.1 Troglophile

Chilopoda Scutigeromorpha Pselliodidae
Sphendononema guildingii 

(Newport, 1845)
Troglophile

Diplopoda Glomeridesmida Glomeridesmidae

Glomeridesmus cf. spelaeus 

Iniesta, Ferreira & Wesener, 

2012

Troglobiont

Polydesmida Chelodesmidae Chelodesmidae sp. Troglophile

Pyrgodesmidae Pyrgodesmidae sp.1 Troglobiont

Spirostreptida - Spirostreptida sp. Troglophile

Pseudonannolenid

ae

Pseudonannolene cf. spelaea 

Iniesta & Ferreira, 2013
Troglobiont

Insecta Coleoptera Dytiscidae Dytiscidae sp.1 Stygobiont

Hemiptera Cydnidae Cydninae sp.1 Troglophile

Reduviidae Emesinae sp. Troglophile

Lepidoptera Erebidae Latebraria sp. Trogloxene

Orthoptera Phalangopsidae
Phalangopsis ferratilis Junta, 

Castro-Souza & Ferreira, 2020
Troglophile

Uvaroviella sp. Troglophile

Mammalia Rodentia Cricetidae Rhipidomys sp. Undefined

Reptilia Squamata Phyllodactylidae
Thecadactylus rapicauda 

(Houttuyn, 1782)
Undefined

2

3

3

4
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Table 2(on next page)

Summary of partial Redundancy Analyses (RDA).

The table shows F-statistics and p-values from permutation tests (adjusted r2 = 0.13).
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Table 2: Summary of partial Redundancy Analyses (RDA). The table shows F-statistics and p-

values from permutation tests (adjusted r2 = 0.13).

Variable Df Variance F Pr(>F)

Season nested in year 1 0.0018 4.408 0.001***

Canga cover 1 0.0005 1.164 0.285

Forest cover 1 0.0008 2.093 0.055*

Mining cover 1 0.0010 2.378 0.034*

Distance to mine 1 0.0027 6.766 0.001***

Area 1 0.0197 48.696 0.001***

Temperature 1 0.0054 13.408 0.001***

Dev Rainfall 1 0.0002 0.604 0.746

Residual 671 0.2710

1

1

2

3

4

5

1
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Table 3(on next page)

Taxa displaying significant responses to disturbance metrics, considering overall
abundance and temporal abundance trends.

Taxa showing consistent responses (highlighted in bold) are suggested as short-term
disturbance indicators. The best sampling season (according to Fig. 3), is indicated for each
taxa.
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Table 3: Taxa displaying significant responses to disturbance metrics, considering overall 

abundance and temporal abundance trends. Taxa showing consistent responses (highlighted in 

bold) are suggested as short-term disturbance indicators. The best sampling season (according to 

Fig. 3), is indicated for each taxa.

Taxon
Abundance Temporal abundance trend

Sampling
Distance to mine Mining cover Distance to mine Mining cover

Charinus ferreus* - Negative Positive Negative Dry

Theraphosidae Negative Positive - Positive Dry

Uvaroviella sp. Negative - Positive Negative Both

Rhipidomys sp. - - Positive - Dry

Roquettea sp. - - - Positive Rain

Pyrgodesmidae sp.1* - Negative - - Rain

Spirostreptida sp.1 Positive - - - Rain

Prodidomidae sp.* Positive Negative Dry

Escadabiidae sp.1* Negative Negative - - Rain

Escadabiidae sp.2* Positive - - - Rain

Leptodactylus 

pentadactylus
Negative - - - Both

Pristimantis 

fenestratus
Negative Positive - - Dry

Thecadactylus 

rapicauda
- Negative - - Dry

Plato spp. Negative - - - Dry

Sphendononema 

guildingii
- Positive - - Dry

Astieae sp.1 Negative - - - Dry

Protimesius sp. Negative - - - Rain

Prionostemma sp. Negative Positive - - Dry

Stygnidae sp1 - Positive - - Dry

Phalangopsis sp.1 - Positive - - Dry

* Troglobitic species

1

1

1

2

3

4

5

6

7

2

PeerJ reviewing PDF | (2020:12:56752:1:0:NEW 12 Feb 2021)

Manuscript to be reviewed



Figure 1
Location of the study region (upper left corner) and a detail of the study area showing
the spatial distribution of the caves included in our analyses (N = 95), colored by the
number of surveys performed in each.

While the hillshade layer was constructed using a digital elevation model (SRTM, 1 arc-
second) from USGS Earth Explorer, the land use classification shapefile was obtained from
Souza-Filho et al. (2019). Coordinates are shown in decimal degrees.
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Figure 2
Adjusted p-values for the interaction between sampling date and season across 16 taxa
and 50 caves.

The Benjamini & Hochberg approach was used to adjust p-values and the red horizontal line
shows the threshold value of 0.05 (values above this line represent cases where the
interaction effect was not significant).
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Figure 3
Root mean squared error (rmse) for model coefficients from full models and those of
subset models containing reduced numbers of samples.

Lower values of rmse indicate more similar model coefficients (and a more reliable
estimation of temporal abundance trends). For each data subset containing a given number
of observations (surveys) we performed ten random samplings without replacement, to
ensure the sampling of different sampling dates.
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Figure 4
Model coefficients and 95% confidence intervals for species showing significant
associations between overall abundance and two disturbance metrics.
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Figure 5
Model coefficients and 95% confidence intervals for species showing significant
associations between temporal abundance trends and two disturbance metrics.
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