Molecular evidence for cross boundary spread of *Salmonella* spp. in meat sold at retail markets in the middle Mekong basin area (#53241)

First revision

Guidance from your Editor

Please submit by **18 Feb 2021** for the benefit of the authors.

Structure and Criteria
Please read the 'Structure and Criteria' page for general guidance.

Custom checks
Make sure you include the custom checks shown below, in your review.

Raw data check
Review the raw data.

Image check
Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files
Download and review all files from the materials page.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 2 Figure file(s)
- 5 Table file(s)
- 1 Raw data file(s)

Custom checks

DNA data checks

- Have you checked the authors data deposition statement?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?
Structure and Criteria

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:

1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review.

When ready submit online.

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
- Literature well referenced & relevant.
- Structure conforms to PeerJ standards, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see PeerJ policy).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
- Negative/inconclusive results accepted. Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Speculation is welcome, but should be identified as such.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
Standout reviewing tips

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Give specific suggestions on how to improve the manuscript

Example

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

Comment on language and grammar issues

Example

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult.

Organize by importance of the issues, and number your points

Example

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

Please provide constructive criticism, and avoid personal opinions

Example

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

Comment on strengths (as well as weaknesses) of the manuscript

Example

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.
Molecular evidence for cross boundary spread of *Salmonella* spp. in meat sold at retail markets in the middle Mekong basin area

Dethaloun Meunsene 1, Prapas Patchanee 2, Ben Pascoe 3, Phacharaporn Tadee 4, Pakpoom Tadee 2

Background: The surrounding areas of the middle Mekong basin, particularly along the border line between Thailand and Lao People's Democratic Republic (Lao PDR), are high-risk areas for many livestock-associated foodborne illnesses, especially salmonellosis. This study aimed to determine the prevalence and characteristics of *Salmonella* spp. contamination in pork, beef and chicken meats sold at retail markets in the Thailand-Laos border area surrounding the Thai-Lao Friendship Bridge I from January to May 2019. We focused on the prevalent serotypes, antimicrobial susceptibility profiles and the multilocus sequence type (MLST) genotypes of the collected *Salmonella* strains. **Results:** From a total of 370 meat samples collected, 63% were positive for *Salmonella*, with the prevalence of 73%, 60% and 56% from pork, beef and chicken meat samples, respectively. Of all the positive samples, 53 serotypes were identified. Of these, *S. London* accounted for the majority (27%), followed by *S. Corvallis* (14%), and *S. Rissen* (6%). Resistance against tetracycline was found at the highest frequency (50%), followed by ampicillin (35%) and sulfamethoxazole-trimethoprim (28%). MLST revealed no evidence of shared genetic relatedness of *Salmonella* at retail sites across Thailand-Laos border zone. However, a diverse range of *Salmonella* genotypes were spread over the area. Besides, the persistence of the residual pathogen and sharing of the supply route within-country can be inferred. **Conclusions:** Given the high levels of contamination of retail meats, regular disinfecting of all working areas and quality control checking at pre-retail stage must be applied to reduce the transmission of *Salmonella* and other foodborne pathogens to consumers. The findings of this study will make a significant contribution to the current understanding of *Salmonella* epidemiology to enhance food security in the region.
Molecular evidence for cross boundary spread of *Salmonella* spp. in meat sold at retail markets in the middle Mekong basin area

Dethaloun Meunsene\(^1\), Prapas Patchanee\(^2\), Ben Pascoe\(^2,3\), Phacharaporn Tadee\(^4\), Pakpoom Tadee\(^2*)

\(^1\)Graduate Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand

\(^2\)Integrative Research Center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand

\(^3\)The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom

\(^4\)Faculty of Animal Science and Technology, Maejo University, Chiang Mai, 50290, Thailand

Corresponding author: Pakpoom Tadee

Integrative research center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Mae Hia, Muang, Chiang Mai, 50100, THAILAND. Tel: +66 53 948023, Fax: +66 53 948062, E-mail: pakpoom.t@cmu.ac.th
Abstract

Background: The surrounding areas of the middle Mekong basin, particularly along the border line between Thailand and Lao People's Democratic Republic (Lao PDR), are high-risk areas for many livestock-associated foodborne illnesses, especially salmonellosis. This study aimed to determine the prevalence and characteristics of *Salmonella* spp. contamination in pork, beef and chicken meats sold at retail markets in the Thailand-Laos border area surrounding the Thai-Lao Friendship Bridge I from January to May 2019. We focused on the prevalent serotypes, antimicrobial susceptibility profiles and the multilocus sequence type (MLST) genotypes of the collected *Salmonella* strains.

Results: From a total of 370 meat samples collected, 63% were positive for *Salmonella*, with the prevalence of 73%, 60% and 56% from pork, beef and chicken meat samples, respectively. Of all the positive samples, 53 serotypes were identified. Of these, *S.* London accounted for the majority (27%), followed by *S.* Corvallis (14%), and *S.* Rissen (6%). Resistance against tetracycline was found at the highest frequency (50%), followed by ampicillin (35%) and sulfamethoxazole-trimethoprim (28%). MLST revealed no evidence of shared genetic relatedness of *Salmonella* at retail sites among Thailand-Laos border zone. However, a diverse range of *Salmonella* genotypes were spread over the area. Besides, the persistence of the residential pathogen and sharing of the supply route within-country can be inferred.

Conclusions: Given the high levels of contamination of retail meats, regular disinfecting of all working areas and quality control checking at pre-retail stage must be applied to reduce the transmission of *Salmonella* and other foodborne pathogens to consumers. The findings of this
study will make a significant contribution to the current understanding of *Salmonella* epidemiology to enhance food security in the region.

Keywords: *Salmonella*; retail market; serotype; antimicrobial resistant; MLST; Thailand-Laos border; middle Mekong basin

Introduction

Salmonella spp. is a significant causative agent of certain foodborne illnesses in humans and can be found worldwide (Sirichote et al., 2010; Van Boxstael et al., 2012; Basler et al., 2016). Annually, ninety million cases resulting in 150,000 deaths among salmonellosis patients have been recorded (Campioni et al., 2012). Along with the direct effects of *Salmonella* spp. have on the gastrointestinal tract, evidence of drug resistance is also a major public health concern (Foley & Lynne, 2008; Kurtz et al., 2017; Jajere, 2019). This can result in a reduction in the effectiveness of first line empirical treatments and limit treatment choices (Van Boxstael et al., 2012).

Livestock products (farm animal-origin food), especially meats, are an important source of human salmonellosis (Heyndrickx et al., 2002; Mainali et al., 2009; Rostagno & Callaway, 2012). Retail markets have been identified as the most significant point of contact for salmonellosis exposure and transmission among humans (Hauser et al., 2011; Gomes-Neves et al., 2012). Improper management and biosecurity during the production process, such as on farms or in slaughterhouses also contribute to the risk of increased pathogen loads in retail meats. Contamination can occur directly or through contaminated equipment due to improper handling practices or unsuitable storage conditions (Lo Fo Wong et al., 2002).

Increased demand for meat consumption has led to an intensive transformation of the animal production industry (Guardabassi et al., 2008). Good Management Practices (GMP) must be
implemented at all production levels to ensure food safety for consumers. However, these practices cannot be implemented 100% in certain developing regions, such as the middle Mekong basin and the surrounding areas, particularly along the border between Thailand and Lao People's Democratic Republic (Lao PDR). Animal farming practices are being used extensively in traditional free-range and smallholder backyard systems, which often employ the minimum hygienic sanitation systems. Moreover, inadequate practices in slaughterhouses and retail outlets, such as on-floor slaughtering and uncontrolled storage conditions in purchasing areas are not ideal practices. Cultural preferences and a lack of awareness among local people about raw meat consumption, in addition to an absence of reliable and high-quality resources, such as clean water and cooking supplies are also important risk factors to be considered (Wilson, 2007; Conlan et al., 2014; Okello et al., 2017). Taken together, these risk factors increase the opportunity for several foodborne diseases, including salmonellosis (Mughini-Gras et al., 2014; Ferrari et al., 2019).

In 1994, the Thai-Lao Friendship Bridge I linking Nong Khai Province, Thailand and the Vientiane Capital of Lao PDR was officially opened. More than three million people cross the bridge each year (Australian Embassy, Thailand, 2011). These people cross by way of private and public vehicles to engage in trade and exchange various products. Therefore, the chances of pathogen transmissions between borderline communities are likely to be high.

In a study of *Salmonella* prevalence in the meat being sold surrounding the Thailand-Laos border region, Sinwat et al., (2016) reported that the prevalence of pork contamination in border areas of Thailand and Laos PDR was 65%. Moreover, Boonmar et al., (2013) reported that the prevalence of contaminated pork and beef in southern-Laos PDR was 93% and 82%, respectively. Both studies reported a widespread variety of serotype distribution including *S. Typhimurium*, *S.
Derby, S. Anatum and S. Osen. Interestingly, almost all strains of *Salmonella* are currently classified as multidrug-resistant strains. However, based on the data that has been studied, there is an evident lack of reported information on poultry meat, while it is well known that poultry meat is commonly consumed in this area. Additionally, to gain access to in-depth epidemiological information, a study of the pathogen characteristics at the genetic level should be fulfilled to expand upon the scope of epidemiological knowledge of these pathogens.

Multilocus sequence typing (MLST) technique is one of the methods employed in our study. This technique relies on a comparison of the sequences of allele types in a specific group for each set of house-keeping gene and focuses on the genetics in order to assemble data of the sequence type (ST). The resulting findings can be compared with the information of various databases related to the study of the global bacterial dynamic distribution and their genetic evolution (Liu et al., 2011; Patchanee et al., 2017; Zhou et al., 2020).

The purpose of the study was to investigate the prevalence of *Salmonella* in meat sold at retail markets in the middle Mekong Basin area along the border of Thailand and Lao PDR, surrounding the Thai-Lao Friendship Bridge I. We compare strain serotypes, genotypes and their antimicrobial-resistance patterns and identify genetic and phenotypic variation in *Salmonella* strains. Our findings inform regional knowledge gaps in the epidemiology of *Salmonella* and form the basis for appropriate preventive measures to help control the spread of human salmonellosis in the region.

Materials and methods

Sample collection
The sample size of this study was determined using the Win Epi online program (http://www.winepi.net/uk/index.htm). The prevalence rates identified in previous studies of 65% (Sinwat et al., 2016), 73% (Trongjit et al., 2017) and 82% (Boonmar et al., 2013) were chosen as the “expected prevalence” to calculate the sample sizes for pork, chicken and beef, respectively. An accepted error rate of 8.5% and 95% confidence levels were selected for the required feature inputs. For an infinite population, a minimum of 121, 105 and 79 samples of pork, chicken and beef were designated, respectively. However, in order to achieve greater levels of accuracy and reliability, additional samples were carefully chosen.

During the period of January to May 2019, 370 samples (121, 133 and 116 samples of pork, chicken and beef, respectively) were carefully collected from five retail markets in Vientiane Capital, Lao PDR and six retail markets in Nong Khai Province, Thailand. All samples were individually labeled, put into plastic packs and stored in an icebox for laboratory analysis within 24 hr at the Department of Veterinary Medicine, Faculty of Agriculture, National University of Laos, Nabong Campus, Lao PDR.

Salmonella isolation and identification

Isolation and identification of *Salmonella* spp. from meat samples (pork, chicken, beef) were performed following ISO6579: 2002 Amendment 1:2007, Annex D technique. Accordingly, 25 g of samples were enriched with 225 ml of Buffered Peptone Water (BPW; Merck, Germany). The mixing materials were homogenized for 120 sec and incubated at 37°C for 24 hr. An aliquot of 100 µl of the pre-enriched inoculum was transferred to 10 ml of Rappaport-Vassiliadis broth (RV; Oxoid, UK) at 42°C for an incubation period of 24 hr. The likely colonies were then streaked on Xylose-Lysine-Desocholate agar (XLD; Oxoid, UK) and Brilliant-green Phenol Red
Lactose sucrose agar (BPLS; Merck, Germany). After an incubation period of 24 hr at 37°C, the presumptive colonies were then placed on Triple Sugar Iron agar (TSI; Oxoid, England), urease and Motility Indole-Lysine agar (MIL; Merck, Germany) for bio-chemical confirmation. An analysis of the strains indicated a correct bio-chemical reaction as positive for *Salmonella*. Finally, all results were then recorded.

Serotyping and Antimicrobial susceptibility testing

All detected *Salmonella* spp. specimens were serotyped using the serum-agglutination test according to the White-Kauffmann-Le Minor scheme (Popoff et al., 1993), and were also run through antimicrobial susceptibility testing with agar disk diffusion using ten panels of antimicrobial agents. Amoxicillin-clavulanic acid (AMC) 20/10 µg, ampicillin (AMP) 10 µg, chloramphenicol (C) 30 µg, ciprofloxacin (CIP) 5 µg, cefotaxime (CTX) 30 µg, nalidixic acid (NA) 30 µg, norfloxacin (NOR) 10 µg, streptomycin (S) 10 µg, sulfamethoxazole-trimethoprim (SXT) 23.75/1.25 µg and tetracycline (TE) 30 µg (CLSI, 2011) were included. Strains that existed with intermediate resistance were grouped as being susceptible in order to avoid overestimation. Strains that resisted ≥ 3 of the antimicrobial agents were considered multidrug-resistant.

Multilocus sequence typing (MLST)

Randomly selected 38 specimens of *Salmonella* obtained from the most frequently found serotypes were genotyped using the MLST technique. DNA was extracted according to the protocol described by Liu et al., (2011). Seven housekeeping genes, including aroC (chorismate synthase); dnaN (DNA polymerase III beta subunit); hemD (uroporphyrinogenIII cosynthase);
purE (phosphoribosylaminoimidazole carboxylase); sucA (alpha ketoglutarate dehydrogenase); hisD (histidinol dehydrogenase) and thrA (aspartokinase I/homoserine dehydrogenase), were selected for MLST profiling (REF). PCR amplification of all 7 genes was accomplished using the method previously described by Kotetishvili et al., (2002). In brief, the PCR amplification conditions were 94°C for 5 min, followed by 35 amplification cycles, each consisting of sequential incubation at 94°C (45 s), 55°C (45 s), and 72°C (5 min). Subsequently, the products were sent to be sequenced at the Macrogen Service Center, Republic of Korea.

The sequences obtained in each gene (Supplementary file 1 and Table S1) were transformed into allele numbers, and were compiled according to the sequence type (ST) data obtained from the http://enterobase.warwick.ac.uk/species/senterica/allele_st_search database. Finally, all data of the Salmonella strains acquired from this study were analysed. A phylogenetic tree was constructed using Bionumerics® software version 7.6 (Applied Maths, Belgium).

Statistical analysis

Salmonella prevalence with their 95% confidence level were determined by descriptive statistical analysis. The comparison of Salmonella positive proportion among their relevant specifications (location or meat type) were considered using fisher’s exact test. Epi Info™ version 7 completed all analyses. Statistically significant levels were determined at p<0.05.

Results

A total of 370 meat samples were collected between January and May 2019. This included 135 samples from six retail markets in Nong Khai Province, Thailand and a further 235 samples from
five retail markets in Vientiane Capital, Lao PDR. Samples were collected from three different
types of meat, composed of samples from pork \((n=121)\), chicken \((n=133)\) and beef \((n=116)\).
The overall prevalence of *Salmonella* spp. was found to be 62.70\% (232/370; 95\% CI: 57.67-
67.48\%). Prevalence rates were significantly higher in the samples collected from Laos PDR
\((70.21\%; 165/235)\) compared to those collected from the Thai sampling sites \((49.63\%; 67/135)\)
\((p<0.05)\). *Salmonella* spp. prevalence was highest in pork \((72.73\%; 88/121)\) compared to chicken
\((55.64\%; 74/133)\) and beef \((60.34\%; 70/116)\). The higher rate samples recovered from pork was
statistically significant when compared to those recovered from chicken meats \((p<0.05)\), but
there was less confidence in differences in sample recovery from beef \((p=0.05)\). Table 1
demonstrates the distribution details of *Salmonella* spp. positives with 95\% confidence intervals
among the different locations and sample types.

In total, 53 *Salmonella* spp. serotypes were identified by serum-agglutination according to the
White-Kauffmann-Le Minor scheme (Table 2). The most common serotypes were *S. London*
\((26.99\%; 61/232)\), followed by *S. Corvallis* \((13.79\%; 32/232)\), *S. Rissen* \((6.47\%; 15/232)\) and *S.
Weltevreden* \((6.03\%; 14/232)\), respectively. These four serotypes were common in both
countries, with the exception of *S. London* which was only identified twice in the Thai samples.
Stratifying for each meat type, *S. London* was the most common serotype detected from the pork
\((n=34)\) and beef samples \((n=26)\). For the chicken samples, the highest degree of frequency was
found for *S. Corvallis* \((n=27)\). Interestingly, there were just three serotypes, *S. London*, *S. Rissen*,
S. Corvallis and *S. Typhimurium*, that were distributed among all meat types.

All 232 *Salmonella* strains were submitted for antimicrobial susceptibility testing. Consequently,
76 of them \((32.75\%)\) were classified as multidrug resistant strains. Resistance to tetracycline
\((49.57\%; 115/232)\) was found in the highest frequency, followed by ampicillin \((35.34\%; 82/232),\)
and sulfamethoxazole-trimethoprim (28.45%; 66/232), respectively. On the other hand, 94
strains (40.52%) were found to be susceptible to all of the tested antimicrobials. Additionally,
only 3 strains (1.29%) were found to be resistant to cefotaxime, while 5 (2.16%) and 6 (2.59%)
strains were found to be resistant to norfloxacin and ciprofloxacin, respectively. In Laos PDR,
rates of resistance were also highest against tetracycline (57.78%; 95/165), ampicillin (34.55%;
57/165) and sulfamethoxazole-trimethoprim (32.12%; 53/165). In Thailand, the resistant rates
were ranked as follows; ampicillin (37.31%; 25/67), tetracycline (29.85%; 20/67) and
streptomycin (20.90%; 14/67) (Fig. 1). Resistance rates differed between meat sources,
especially in the most effective antimicrobials, for instance almost all strains that were resistant
against norfloxacin or ciprofloxacin were from chicken meat (Fig. 1). Thus related with the
individual data, there were three strains resisted at least seven antimicrobials test (TCH69: AMP /
AMC / CIP / NA / NOR / SXT / TE, TCH44: AMP / AMC / C / CIP / NA / NOR / SXT / TE and
TCH32: AMP / AMC / C / CIP / NA / NOR / S / SXT / TE) (Table S2), all three were isolated
from Nong Khai, Thailand.

Fig. 2 demonstrated the genetic relatedness of *Salmonella* currently being detected at the
Thailand-Laos border area. From the 38 *Salmonella* strains analysed, 35 genetic characters were
found. Many of the strains (*n*=28) could not be assigned to a known ST and 11 of them could not
be grouped in any previously identified ST- clonal complex. One to five variation of
housekeeping genes of those 28 un-identified from known ST were displayed in Table 3. For
example, in the details, strain LPO12 with the closest of ST155 sequence type demonstrated the
variation of *purE* gene to the allelic number 706. Besides, strain LCH50 with the closest of
ST469 demonstrated the variation of *hisD* and *purE* to the allelic number of 985 and 84,
respectively. However, for the 7 known STs (ST64, ST155, ST365, ST469, ST516, ST1541,
ST5706), four of those (ST64, ST516, ST1541, ST5706) were distinct to a single strain. Nonetheless, two strains were grouped in the ST155, ST365 and ST 469. From the displayed in Fig. 2, strains grouped in ST155 were derived from a Lao-Aussi market, one (LCH18; 16 Mar) was chicken meats and the another (LPO42; 8 Apr) was pork. Two strains of ST365 originated from Phonsavang market, one (LCH23; 16 Mar) was chicken and the another (LB58; 20 May) was beef were also identified. Additionally, the strains grouped in ST469 were originated from pork (LPO01; 2 May) and beef (LB29; 16 Mar) samples collected from different markets located in nearby areas.

Discussion

The findings obtained from this study represent scientific information on the burden and intensity of *Salmonella* in livestock meats in a 30 km radius surrounding the Thai-Lao Friendship Bridge I. It is well known that this bridge is the primary place for the expansion of trade that has occurred along the Thailand and Laos PDR border since 1994. Overall, prevalence of *Salmonella* spp. in all sampled meat were found to be 63%. Pork had the highest prevalence (73%), followed by beef (60%) and just over half of the chicken meats (56%) tested were contaminated with *Salmonella*. Contamination of pork was higher than previously observed in a similar study by Sinwat et al., (2016), where 65% (95% CI: 59.26-70.47%) of pork were contaminated. However, for beef samples the degree of prevalence in this study was lower than the results of a study conducted by Boonmar et al., (2013), in which the prevalence was recorded at 82% (95% CI: 58.97-93.81%). No studies have reported on the prevalence of *Salmonella* contamination in chicken meats sold in this region. A study conducted by Trongjit et al., (2017) reported on the degree of prevalence of *Salmonella* infection at the Thai-Cambodia border, which was found to
be 73.43% (95% CI: 66.65-79.42%), which is higher than our observed results. In general, most studies have not demonstrated much difference when reporting numbers, which has been proven by an overlap in the 95% confidence intervals. Variations in the results might depend upon the time period of the sampling along with any existing geographical factors. Nevertheless, high levels of *Salmonella* contamination still persist, even though some intervention has been implemented in some of these areas. *Salmonella* remains a problem in the meat being sold in this region, which has been an important public health concern for the last half decade. The samples collected from meat sold in Laos PDR were statistically and significantly higher than those collected over the border in Thailand (Table 1). Normally, sanitation practices are different at each location. In fact, there is no supermarket in Laos DPR. All fresh food, such as meat, can only be bought from fresh markets and mini-grocery stores. The lack of covering materials, unsuitable storage conditions and inadequate disinfection practices at the purchasing areas during the meat cutting and handling processes can substantially increase the risk of bacterial colonization (Gomes-Neves et al., 2012; Patchanee et al., 2016). In Thailand, supermarkets are the preferred place to purchase meat. One-sixth of the Thai samples collected in our study were obtained from supermarkets. Supermarkets provide stringent regulation of their facilities and implement biosecurity and hygiene policies along with quality control practices at the pre-harvesting and harvesting stages along the supply chain. However, in general, standard protocols for every type of retail outlet (supermarkets, mini-grocery stores and fresh markets) tend to be higher in larger cities (Trongjit et al., 2017).

With a focus on meat type, pork was found to be the most prevalent when compared with the other types of meat. The reason for this may not be clear. It could be due to the high bacterial loads that emerge during previous production stages, which can then lead to instances of
contamination at retail outlets. According to the information obtained from previous studies, *Salmonella* prevalence at pig farms and during pig slaughtering processes was higher than in chicken and beef production (Padungtod & Kaneene, 2006; Trongjit et al., 2017; Phongaran et al., 2019). Another possible explanation for this is that pork is the most common type of meat consumed in this region (Napasirth & Napasirth, 2018). The amount of dressing required, along with any other forms of manipulation before meat is sold, would likely increase the opportunity for contamination or re-contamination by product exposure at the final.

Based on the findings of previous studies, *S.* Typhimurium and *S.* Rissen are the majority serotypes identified in pork (Patchanee et al., 2016; Sinwat et al., 2016). For chicken meat, *S.* Corvallis and *S.* Enteritidis are known to be the dominant serotypes (Trongjit et al., 2017). Additionally, *S.* Stanley and *S.* Typhimurium have been reported as the most commonly recorded serotypes in beef (Boonmar et al., 2013). At the moment, these serotypes have not been universally matched to each meat type, but low frequencies were recorded in some instances. However, *S.* Corvallis is still noted as being the dominant serotype in chicken meat (Table 2).

Consequently, new typical sero-characteristics for this region should be set for pork and beef. As the data indicates, *S.* London is presently the most common serotype. Furthermore, several serotypes have been detected, such as *S.* Altona, *S.* Cerro, *S.* Elisabethville, *S.* Itami, *S.* Mikamasima, *S.* Ruzizi, etc. They have been reported for the very first time about the isolation of *Salmonella* in the region. Time factor and sample picking and the cross-contamination that occurs from other sources, are notable factors. Furthermore, even though the same serotype might be presented at several meat origins, it cannot be concluded that two or three meat types would represent a sharing pool for *Salmonella* identified from similar sources (Sinwat et al., 2016). All of which would need to be proven.
298 *Salmonella* specimens isolated in this study display a relatively high frequency of resistance against tetracycline and ampicillin *(Fig. 1)*, which is consistent with the findings of previous investigations in the region (Padungtod & Kaneene, 2006; Pulsrikarn et al., 2012; Boonmar et al., 2013). From the past until now, the antimicrobials have been widely used for treatment and prophylaxis in livestock. However, excessive or inappropriate use is considered to be a critical factor that has led to the current situation of resistance (Jajere, 2019). On the contrary, low resistance rates have been recorded for cefotaxime, norfloxacin and ciprofloxacin. Instances of resistance to these antimicrobials are particularly important as these are the drugs of choice for treatment of human salmonellosis. Specifically, quinolones (norfloxacin and ciprofloxacin) are now often used as the first line of treatment (Kurtz et al., 2017). All quinolone-resistant strains isolated in these study areas originated from chicken meat collected in Thailand, and all were found to be resistant to 7-9 of the tested antimicrobials. Selective pressures such as those associated with antimicrobial use, unsuitable temperatures or pH levels, could be considered sub-lethal stress factors during the short production cycle in broiler farms. Additionally, the characterizing bacterial community composition in chicken’s gut should be taken to determine the mechanisms of action on the resistome (Shang et al., 2018; Yang et al., 2019).

The strains collected in this study were genetically diverse and five-sixths could not be assigned to a previously described ST. Regional diversity following microevolution or mutation is a possible explanation for the finding (Harbottle et al., 2006; Liu et al., 2011). Variation in 3-5 of the housekeeping genes used to determine ST was also observed, meaning that those strains could not be assigned to any clonal complex either. Large scale, shared genetic relatedness of *Salmonella* strains collected along the Thai-Lao border was not observed *(Fig. 2)*. The finding infers that the transboundary food supply chain from locations ahead of the marketplace (farm
and/or slaughterhouse) is not involved in contamination. A larger scale analysis, including all strains previously collected in the region and deposited in MLST databases would help identify additional shared reservoirs of contamination that may have been missed in our study. *Salmonella* genotypes collected from a single market also demonstrated high levels of diversity, nine and six *Salmonella* genotypes were isolated from various meat types in markets from Phonsavang and Chenganavang, respectively. This suggests that more than one infection source can exist at a given location. Contamination can occur by itself in the purchasing area or as a result of inadequate processing when the meat product may have already been contaminated. Unhygienic practices at previous production sites, such as on farms and at slaughterhouses, or at transportation hubs may increase transmission (Heyndrickx et al., 2002; Campioni et al., 2012). Clones of sequence types ST155 and ST365 were detected on different sampling dates from the same marketplaces, indicative of persistent or residential *Salmonella* contamination. Additionally, two strains of ST469 were recovered from different markets in nearby areas, hinting at potential shared supply routes and their role in dissemination of *Salmonella*.

Conclusions

As has been demonstrated, *Salmonella*’s presence in meat sold in the middle Mekong basin area was relatively high in terms of prevalence. Standard hygienic protocols are known to be maintained at a higher level in administrative areas. The findings from the molecular MLST indicate that extensive quality control checking at pre-retail stages should be implemented. Furthermore, regular disinfecting of all equipment, as well as at working areas, must be applied. Future efforts in strengthening food safety education and awareness programs would help
authorities to establish strategies that could potentially reduce the transmission of *Salmonella* and other foodborne pathogens to downstream consumers.

Acknowledgements

This study was financially supported by the Faculty of Veterinary Medicine, Chiang Mai University (Project ID: CMU-MIS R000017502). The authors would like to thank the Bacteriology Section, Veterinary Research and Development Center (Upper Northern Region), Lampang, Thailand and the Vientiane Capital Agriculture and Forestry Department, Vientiane, Laos PDR for their valuable contributions. We would like to thank the Department of Veterinary Medicine, Faculty of Agriculture, National University of Laos for allowing us to use their laboratory facilities for the purposes of diagnosis. Finally, we would like to thank the people who operate the http://enterobase.warwick.ac.uk/species/senterica/allele_st_search website which made our regional analysis possible.

Disclosure Statement

No competing financial interests exist.
Figure Legends

Figure 1: Rate of resistance (%) to selected antimicrobials in *Salmonella* isolated from various meat products in the Thai-Lao border area.

Antibiotic abbreviations: amoxicillin-clavulanic acid (AMC); ampicillin (AMP); chloramphenicol (C); ciprofloxacin (CIP); cefotaxime (CTX); nalidixic acid (NA); norfloxacin (NOR); sulfamethoxazole-Trimethoprim (SXT); streptomycin (S); tetracycline (TE).

Figure 2: Dendrogram generated using UPGMA algorithms based on MLST profiles, including phenotypic characterization and the epidemiological meta data of *Salmonella* isolated in the Thai-Lao border area.
References

Harbottle H, White DG, McDermott PF, Walker RD, Zhao S. 2006. Comparison of multilocus sequence typing, pulsed-field gel electrophoresis, and antimicrobial susceptibility typing

University of Warwick. EnteroBase: *Salmonella enterica* MLST Database. Available at

University of Zaragoza. Win Epi: Sample size: Estimate Percentage. Available at

Figure 1

Rate of resistance (%) to selected antimicrobials in *Salmonella* isolated from various meat products in the Thai-Lao border area

Antibiotic abbreviations: amoxicillin-clavulanic acid (AMC); ampicillin (AMP); chloramphenicol (C); ciprofloxacin (CIP); cefotaxime (CTX); nalidixic acid (NA); norfloxacin (NOR); sulfamethoxazole-Trimethoprim (SXT); streptomycin (S); tetracycline (TE).
Figure 2

Dendrogram generated using UPGMA algorithms based on MLST profiles with their phenotypic characterizations and the epidemiological data of *Salmonella* circulating in the Thai-Laos border area.
Table 1 (on next page)

Distribution of prevalence and a 95% confidence interval of *Salmonella* isolated from various meat types in the Thai-Lao border area
Table 1 Distribution of prevalence and a 95% confidence interval of *Salmonella* isolated from various meat types in the Thai-Lao border area.

<table>
<thead>
<tr>
<th>Type</th>
<th>Location</th>
<th>Thailand</th>
<th>Laos PDR</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Pork</td>
<td></td>
<td>18/28</td>
<td>70/93</td>
<td>88/121^A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(64.29; 44.07-81.36%)</td>
<td>(75.27; 65.24-83.63%)</td>
<td>(72.73; 63.88-80.43%)</td>
</tr>
<tr>
<td>Chicken</td>
<td></td>
<td>31/66</td>
<td>43/67</td>
<td>74/133^B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(46.97; 34.56-59.66%)</td>
<td>(64.18; 51.53-75.53%)</td>
<td>(55.64; 46.78-64.25%)</td>
</tr>
<tr>
<td>Beef</td>
<td></td>
<td>18/41</td>
<td>52/75</td>
<td>70/116^AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(43.90; 28.47-60.25%)</td>
<td>(69.33; 57.62-79.47%)</td>
<td>(60.34; 50.84-69.31%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>67/135^a</td>
<td>165/235^b</td>
<td>232/370</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(49.63; 40.92-58.36%)</td>
<td>(70.21; 63.92-75.98%)</td>
<td>(62.70; 57.67-67.48%)</td>
</tr>
</tbody>
</table>

Use of fisher’s exact analysis and difference of superscript (A, B) indicate significant differences (p<0.05) of prevalence detected among meat types. Difference of superscript (a, b) indicates significant differences (p<0.05) of prevalence detected among all locations.
Table 2 (on next page)

Sero-distribution of *Salmonella* isolated from various meat types at the Thai-Lao border area.
Table 2 Sero-distribution of *Salmonella* isolated from various meat types at the Thai-Lao border area.

<table>
<thead>
<tr>
<th>Salmonella serotype</th>
<th>Nong Khai, Thailand</th>
<th>Vientiane, Laos PDR</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pork</td>
<td>Chicken</td>
<td>Beef</td>
</tr>
<tr>
<td>S. Agona</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Albany</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. Altona</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Amsterdam</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. Anatum</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S. Bareilly</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Bovismorbificans</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Bringham</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Brunei</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>S. Cerro</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Corvallis</td>
<td>8</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>S. Duesseldorf</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Eastbourne</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Elisabethville</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Enteritidis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Farehan</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Farsta</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Fulda</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>S. Gabon</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Give</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>S. Goma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Havana</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Hvittingfoss</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>S. Itami</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Code</td>
<td>Frequency</td>
<td>Count</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>S. Jerusalem</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Kapemba</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Kedougou</td>
<td>8</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>S. Kikoma</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Kortrijk</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Lexington</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Livingstone</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Lomita</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. London</td>
<td>2</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>S. Mbandaka</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>S. Meleagris</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>S. Mikamasima</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Monschui</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>S. Montevideo</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Muenster</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>S. Newport</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>S. Ordonez</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>S. Planckendael</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Regent</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Rissen</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>S. Ruzizi</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Saintpaul</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S. Sangera</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S. Stanley</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>S. Stanleyville</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Typhimurium</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>S. Uganda</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Wagenia</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. Weltevreden</td>
<td>6</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>31</td>
<td>18</td>
</tr>
</tbody>
</table>
Table 3 (on next page)

Variation of housekeeping genes loci of un-identified Sequence Type (ST) *Salmonella* strains circulating in the Thai-Lao border area.
Table 3 Variation of housekeeping genes loci of unidentified Sequence Type (ST) *Salmonella* strains circulating in the Thai-Lao border area.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Most related ST<sup>a</sup></th>
<th>aroC</th>
<th>dnaN</th>
<th>hemD</th>
<th>hisD</th>
<th>purE</th>
<th>sucA</th>
<th>thrA</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPO12</td>
<td>ST155</td>
<td>10</td>
<td>60</td>
<td>58</td>
<td>66</td>
<td>6→706</td>
<td>65</td>
<td>16</td>
</tr>
<tr>
<td>LPO58</td>
<td>ST29</td>
<td>16</td>
<td>16</td>
<td>20</td>
<td>18</td>
<td>8</td>
<td>12</td>
<td>18→930</td>
</tr>
<tr>
<td>LPO71</td>
<td>ST155</td>
<td>10</td>
<td>60</td>
<td>58</td>
<td>66</td>
<td>6→873</td>
<td>65</td>
<td>16</td>
</tr>
<tr>
<td>LPO76</td>
<td>ST7498</td>
<td>10</td>
<td>7</td>
<td>12</td>
<td>9</td>
<td>1176</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LPO86</td>
<td>ST1541</td>
<td>197</td>
<td>187</td>
<td>10</td>
<td>234</td>
<td>8→6</td>
<td>65</td>
<td>22</td>
</tr>
<tr>
<td>LCH26</td>
<td>ST29</td>
<td>16</td>
<td>16</td>
<td>20</td>
<td>18</td>
<td>8</td>
<td>12</td>
<td>18→652</td>
</tr>
<tr>
<td>LCH50</td>
<td>ST469</td>
<td>92</td>
<td>107</td>
<td>79</td>
<td>156→985</td>
<td>64→84</td>
<td>151</td>
<td>87</td>
</tr>
<tr>
<td>LB03</td>
<td>ST155</td>
<td>10</td>
<td>60</td>
<td>58→98</td>
<td>66</td>
<td>6</td>
<td>65</td>
<td>16</td>
</tr>
<tr>
<td>LB11</td>
<td>ST29</td>
<td>16</td>
<td>16</td>
<td>20→10</td>
<td>18</td>
<td>8</td>
<td>12</td>
<td>18→140</td>
</tr>
<tr>
<td>LB13</td>
<td>ST1799</td>
<td>202→635</td>
<td>4→13</td>
<td>10</td>
<td>33→971</td>
<td>90</td>
<td>6</td>
<td>275→839</td>
</tr>
<tr>
<td>LB30</td>
<td>ST155</td>
<td>10</td>
<td>60</td>
<td>58</td>
<td>66</td>
<td>6</td>
<td>65</td>
<td>16→1241</td>
</tr>
<tr>
<td>LB31</td>
<td>ST5706</td>
<td>130</td>
<td>97</td>
<td>25</td>
<td>125→1370</td>
<td>84</td>
<td>9</td>
<td>970</td>
</tr>
<tr>
<td>LB46</td>
<td>ST446</td>
<td>15</td>
<td>126</td>
<td>101</td>
<td>88</td>
<td>8→880</td>
<td>19</td>
<td>18-2</td>
</tr>
<tr>
<td>LB49</td>
<td>ST155</td>
<td>10</td>
<td>60</td>
<td>58</td>
<td>66</td>
<td>6</td>
<td>65</td>
<td>16→604</td>
</tr>
<tr>
<td>LB60</td>
<td>ST64</td>
<td>10</td>
<td>14→491</td>
<td>15</td>
<td>31</td>
<td>25→235</td>
<td>20</td>
<td>33→631</td>
</tr>
<tr>
<td>LB68</td>
<td>ST365</td>
<td>130</td>
<td>97</td>
<td>25</td>
<td>125</td>
<td>84→309</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>TPO04</td>
<td>ST469</td>
<td>92</td>
<td>107</td>
<td>79</td>
<td>156</td>
<td>64→720</td>
<td>151</td>
<td>87</td>
</tr>
<tr>
<td>TPO07</td>
<td>ST34</td>
<td>10</td>
<td>19</td>
<td>12→758</td>
<td>9→578</td>
<td>5→620</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>TPO13</td>
<td>ST29</td>
<td>16</td>
<td>16</td>
<td>20</td>
<td>18</td>
<td>8→996</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>TPO17</td>
<td>ST3157</td>
<td>636</td>
<td>4→699</td>
<td>10</td>
<td>33</td>
<td>90→235</td>
<td>6→754</td>
<td>275</td>
</tr>
<tr>
<td>TPO23</td>
<td>ST469</td>
<td>92</td>
<td>107</td>
<td>79</td>
<td>156</td>
<td>64</td>
<td>151</td>
<td>87→631</td>
</tr>
<tr>
<td>TPO24</td>
<td>ST616</td>
<td>84</td>
<td>11→618</td>
<td>16</td>
<td>42</td>
<td>40</td>
<td>71</td>
<td>4→254</td>
</tr>
<tr>
<td>TCH02</td>
<td>ST197</td>
<td>197</td>
<td>187</td>
<td>10</td>
<td>234</td>
<td>8→898</td>
<td>844</td>
<td>22→723</td>
</tr>
<tr>
<td>TCH11</td>
<td>ST1541</td>
<td>197</td>
<td>187</td>
<td>10</td>
<td>234</td>
<td>8→996</td>
<td>65</td>
<td>22→844</td>
</tr>
<tr>
<td>TB04</td>
<td>ST29</td>
<td>16</td>
<td>16</td>
<td>20</td>
<td>18</td>
<td>8→996</td>
<td>12→487</td>
<td>18</td>
</tr>
<tr>
<td>TB12</td>
<td>ST283</td>
<td>101→30</td>
<td>97→760</td>
<td>25</td>
<td>86→1011</td>
<td>101→309</td>
<td>19→327</td>
<td>101</td>
</tr>
<tr>
<td>TB20</td>
<td>ST5706</td>
<td>130</td>
<td>97→955</td>
<td>25</td>
<td>125</td>
<td>84→309</td>
<td>9→327</td>
<td>970</td>
</tr>
<tr>
<td>TB21</td>
<td>ST1541</td>
<td>197</td>
<td>187</td>
<td>10</td>
<td>234→439</td>
<td>8→996</td>
<td>65</td>
<td>22</td>
</tr>
</tbody>
</table>
a The most genetic relatedness Sequence Type (ST) with the untypable strain

b Variation of the housekeeping genes allelic number from known ST to untypable ST