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ABSTRACT
Background: Understanding how biological communities change over time is of
increasing importance as Earth moves into the Anthropocene. A wide variety of
methods are used for multivariate community analysis and are variously applied to
research that aims to characterise temporal dynamics in community composition.
Understanding these methods and how they are applied is useful for determining
best practice in community ecology.
Methodology: We reviewed the ecological literature from 1990 to 2018 that used
multivariate methods to address questions of temporal community dynamics.
For each paper that fulfilled our search criteria, we recorded the types of multivariate
analysis used to characterise temporal community dynamics in addition to the
research aim, habitat type, location, taxon and the experimental design.
Results:Most studies had relatively few temporal replicates; the median number was
seven time points. Nearly 70% of studies applied more than one analysis method;
descriptive methods such as bar graphs and ordination were the most commonly
applied methods. Surprisingly, the types of analyses used were only related to the
number of temporal replicates, but not to research aim or any other aspects of
experimental design such as taxon, or habitat or year of study.
Conclusions: This review reveals that most studies interested in understanding
community dynamics use relatively short time series meaning that several, more
sophisticated, temporal analyses are not widely applicable. However, newer methods
using multivariate dissimilarities are growing in popularity and many can be applied
to time series of any length.

Subjects Biodiversity, Ecology
Keywords Biological communities, Multivariate analysis, Spatiotemporal change, Community
ecology, Community dynamics, Time series, Descriptive analysis, Quantitative analysis

INTRODUCTION
A hallmark of the Anthropocene Epoch is the increasing pace and variance of
environmental change (Lewis & Maslin, 2015; Dornelas et al., 2019; Eriksson & Hillebrand,
2019). Thus, more than ever, there is need for ecologists to monitor, quantify, analyse and
predict temporal changes in the structure of biological communities as a function of
ongoing changes in climate, land use, and other biotic and abiotic drivers. Temporal
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datasets from repeated measures studies such as long-term ecological research network
sites (Soltwedel et al., 2016), marine sea catch (Royer & Fromentin, 2006) and microbial
soil datasets (Storkey et al., 2016) are becoming longer and more commonly used
for understanding community dynamics. Combined with significant increases in
computational speed and capacity over this time, the diversity of methods available to
interrogate these data has also increased. Many analysis methods used to date are poorly
suited to the analysis of long and intensive time series data, yet a suite of recent analysis
methodologies have significant potential to provide valuable new insights into key
trends that might otherwise be ignored or misinterpreted from the analysis of long-term
temporal datasets (e.g., Tonkin et al., 2017; Avolio et al., 2019; De Cáceres et al., 2019;
Legendre, 2019). Given these potential shifts in available analysis methods, datasets, and
computing capabilities associated with the study of temporal community dynamics,
we were interested in exploring if and how research in this field has changed in response to
these putative developments over the past three decades.

Simple community measurements, such as the number of taxa (‘species richness’),
are frequently used to monitor and predict change in biodiversity; these measures,
however, offer no insight into more complex community changes, such as in the relative
commonness and rarity of the species present (Hillebrand et al., 2018; Blowes et al.,
2019). For example, a single invasive species could have devastating effects on relative
abundances of all other taxa, but little impact on univariate measures such as biomass or
species richness (Bradley et al., 2019). Further, there are often nonlinear and/or lag
effects of disturbances or human-caused changes on communities that can only be
fully disentangled by considering a more comprehensive range of community measures
through time (Magnuson, 1990, Lindenmayer et al., 2012). Thus, for our review we
focus specifically on studies that have characterised changes in multivariate community
composition: the shifts in taxonomic identities, and potentially relative abundances over
time. Most often these data are collated as a site (sample) by species (taxon) matrix.

Knowledge of the types of multivariate analyses being applied in the temporal
community dynamics literature is crucial because this is a constantly evolving field at
the challenging interface of biology, statistics and bioinformatics (Buckley et al., 2021).
A first step towards choosing effective methods to apply to a given dataset is an awareness
of how available methods are currently being applied across different types of temporal
community datasets, collected to address particular research questions, such as testing for
seasonal dynamics (Tammert et al., 2015) or climate impacts (Magalhaes et al., 2007),
often using a variety of data types (e.g., the relative abundance of bacterial DNA sequences
(Buscardo et al., 2018)), or the number of functional groups of fishes (Wilson et al., 2008).
Breaking down discipline barriers by using comparable analysis methods on different
kinds of datasets will advance our understanding of shifts in biological communities
globally (e.g., Shackelford et al., 2017; Collins et al., 2018) and assist in the choice of
analysis method, which is often complicated for both biological and statistical reasons.

In this paper, we take a cross-disciplinary approach to review empirical studies
published up until the start of 2019 that have conducted analyses of multivariate temporal
community datasets to gain insight into how researchers have applied analysis methods
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over the past several decades. We summarise trends in the use of multivariate methods to
analyse compositional community temporal dynamics and provide a summary of the
available methods. Specifically, we asked: (1) have different taxa, habitat types or
spatiotemporal scales been investigated more or less comprehensively over the past
three decades; (2) which analysis methods are applied most often, and has this changed
over time; (3) does the level of temporal replication affect the analyses applied; and
(4) are analyses applied differentially across research questions? The answers to these
questions will assist us to identify both the methods used in temporal community analysis
and gaps in our understanding of community change using data collected from diverse
combinations of spatiotemporal scales, taxa and habitats.

SURVEY METHODOLOGY
We examined the literature for studies investigating changes in ecological communities
over time. Specifically, we searched the ISI Web of Science Core Collection for articles
published until 31 December 2018 using the following search statement: (“temporal”
AND “composition�” AND “communit�” AND (“community dynamic�” OR
“temporal dynamic�” OR “temporal community varia�” OR “community change” OR
“compositional change”)). We refined this search to include only document types listed as
‘articles’ and published in ‘English’. This search yielded 820 articles for review. Of these,
we excluded 257 papers that lacked community data (i.e. those that included fewer
than three taxa), had no temporal replication or pooled all temporal data, used only
artificial communities or simulated datasets, or used space-for-time substitution
(e.g., using chronosequences). Although we constrained the search to the end of 2018,
we did not constrain the search window for the beginning date. However, our search terms
only returned papers after 1990, reflecting that the specific terms we used were not part
of the compositional change literature prior to the 1990s. We also note that this also
excluded a great deal of the literature on ecological succession, which uses more specific
terminology.

We extracted and collated key attributes relating to each study in the remaining 539
papers from the ISI database (e.g., publication year, number of citations). Specific study
attributes were determined from the body text of each manuscript, including information
on (i) habitat type (e.g., estuarine); (ii) continent (e.g., South America); (iii) taxonomic
identity (e.g., vertebrate); (iv) manipulation (e.g., observational study, experimental
manipulation); (v) spatial extent (e.g., local, global); (vi) temporal grain and extent
(e.g., minutes, months); and (vii) the key perceived research aim (e.g., exploration of yearly
dynamics). We categorised organisms being studied into the following taxonomic groups:
plants (Kingdom Plantae); vertebrates (Phylum Chordata); invertebrates (Phyla Annelida,
Arthropoda, Cnidaria, Ctenophora, Echinodermata, Mollusca, Platyhelminthes, or
Porifera); microeukaryotes (algae and Kingdoms Fungi and Protista); prokaryotes
(Domains Bacteria and Archaea); and viruses (non-cellular pathogenic organisms). Spatial
extent was determined relative to the dispersal ability of the taxa involved, e.g., a ‘local’
study would be across a larger area for birds than for soil invertebrates. The categories were
(1) small scale: micro, point, and local scales (within-populations) and (2) large scale:
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regional (among sites), continental and global scales. Research aims were classified broadly
using statements in the abstract and introduction regarding the authors intentions.
If hypotheses were tested, these were used to classify the study aims as relating to
environmental interactions, taxon interactions or spatiotemporal variation at different
scales.

We recorded the types of multivariate analysis used in each study, that is, analyses that
use the taxon-sample matrix as an input (Table 1). The search criteria resulted in papers
that were based on a wide variety of data types including presence-absence and relative
abundances; however, we found that data type did not influence the type of analysis
performed and so is not discussed further. Similar analysis methods were grouped
together, for example, ‘Descriptive Methods’ were all those that showed simple, visual
presentation of data such as Venn diagrams showing overlap in taxonomic composition
as well as tables and graphs of relative abundances over time. Two methods were
included in this review because they analysed aggregate community data, but were not
technically multivariate, i.e., using the taxon-sample matrix as the input: temporal stability
(a.k.a. coefficient of variation) and multiplicative change. Multi-taxon papers were
analysed separately as independent data points if the taxa were sampled and analysed
independently. The full list of papers reviewed and collated review data are provided in the
Data S1.

RESULTS
Our search identified 521 research papers investigating multivariate community dynamics
from 1990 to 2018 and a total of 1,259 analyses. Few publications (22 papers; 4%)
contained more than one independent dataset; those instances were treated as multiple
studies that were analysed as separate data points (increasing our total sample size n to
548). The majority of studies (68%) were conducted within North America and Europe
(Fig. 1). The most commonly studied taxon was prokaryotes (28%), followed by plants
(19%), invertebrates (17%), microeukaryotes (16%), vertebrates (12%) and viruses (1%);
studies considering multiple taxa, such as marine microeukaryotes and invertebrates,
comprised 7% of studies (Fig. 1). Studies in the southern hemisphere were more likely to be
focussed on the analysis of plant or invertebrate data, whilst analyses of prokaryote
community data were more common in the northern hemisphere (Fig. 1).

Studies spanned a broad range of habitat types, taxa, spatial and temporal scales.
A similar number of studies were conducted at small spatial extents (at micro, point
sample and local scales) compared to large spatial extents (regional, continental or global).
Across the 16 habitat categories identified from the articles, and the most frequently-
sampled (69%) habitats were freshwater (141 studies), marine (106 studies), forest
(72 studies) and grassland (69 studies) habitats. At small spatial extents, there were more
studies in forest, grassland, freshwater, estuarine, intertidal and artificial habitats (Fig. 2).

Across all communities, the most common temporal extent (i.e., the time between
the collection of the first and last samples) of individual studies was years (46% of studies),
and only a minority of studies, predominantly on plant and vertebrate communities
extended over a period of one decade or longer (Fig. 3). Smaller organisms were often
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Table 1 Brief description of methods for the temporal analysis of multivariate community data encountered in this review, the number of uses
out of a total 1,261 analyses recorded, and the key references illustrating and/or explaining each method or set of method. Note that dis-
similarity refers to pairwise similarity or dissimilarity measures calculated between pairs of samples, such as Euclidean distance or Bray-Curtis
dissimilarity (for a full explanation and summary of these methods, see Legendre & Legendre, 2012).

Analysis method
or set of methods

Number
of uses

Description Key references

Descriptive
methods

425 Simple, mostly visual, representations of compositional
change such as bar graphs, line graphs, heat maps, and
tables showing change in relative abundances. This set of
methods also includes Venn diagrams and simple lists of
species showing comparisons of composition from
samples taken at different times.

Vallès et al. (2014), O’Sullivan et al. (2015), Pereira et al.
(2017)

Ordination 315 Ordination is a set of dissimilarity-based methods that
summarise multivariate community data by optimising
relationships between high-dimensional samples and
taxa in low-dimensional space to detect the dominant
ecological gradients in communities. When samples are
taken at different times, these can be compared by
labelling points by time in various ways, e.g., trajectories,
symbols, envelopes.

Legendre & Legendre (2012), Anderson & Willis (2003),
Day & Buckley (2013), Auber et al. (2017), Palmer
(2000)

Raw dissimilarity 257 Raw dissimilarity values are used in a wide variety of
methods from simple, e.g., mean dissimilarity values for
temporal data subsets used in subsequent graphs,
analyses or maps, to more complex methods that
decompose beta diversity values into components
representing the degree of nestedness and turnover
among temporal samples. Raw dissimilarity values can be
calculated in two main ways: (1) between temporal
samples as a measure of compositional change and (2)
between spatial samples at different times, which are then
averaged and subsequently compared. Both approaches
are included within this group of methods. Note that
ordination, clustering, and time-lag analyses are also
based on dissimilarity values.

Anderson et al. (2011), Bashan et al. (2016), Collins
(1992), Collins (1992), Barros et al. (2014), Baselga &
Orme (2012), Legendre & De Cáceres (2013), Lamy et al.
(2015)

Time-lag analysis 113 Time-lag analyses involve relating the amount of
compositional change to the amount of change in time
across increasing temporal distances, called ‘lags’. There
are two ways of assessing the time-lag effect on
community dissimilarity: graphically (‘time-decay curve’)
and statistically (time-lag regression analysis).

Collins & Xia (2015), Kampichler et al. (2012), Lightfoot
et al. (2012), Dimitriu et al. (2013)

Cluster analysis 82 Cluster analysis is a catch-all term applied to
dissimilarity-based methods that either group samples
together (agglomerative methods) or split all samples into
sub-groups (divisive methods); the clustering is based on
the dissimiliarities between groups of samples (Legendre
& Legendre, 2012). There are two approaches for using
cluster analysis to assess community dynamics: (1)
detecting transitions of sites from one cluster to another
over time, and (2) comparison of compositional
differences among clusters of repeated observations.
In the first approach, a separate cluster analysis is
computed for each temporal sample of community data.
In the second approach, all samples taken at different
times are included in a single cluster analysis.

Day & Buckley (2013), Araujo et al. (2008)

(Continued)
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Table 1 (continued)

Analysis method
or set of methods

Number
of uses

Description Key references

Turnover rates 28 The degree of temporal variation in community
composition can be assessed by calculating the turnover
rate of the community (a.k.a. ‘temporal turnover’ or
‘species turnover’), which is a measure of the rate of
change in taxonomic composition for a ‘site’ over time.
Turnover rates are calculated in a variety of ways using
combinations of colonisation, immigration, extinction,
mortality, recruitment, and survival, and can be as simple
as the percent change in species composition between
time points.

Diamond (1969), Aguirre et al. (2003)

Network analysis 13 Ecological network analysis methods recognise that an
ecological community is a complex biological system
comprised of interconnected units whose associations
can be modelled mathematically using constructs such as
vertices (representing taxa) and edges, which are the
connections between the vertices (representing ecological
interactions). In the context of investigating community
dynamics, patterns of species’ associations and
community memberships are most typically visualised as
a topological network diagram created from taxon
abundance data collected at multiple time points. From
the network topology, a variety of statistics can be
calculated that measure variability in community
composition and interactions at particular times, which
can then be compared.

Blonder et al. (2012), Newman (2010)

Temporal stability
(a.k.a. coefficient
of variation)

9 The coefficient of variation (CV) is used to measure
temporal stability of the abundance or biomass of an
individual taxon, or group of taxa, across all times (not
space). The CV is the ratio of the standard deviation to
the mean, and often is multiplied by 100 to obtain a
percentage. The mean of the CV values for all taxa (e.g.,
abundance or biomass) is used as an aggregate measure
of temporal stability for a whole community; smaller
values imply greater stability. Such values are often
presented in tables as a measure of variation or are
sometimes used as a response variable against other
variables of interest.

Grossman, Dowd & Crawford (1990), Brown & Lawson
(2010), Hector et al. (2010), Doxa et al. (2012)

Machine learning
methods

8 Machine learning is branch of computer science that deals
with the development of learning algorithms that are
used to explore large, multivariate datasets, and has the
primary aim of generating accurate, predictive models
(Carbonell, Michalski & Mitchell, 1983). These methods
are very flexible and can take multivariate input datasets
with large numbers of predictor variables, including
space and time, allowing simultaneous investigation of
spatial and temporal community dynamics.

Vallès et al. (2014), Sheaves, Johnston & Connolly (2010),
De’Ath (2007)
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Table 1 (continued)

Analysis method
or set of methods

Number
of uses

Description Key references

Moran
Eigenvector
Maps (MEMs)

4 Analyses using Moran Eigenvector Maps (also referred to
as principal coordinates of neighbour matrices; PCNM)
result in a matrix of uncorrelated temporal variables that
characterize scales of temporal variation in composition
that can be used in another multivariate analysis such as
an ordination, e.g., distance-based redundancy analysis.
If the ordination is paired with variance partitioning, a
Venn diagram showing the amount of variance explained
by eigenvectors representing different scales of temporal
variation in composition can be generated.

Legendre & Gauthier (2014)

Synchrony 1 Synchrony is calculated as a single value representing the
degree to which taxa are changing in a similar way over
time. It is generated for a given sample by taxon matrix
across a set of times. It can be compared for different time
windows or different subsets of samples, e.g.,
experimental treatments.

Loreau & De Mazancourt (2008), Gouhier & Guichard
(2014)

Nestedness
analysis

1 Nestedness analysis (sensu Patterson & Atmar, 1986) is
usually applied to spatial data and the analysis can be
repeated for different time points; however, it can be
applied to samples taken across times to look at whether
sites are becoming more or less nested over time.
For instance, if younger sites were nested within older
sites, this may indicate that sites were becoming more
homogeneous over time.

Collins et al. (2017)

Multivariate
regression
modelling

1 There are a range of regression approaches that
simultaneously model individual species, such as
‘multispecies N mixture models’ and ‘joint species
distribution models’. These methods can be used to
model explicit, quantitative hypotheses of community
change, with a focus on interactions among taxa. Some
methods allow for useful additions, such as accounting
for uncertainty in the detection of taxa. However, due to
their complexity and high computational requirements,
most of these approaches have yet to be implemented for
datasets with large numbers of species. Multivariate
regression models quantify the relative effects of species
(or species groups) interactions, environmental
covariates, spatial structure, and observation error on
relative abundances through time.

Hampton et al. (2013), Dorazio, Connor & Askins (2015),
Ovaskainen et al. (2017a)

Multiplicative
change

1 The change in percent cover of a taxon, or group of taxa, at
a single site can be used to obtain a ‘growth rate’ using a
linear regression equation. This rate of change can then
be used in a regression or ANOVA to assess predictors of
change for each taxon or group (‘multiplicative change’).
For example, different sites or sets of sites, can be
compared by their relative change in the percent cover of
different functional groups, as long as communities
consist of taxa with similar ecology and life-histories, e.g.,
grassland plant communities in different moisture
regimes.

Debinski et al. (2010), Collins & Xia, 2015

(Continued)
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Table 1 (continued)

Analysis method
or set of methods

Number
of uses

Description Key references

Compositional
pivot days

1 Compositional pivot days is a dissimilarity-based method
developed by Lellouch et al. (2014). It is appropriate for
situations where we want to test for the occurrence of
rapid changes in taxonomic composition across one
point in time, such as the application of an experimental
treatment. It works by comparing pairwise distance
values for pairs of temporal observations taken at the
same sample location to identify the time points where
rapid shifts in composition occurred. The method
generates a list of time points (‘pivot days’) at which
significant shifts in composition have occurred.

Lellouch et al. (2014)

Figure 1 Number of studies identified by our search criteria from each continent. Numbers of
studies were: Global (n = 7), Oceanic (n = 5), Africa (n = 23), Antarctica (n = 6), Asia (n = 60),
Australia (n = 18), Europe (n= 196), North America (n = 186), Oceania (n = 8) and South
America (n = 53). Darker colours indicate more studies have been conducted within those continents,
including Oceania. Pie charts show the taxonomic focus of study data from each continent as being on
plants (orange), vertebrate animals (light blue), invertebrate animals (brown), microeukaryotes (blue),
prokaryotes (purple), viruses (yellow), or mixed taxonomic groups (pink).

Full-size DOI: 10.7717/peerj.11250/fig-1
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measured at finer temporal resolutions (grain) than larger organisms, but many studies on
short-lived prokaryote and viral communities lasted more than one year (Fig. 3).
The temporal grain of sampling generally was smaller for communities of microorganisms
than for communities of vertebrate animals and plants, for which the most common
grain for repeated sample collection was years rather than months or seasons (Fig. 3).
Most time series (75%) had fewer than 15 temporal replicates (mean = 16.1, median = 7,
mode = 4); a relatively small number of studies (12%) used 25 or more temporal replicates
and this did not change substantially over time, although there was a small increase in
the number of long time series (Fig. 4).

Across all studies, between one and eight methods were used to analyse community
dynamics (Fig. 5A); 68% of studies (n = 375) applied more than one analysis method and
36% of studies (n = 196) used three or more methods. ‘Descriptive’ methods (i.e., visual,
non-statistical comparisons) were used most widely (34% of all applied methods and
used in 78% of all studies), with ordination (25% and 57%), raw dissimilarity (20% and
47%), time-lag analysis (9% and 21%), and cluster analysis (7% and 15%) comprising the
next most common types of methods; the remaining 10 methods were used infrequently
(Fig. 5). Although approaches to analysing community dynamics have begun to
incorporate more computationally complex methods, descriptive and ordination methods
have been consistently used since 1990, along with clustering and time-lag analyses
(Fig. 6A). Since 2005, the use of raw dissimilarity methods has increased considerably.
Ordination, clustering and time-lag analyses are also based on dissimilarity values,

Figure 2 The numbers of studies that were conducted at large and small spatial scales across habitat
categories. Small spatial scale (blue bars) studies were considered to be those carried out at micro, point
sample, and local scales, while large spatial scale studies (purple bars) were those at regional, continental,
or global scales. Marine studies include those in the open ocean in contrast to coastal (sandy coasts),
intertidal (rocky shore) and estuarine. Full-size DOI: 10.7717/peerj.11250/fig-2
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Figure 3 The proportion of studies of different taxa ((A–G) mixed taxa, plants, vertebrates,
invertebrates, microeukaryotes, prokaryotes, and viruses) within categories defined by the
temporal grain and extent; the proportions in each box sum to 1. Temporal grain is the minimum
time between sampling events within the study and the temporal extent is the maximum time between
sampling events within the study. Full-size DOI: 10.7717/peerj.11250/fig-3
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further illustrating the dominance of dissimilarity-based methods in community analysis.
In the last 15 years, a steady stream of alternative temporal methods have been applied
such as ‘compositional pivot days’ and synchrony, albeit with poor uptake across the
wider literature. These methods often are ‘one-off’ analyses that have been applied only
a handful of times (Fig. 6A). Preferred ordination methods changed from detrended
correspondence analysis (DCA) and principal components analysis (PCA) in the early
1990s, to canonical correspondence analysis (CCA) in the late 1990s, and, since the early
2000s, to non-metric multidimensional scaling (Fig. 6B).

There was a wide range of motivations for analysing community dynamics; most studies
aimed to characterise temporal changes in community composition rather than exploring
environmental effects or studying the effects of biotic processes or interactions (Fig. 7).
Of the 562 studies, 406 were observational studies, 109 were field experiments and 47
were laboratory experiments. Research aims addressed community dynamics (n = 316),
environmental effects (n = 107), disturbance and/or succession (n = 92) and species
interactions (n = 47). For the vast majority of research aims and analysis types, community
dynamics analyses were based on fewer than 25 temporal samples, with many based on ten
or fewer samples (Fig. 8). Some complex methods require larger numbers of temporal
replicates and may explain why they were seldom used. For example, Moran’s Eigenvector
Maps, which is useful for detecting complex temporal patterns, was used by only five
studies with relatively high temporal replicates: 20 (Kampichler et al., 2014), 31 (Matabos
et al., 2014), 72 (Caruso et al., 2013) and 63 (Brasil et al., 2018).

DISCUSSION
We confirm that most community dynamics datasets are of short duration and include
fewer than 15 temporal observations and commonly fewer than ten (the median temporal
replication across all studies was seven observations). This is consistent with a previous
review of experimental field studies (Vaughn & Young, 2010) and a general review of

Figure 4 The number of temporal replicates in studies over time.
Full-size DOI: 10.7717/peerj.11250/fig-4
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the spatial and temporal domains being studied by ecologists over the period of 2004–2014
(Estes et al., 2018). There was no relationship between the analysis methods selected
and study aim. However, the relatively short temporal extent and grain of most studies
conducted to date did appear to have impacted the methods used to understand

Figure 5 The frequency of use of different temporal community dynamics analysis methods across
all reviewed studies. Specifically: (A) the number of different analyses applied in each study; (B) the
percent of uses of each analysis type across all studies and times. MEMs refers to Moran Eigenvector
Maps; see Table 1 for a brief explanation of each method. Full-size DOI: 10.7717/peerj.11250/fig-5
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Figure 6 Trends in the use of different methods for the analysis of temporal community dynamics
datasets, from 1990 to the end of 2018. (A) The proportion of uses of 10 categories of analysis methods
across all sampled publications; ‘Minor methods’ include compositional pivot days, multiplicative
change, multivariate regression modelling, nestedness analysis, synchrony, and temporal stability.
(B) The popularity of the different ordination methods used across the 28 years. CA, correspondence
analysis; PCoA, principal co-ordinates analysis; RDA, redundancy analysis; CCA, canonical CA; DCA,
detrended CA; PCA, principal components analysis. ‘Minor methods’ are: distance-based RDA (dbRDA),
detrended CCA (DCCA), partial CCA (pCCA), pRDA, Procrustes, RA and multiple co-inertia analysis.
Additional details of each analysis method are provided in Table 1.

Full-size DOI: 10.7717/peerj.11250/fig-6
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Figure 7 The distribution of studies across the different research aims. Research aims varied from
understanding compositional dynamics at fine, medium and coarse temporal scales, to investigating the
effect on species composition over time of environmental conditions, ecological disturbance, species
interactions and understanding successional change in communities. Scales of temporal dynamics were
classified as fine (days), medium (weeks, months, or seasons), and coarse (annual, years, or decades).

Full-size DOI: 10.7717/peerj.11250/fig-7

Figure 8 The relative distribution of the mean number of independent temporal samples across
different research aims and temporal analysis methods. ‘Minor methods’ include compositional
pivot days, multiplicative change, multivariate regression modelling, nestedness analysis, synchrony and
temporal stability (see Table 1 for explanations of methods). Research aims vary from understanding
compositional dynamics at fine, medium and coarse temporal scales, to investigating the effect on species
composition over time of species interactions, environmental conditions, and ecological disturbance, to
understanding successional change in communities. Full-size DOI: 10.7717/peerj.11250/fig-8
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community dynamics. For example, of the few studies that used MEMs, machine learning
methods and multivariate regression modelling, most used more than 25 observations
taken through time (median number of temporal samples = 31, mean number of temporal
samples = 90.9 ± 143 S.D.). Thus, despite the recent rise of sophisticated statistical methods
for temporal hypothesis testing in community ecology (e.g., Tonkin et al., 2017; Avolio
et al., 2019; Legendre, 2019), the relative scarcity of long-term community datasets is likely
to be limiting the wider use of these more data-intensive, strong inference methods.
However, not all new statistical methods require long time series (e.g., De Cáceres et al.,
2019).

The ecological literature applying multivariate methods of temporal community
dynamics literature is large and diverse, covering a multitude of taxa, habitats, and research
questions. Datasets collected encompass all spatial and temporal scales. There is little
consistency across taxa, habitats or research questions in the analysis methods that
have been applied; however, the majority of studies were focussed on primarily detecting
patterns in temporal dynamics and, unsurprisingly, smaller, short-lived organisms
were more likely to be studied at finer temporal scales than longer-lived organisms.
Our understanding of patterns and drivers of changes of biological communities would
benefit by having more longer-term studies (Kuebbing et al., 2018) conducted at finer
temporal scales across the full range of taxonomic and habitat diversity. For instance, there
is evidence that longer datasets enable the detection of non-linear dynamics (Giron-Nava
et al., 2017). However, although permanent monitoring datasets, such as LTER sites,
are generating longer datasets over time, such long-term studies are difficult to fund
and support and there are recent suggestions that investment in such studies is declining
(e.g., Lindenmayer et al., 2015; Vucetich, Nelson & Bruskotter, 2020). There is a pressing
need for more analyses of long-term datasets because of their demonstrable value
(Kominoski, Gaiser & Baer, 2018) if we are to understand and anticipate how community
shifts influence, and are influenced by acute, seasonal and long-term climate change, for
example.

Our understanding of temporal dynamics in biological communities and the methods
available to investigate them have diversified over the past 29 years, ostensibly because of
increases in computational power and in dataset size. A multitude of different data
visualisation and statistical methods are available for understanding community change,
many of which offer different sets of advantages and disadvantages. Descriptive methods
that only visualise trends in the data, such as bar graphs or tables, and ordination
remain the most commonly used analyses, regardless of the research aim. About one
third of studies (n = 183) used only descriptive methods to analyse compositional
community dynamics. However, restricting analyses to interpretation of descriptive and
visual patterns limits the ability of researchers to either quantify or predict future
ecological data trends. Indeed, it was clear that many researchers recognised the limitations
of these descriptive analyses; 28% of studies used a descriptive method in combination
with at least one other analytical method, which would enhance the ability to understand
the complexities of any observed temporal patterns. Given the complexities inherent to
temporal community dynamics datasets, we suggest that this type of multi-analysis
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approach better-enables researchers to reveal nuances of temporal change in their datasets
(e.g., Ovaskainen et al., 2017b).

The increased use of methods based on raw compositional dissimilarities since the
early 2000s may be because, like ordination and descriptive methods, these techniques
work with community time series of any length. Methods based on raw community
dissimilarity scores are flexible and can be used to analyse spatial and temporal variation
simultaneously. For example, Collins (2000) used pairwise site-time sample dissimilarities
to confirm directional (or ‘unstable’) change in plant species composition had occurred
irrespective of fire history due to stochastic dynamics among rare satellite species.
This ability to analyse spatiotemporal patterns in small datasets is important because
spatial variability, if well-defined and understood, can aid the interpretability of temporal
community dynamics (Collins et al., 2018).

Our review confirms the need for more long-term studies in ecology (Yang, 2020)
and the application of multiple analytical approaches to increase understanding of the
complexities of temporal community change. Researchers investigating both spatial and
temporal dynamics are likely to benefit from using methods in addition to simple
descriptive analyses and ordinations. For instance, methods based on raw community
dissimilarities can be used to address relatively complex spatiotemporal questions using
datasets of any size. With the growing array of traditional and newer methods available
for temporal community dynamics analysis, additional guidance is needed for researchers
to select the most appropriate methods for their research question and dataset (Buckley
et al., 2021).
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