
Comparative analysis of MAPK and MKK
gene families reveals differential
evolutionary patterns in Brachypodium
distachyon inbred lines
Min Jiang1,2,*, Peng Li1,* and Wei Wang1

1 Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan
Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of
Sciences (CAS), Shanghai Chenshan Botanical Garden, Shanghai, China

2 Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering,
Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China

* These authors contributed equally to this work.

ABSTRACT
Background: Mitogen-activated protein kinase (MAPK) cascades are involved with
signal transduction in almost every aspect of plant growth and development, as well
as biotic and abiotic stress responses. The evolutionary analysis of MAPKs and
MKKs in individual or entire plant species has been reported, but the evolutionary
patterns in the diverse inbred lines of Brachypodium distachyon are still unclear.
Results: We conducted the systematical molecular evolutionary analysis of
B. distachyon. A total of 799 MAPKs and 618 MKKs were identified from 53
B. distachyon inbred lines. Remarkably, only three inbred lines had 16 MPKs and
most of those inbred lines lacked MPK7-2 members, whereas 12 MKKs existed in
almost all B. distachyon inbred lines. Phylogenetic analysis indicated that MAPKs
and MKKs were divided into four groups as previously reported, grouping them in
the same branch as corresponding members. MPK21-2 was the exception and fell
into two groups, which may be due to their exon-intron patterns, especially the
untranslated regions (UTRs). We also found that differential evolution patterns of
MKK10 paralogues from ancient tandem duplicates may have undergone functional
divergence. Expression analyses suggested that MAPKs and MKKs likely played
different roles in different genetic contexts within various tissues and with abiotic
stresses.
Conclusion: Our study revealed that UTRs affected the structure and evolution of
MPK21-2 genes and the differential evolution of MKK10 paralogues with ancient
tandem duplication might have functional divergences. Our findings provide new
insights into the functional evolution of genes in closely inbred lines.

Subjects Bioinformatics, Evolutionary Studies, Genomics, Plant Science
Keywords Brachypodium distachyon, MAPK, MKK, Inbred lines, Tandem duplication,
Gene expression, Evolution

INTRODUCTION
Mitogen-activated protein kinase (MAPK or MPK) signaling cascades play vital roles in
the stress response, cell division, and developmental regulation. They are divided into three
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highly-conserved subfamilies that continuously act in a sequential manner in evolution
and fundamental signaling transduction pathways (Rodriguez, Petersen & Mundy, 2010;
Xu & Zhang, 2015; Jagodzik et al., 2018). The MAPK kinase kinases (MKKKs or MEKKs)
are activated by extracellular cues and subsequently phosphorylate and activate the
S/T-X3–5-S/T motif of downstream MAPK kinases (MAPKKs or MKKs), which, in turn,
phosphorylate and activate MAPKs at their TXY activation loop (Rodriguez, Petersen &
Mundy, 2010; Singh et al., 2012). Activated MPKs regulate downstream cellular targets,
including regulatory and metabolic enzymes and transcription regulators (Joo et al., 2008,
Guan et al., 2014).

Brachypodium distachyon (2n = 10) is an annual temperate grass with a close
phylogenetic relationship to other temperate cereals and an intermediate position within
the Pooideae subfamily (Soreng et al., 2015; Catalan et al., 2016). B. distachyon is desirable
for its small physical stature, rapid life cycle, ability to self-fertilize, and small diploid
genome size (Draper et al., 2001; Garvin et al., 2008). Highly efficient Agrobacterium-
mediated transformation methods in Brachypodium have also been established (Vain
et al., 2008; Vogel & Hill, 2008). Therefore, B. distachyon is widely used as a model plant for
studying problems unique to cereals and grasses (Vogel et al., 2010; Brkljacic et al., 2011;
Mur et al., 2011; Catalan et al., 2014). The morphological, molecular, and cytological
analyses of diverse B. distachyon inbred lines have been conducted (Filiz et al., 2009; Vogel
et al., 2009) and their nuclear and plastid genomes have been deep sequenced and
annotated (Gordon et al., 2014; Gordon et al., 2017; Sancho et al., 2018). Further analysis
showed that the inbred lines of B. distachyon are divided into three different genomic
groups, including a mostly Extremely Delayed Flowering (EDF+) clade, a mostly Spanish
(S+) clade, and a Turkish (T+) clade, based on their flowering phenotype and geographical
substructure (Sancho et al., 2018).

To date, the evolutionary mechanisms of MAPK cascades in plants have indicated a
diverse domain organization and novel activation loop variants (Mohanta et al., 2015)
and/or distinct expansion mechanism (Jiang & Chu, 2018). A variety of single-gene
duplication types emerge continuously and have involved in the plant’s adaptation to
dramatically changing environments (Wang et al., 2009; Cuevas et al., 2016). However,
whole-genome duplications (WGDs) are considered to be a major force in the evolution of
morphological and physiological diversity (Soltis et al., 2009; Paterson et al., 2010).
The ancient tandem duplication event occurred at the adjacent genes in the same
chromosome, which are usually expanded or retained by an unequal crossing (Freeling,
2009). Tandem duplication often displays less expression difference and functional
divergence than distant duplication (Makino & McLysaght, 2012; Ghanbarian & Hurst,
2015). However, there is limited information on the gene expansion mechanism and
functional evolution of the MAPK cascades in diverse B. distachyon inbred lines, including
for Bd21 (Chen et al., 2012; Jiang et al., 2015). We studied the evolutionary patterns
of MAPKs and MKKs from different B. distachyon inbred lines. The phylogenetic
relationships and the identification of MAPKs and MKKs were determined for 53
B. distachyon inbred lines. We investigated gene and domain construction patterns of the
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individual members with a certain divergence and focused on the evolutionary history
of MKK10 paralogues in different B. distachyon inbred lines. This revealed various
conservative and divergent tandem gene clusters. The expression patterns of these genes
were analyzed in Bd21, BdTR8i, and Bd30-1 from three genetic groups in various tissues
and abiotic stresses, and their potential functions were also investigated.

METHODS AND MATERIALS
Identification of MAPK and MKK gene family members
We downloaded gene information for MAPK and MKK from B. distachyon Bd21 from
the PLAZA platform (https://bioinformatics.psb.ugent.be/plaza/) (Van Bel et al., 2018).
BLASTP (Altschul et al., 1997) searches were conducted with a threshold of 90% identity;
searches were performed with orthologous protein sequences using BdMAPKs and
BdMKKs as queries in BrachyPan (https://brachypan.jgi.doe.gov/) (Gordon et al., 2017) to
identify these genes in the 53 diverse B. distachyon inbred lines. Collected sequences
were only accepted for scanning using InterPro software (Mitchell et al., 2019) if they
harbored MAPK or MKK consensus sequences, including the activation loop TXY
motif for MPKs, the active site motif D(L/I/V)K, and the phosphorylation target site
S/T-X5-S/T within the activation loop for MKKs. The gene identifier information of these
sequences was collected and is listed in Tables S1 and S2.

Gene structure and sequence alignments
The exon/intron structure of identified MAPKs and MKKs was performed using Gene
Structure Display Server 2.0 (GSDS 2.0) software (http://gsds.gao-lab.org/). All of the
full-length amino acid sequences were initially aligned using Clustal Omega with default
parameters (http://www.ebi.ac.uk/Tools/msa/clustalo/). The domains and motifs of
MAPKs and MKKs were scanned using InterProScan software (http://www.ebi.ac.uk/
interpro/) (Jones et al., 2014). The structural schematic of all members of MAPK and
MKK were executed according to InterProScan analysis results. The alignment logos of
the protein conserved domain were generated using the WebLogo3 application
(http://weblogo.threeplusone.com/).

Synteny and phylogenetic analyses
The phylogenetic relationships of all 53 B. distachyon inbred lines were generated in the
BrachyPan project and visualized with the CorelDRAW X3 program. Phylogenetic trees
were created based on the alignment of all MAPKs or MKKs using the maximum
likelihood (ML) method with the Jones–Taylor–Thornton (JTT) model, 2,000 bootstrap
values, and partial deletion by the MEGA 6.0 software, respectively (Tamura et al., 2013).
The Neighbor Joining (NJ) Trees of the MAPKs or MKKs were also reconstructed
with the same parameters using MEGA 6.0. We obtained the synteny information of
duplicate genes and the tandem (TD) data from the PlantDGD database (http://pdgd.njau.
edu.cn:8080/) (Qiao et al., 2019).
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Plant sample preparation
We sowed BdTR8i, Bd21, and Bd30-1 seeds in½MS medium in the dark for 4 d at 25 �C
and then transferred them to a soil mix. Plants were grown in a greenhouse under 14 h
light (21 �C)/10 h dark (18 �C) photoperiods. We harvested the root, stem, leaf blade,
and leaf sheath at the eight-to-nine leaf stage. Spikelet samples from B. distachyon were
collected at the early flowering stages according to their different flowering times (Fig. S1).
For the abiotic stress treatment, 2-week-old B. distachyon seedlings were dipped in ½ MS
liquid medium containing 20% PEG 6000 and 200 mM NaCl, and then plants were
collected after treatment for 3 h and 6 h, respectively. Moreover, seedlings were transferred
to a growth chamber and heat-treated at 40 �C for 3 h and 6 h. All samples were flash
frozen in liquid nitrogen and stored at −80 �C for RNA extraction.

Expression analysis
Total RNA was extracted from samples using Trizol reagent and 1–2 mg was reverse-
transcribed into cDNA using PrimeScript RT Master Mix Perfect Real Time (TaKaRa,
Beijing, China) according to the manufacturer’s instructions. The quality of total RNA was
detected using Nanodrop1000 and its integrity was estimated by electrophoresis in 1.5%
(w/v) agarose gel. The real-time quantitative polymerase chain reaction (RT-qPCR) was
carried out in 10 µl reactions with 5–50 ng of first-stand cDNA products (four µl), five
pmol of each primer (0.4 µl), five ml SYBR green master mix (2X), 0.2 µl ROX as a passive
reference standard to normalize the SYBR fluorescent signal. The conditions for RT-
qPCR were: initial activation at 95 �C for 5 min followed by 45 cycles of 95 �C for 30 s, and
60 �C for 30 s. Subsequently, the specificity of PCR products was monitored using a
melting curve analysis (61–95 �C with fluorescence read every 0.5 �C). The B. distachyon
actin (gene locus: Bradi2g24070) gene was used as an internal control for all RT-qPCR
analyses; specific primers forMAPK andMKK were listed in Table S3. Three independent
biological replicates were conducted for each experiment. The relative expression ofMAPK
and MKK genes was calculated using the 2−ΔΔCt method.

RESULTS
Identification and annotation of MPKs and MKKs in 53 diverse
B. distachyon inbred lines
We identified the two gene families by searching homologous Bd21 sequences in the public
BrachyPan database (Chen et al., 2012) to determine the conservation and divergence
of MPKs and MKKs in 53 diverse B. distachyon inbred lines. All predicted MPKs and
MKKs were named based on the similarity of their orthologous protein to that of
A. thaliana and B. distachyon (Ichimura et al., 2002; Chen et al., 2012). Ultimately, a total
of 799 MPKs and 618 MKKs were retrieved (Table 1; Tables S4 and S5). We found
that most B. distachyon inbred lines had 14 or 15 MPKs apart from Bd21, BdTR3c, and
Bd18-1, which had 16 members (Table 1). Further analysis showed that only seven inbred
lines had the MPK7-2 gene, including Bd21, Bd2-3, BdTR3c, Bd18-1, S8iiC, Mur1, and
Foz1 (Table S1). This may be the result of an incomplete annotation of the genome
sequence or the long sequence of the MPK7-2 protein, which usually consists of 1,708
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amino acid (aa) residues. Most B. distachyon inbred lines harbored 12 MKK members
except Tek-4 (11), Bd3-1 (7), Adi-10 (10), Gaz-8 (5), ABR5 (11), Foz1 (11), and Jer1 (11)
(Table 1; Table S5). The incomplete assembly of Tek-4 (77.82%), Bd3-1 (89.52%),
Adi-10 (89.52%), and Gaz-8 (88.31%) may be the reason that relatively few MKK
members have been identified (Gordon et al., 2017). Further analysis showed that the
B. distachyon inbred lines lacked a particular MKK member; for example, MKK10-5 of
Tek-4, MKK10-4 of ABR5, MKK4 of Foz1, MKK5 of Jer1, MKK10-3 and -4 of Adi-10
(Table S2). We also incorporated the available genomic detailed information from MPKs
and MKKs (Tables S1 and S2).

Phylogenetic classification of B. distachyon inbred lines MAPKs and
MKKs
To investigate the phylogenetic relationship of MPK proteins in diverse B. distachyon
inbred lines, the phylogeny of all identified 799 MPK protein sequences were performed
using ML and NJ methods, respectively. As expected, all homologues for each of the 16
Bd21 MPKs (BdMPKs) were divided into four groups (A, B, C, and D) and clustered on
the corresponding branch except Tek-4MPK16 (Fig. 1; Figs. S2 and S3). Tek-4MPK16
consisted of only 183 aa, while the other MPK16 members had 544 aa (Table S1).
MPK21-2 had two branches, designated as type I and II (Table S6), indicating that it
may have a certain functional divergence. In addition, MPK7-1 and MPK7-2 were located
on same branch with a large discrepancy in their lengths (Fig. 1), suggesting functional
divergence, which is supported by previous functional studies (Jiang et al., 2015).

We analyzed a total of 618 MKKs for their phylogenetic relationship with
corresponding protein sequences using ML and NJ methods, respectively. Almost all of
the orthologous genes for each of the 12 Bd21 MKKs (BdMKKs) had similar clustering
patterns with corresponding branches and fell into four groups: A, B, C, and D (Fig. 2;
Figs. S4 and S5). However, BdTR10cMKK10-3, Jer1MKK10-4, Mur1MKK10-5, and
BdTR13cMKK10-5 were branched out from the other members, suggesting that these gene
members may have diverged (Fig. 2). It is noteworthy that Mur1MKK10-5 (188 aa)
and BdTR13cMKK10-5 (208 aa) had shorter amino acids than other members, which
usually contained 332 aa (Table S2). BdTR10cMKK10-3 (163 aa) was also shorter relative
to the normal MKK10-3 (344 aa). In contrast, Jer1MKK10-4 (424 aa) was longer when
compared with the typical MKK10-4 (341 aa) (Table S2). These situations may affect their
evolutionary relationship with MKKs from other B. distachyon inbred lines.

Exon-intron compositions and length variations of MPKs and MKKs in
B. distachyon inbred lines
The abundance of non-protein-coding DNA within a genome, such as an intron, increased
consistently with the genome complexity (Taft, Pheasant & Mattick, 2007). Intron
pattern analyses can enhance our understanding of the structure and evolution of genes
(Zhang et al., 2014). We also surveyed the exon-intron architecture of different MPKs and
MKKs using GSDS software to elucidate the relationship or divergence among paralogues
and orthologues. Most members showed similar exon-intron patterns with the intron
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Table 1 Number of B. distachyon inbred lines MPKs and MKKs identified genes from the BrachyPan database and their associated
information.

Genetic groups Inbred line Latitude (Gordon et al., 2017) Longitude Elevation (m) Ploidy MPKs MKKs

EDF+ Arn1 42� 15′ 23.44″ N 0� 43′ 47.46″ E 681 – 15 12

Mon3 41� 39′ 4.75″ N 0� 12′ 37.51″ W 515 diploid 15 12

Bd1-1 39� 11′ 27.44″ N 27� 36′ 28.59″ E 141 diploid 14 12

ABR9 – – – – 15 12

Bd29-1 44� 30′ 55″ N 33� 33′ 23″ E 260 diploid 15 12

Tek-4 41� 0′ 40.1″ N 27� 31′ 8.8″ E 20 diploid 14 11

BdTR7a 39� 44′ 53.45″ N 34� 39′ 1.15″ E 1,035 diploid 15 12

Tek-2 41� 0′ 40.1″ N 27� 31′ 8.8″ E 20 diploid 15 12

BdTR8i 37� 6′ 31.87″ N 34� 4′ 17.06″ E 2,385 diploid 15 12

T+ Bd21 33� 45′ 39.18″ N 44� 24′ 11.07″ E 42 diploid 16 12

Bd21-3 33� 45′ 39.19″ N 44� 24′ 11.08″ E 43 diploid 14 12

Bd3-1 33� 45′ 39.19″ N 44� 24′ 11.08″ E 43 diploid 14 7

Bd2-3 33� 45′ 39.18″ N 44� 24′ 11.07″ E 42 diploid 14 12

Adi-10 37� 46′ 14.5″ N 38� 21′ 8.2″ E 510 diploid 15 10

BdTR12c 39� 44′ 53.45″ N 34� 39′ 1.15″ E 1,035 diploid 15 12

Adi-2 37� 46′ 14.5″ N 38� 21′ 8.2″ E 510 diploid 15 12

Adi-12 37� 46′ 14.5″ N 38� 21′ 8.2″ E 510 diploid 15 12

BdTR9k 39� 45′ 10.62″ N 30� 47′ 19.07″ E 932 diploid 15 12

Kah-1 37� 44′ 2.3″ N 38� 32′ 0.2″ E 665 diploid 14 12

Kah-5 37� 44′ 2.3″ N 38� 32′ 0.2″ E 665 diploid 15 12

BdTR5i 40� 23′ 37.13″ N 32� 59′ 7.32″ E 1,596 diploid 15 12

BdTR10c 37� 46′ 41.64″ N 31� 53′ 5.68″ E 1,288 diploid 15 12

BdTR11a 38� 25′ 0.42″ N 28� 1′ 52.75″ E 986 diploid 14 12

BdTR11i 39� 44′ 17.39″ N 28� 2′ 24.71″ E 363 diploid 15 12

BdTR11g 41� 25′ 17.86″ N 27� 28′ 36.81″ E 124 diploid 15 12

BdTR13c 39� 24′ 46.28″ N 32� 59′ 17.24″ E 1,192 diploid 15 12

BdTR13a 39� 45′ 23.35″ N 32� 25′ 56.46″ E 787 diploid 15 12

Bis-1 37� 52′ 35.6″ N 41� 0′ 54.3″ E 529 diploid 15 12

Koz-3 38� 9′ 8.2.6″ N 41� 36′ 34.8″ E 853 diploid 14 12

Koz-1 38� 9′ 8.2.6″ N 41� 36′ 34.8″ E 853 diploid 15 12

BdTR3c 36� 46′ 58.92″ N 32� 57′ 46.71″ E 1,957 diploid 16 12

Gaz-8 37� 7′ 39.8″ N 37� 23′ 26.9″ E 891 diploid 15 5

BdTR1i 38� 5′ 35.03″ N 28� 34′ 59.02″ E 841 diploid 15 12

BdTR2b 40� 4′ 55.55″ N 31� 19′ 52.01″ E 667 diploid 15 12

BdTR2g 40� 23′ 37.13″ N 32� 59′ 7.32″ E 1,596 diploid 15 12

Bd18-1 39� 22′ 4.25″ N 33� 43′ 48.91″ E 1,101 diploid 16 12

S+ Bd30-1 36� 59′ 25.76″ N 3� 33′ 31.44″ W 1,220 diploid 15 12

ABR5 42� 34′ 23.45″ N 0� 33′ 49.39″ W 828 diploid 15 11

Mig3 42� 8′ 52.76″ N 0� 11′ 41.89″ W 572 diploid 15 12

Uni2 42� 7′ 3.98″ N 0� 26′ 42.81″ W 480 diploid 15 12

Mur1 42� 06′ 18″ N 0� 51′ 23″ E 487 diploid 14 12
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number, exon length, and intron phase. The intron number was found to be relatively
constant in three genetic groups, with the exceptions of MPK20-3, MPK21-2, andMKK3-3
(Fig. 3). Remarkably, the number of introns from MPK11, MPK21-1, and MKK1 in all
B. distachyon inbred lines consistently contained 5, 10, and 8 introns, respectively (Fig. 3).
Almost all MPK20-3 had three introns in group T+ apart from BdMPK20-3, Bd21-
3MPK20-3, BdTR13aMPK20-3, BdTR3cMPK20-3, and Bd18-1MPK20-3 which had
eight introns, while other two genetic groups of MPK20-3 displayed three or eight introns
(Fig. 3A; Fig. S6). Moreover, the number of introns of MKK3-3 was highly consistent
in group S+, and T+ usually contained nine introns. In contrast, the intron numbers
in group EDF+ were highly variable; for example, ABR9MKK3-3, Bd29-1MKK3-3,
Tek-4MKK3-3 had eight, six, and four introns, respectively (Fig. 3B; Fig. S7).

The exon-intron patterns of MPK21-2 fell into two groups, which coincided with their
phylogenetic relationship mentioned above (Figs. 1 and 4). However, the phylogenetic
relationship was not completely consistent between the reconstructed full length coding
sequence (CDS) and their exon-intron patterns (Fig. 4). Further analysis showed that
all type II MPK21-2s harbored UTRs, while type I MPK21-2s had no UTR except for
RON2MPK21-2 and Tek-4MPK21-2 (Fig. 4). Most MPK21-2s had seven introns in group
EDF+ and S+ or nine introns in group T+ except for BdMPK21-2, Bd3-1MPK21-2,
and Adi-10MPK21-2 (Fig. 3A). These results suggest that the structure and evolution of
these genes were influenced by intron patterns and may be affected by UTRs.

Common conserved domain analysis of B. distachyon MPKs and
MKKs
Previous research has reported that MAPKs had several conserved domains or signature
sequences with vital structural or functional roles, including the GxGxxG motif in the
nucleotide binding (NB) domain (Mohanta et al., 2015), the TXY motif in the activation
loop (Xu & Zhang, 2015), D(I/L/V)K motif in the active site (Goyal et al., 2018), and
the common docking (CD) domain in the C-terminal extension region outside the

Table 1 (continued)

Genetic groups Inbred line Latitude (Gordon et al., 2017) Longitude Elevation (m) Ploidy MPKs MKKs

Foz1 42� 38′ 11.44″ N 1� 18′ 17.42″ W 434 diploid 15 11

ABR2 43� 36′ 15.343″ N 3� 15′ 46.580″ E 371 diploid 14 12

ABR3 42� 10′ 49.8″ N 0� 4’ 23.2″ W 1,928 diploid 14 12

ABR4 42� 15′ 45.54″ N 0� 43′ 0.48″ E 480 – 15 12

ABR6 42� 34′ 27.48″ N 2� 11′ 5.39″ W 484 – 15 12

ABR7 41� 35′ 23.86″ N 4� 45′ 24.26″ W 725 – 14 12

S8iiC 41� 36′ 19.3″ N 0� 08′ 38.4″ E 144 – 15 12

Jer1 42� 3′ 16.56″ N 0� 0′ 44.57″ W 418 – 14 11

Per1 42� 44′ 13.34″ N 1� 44′ 58.6″ W 742 – 14 12

Luc1 42� 36′ 36.18″ N 0� 53′ 35.48″ W 597 – 15 12

RON2 42� 46′ 50″ N 0� 57′ 48″ W 594 – 15 12

Sig2 42� 36′ 46.55″ N 1� 0′ 52.38″ W 524 – 14 12
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catalytic domain (Tanoue et al., 2000). Specifically, the threonine or tyrosine in the TXY
motif as the activation loop plays pivotal roles in the signal transduction pathway.
Remarkably, the average abundance of threonine or tyrosine (TXY), the most important
enzymes in the B. distachyon inbred lines, were 4.67 and 3.91, respectively, and 4.62 and
3.81 in Bd21, respectively (Table S7), suggesting that these amino acids were relatively
constant. We also found that the conserved domains of eleven MPKs reported in
comprehensive plant species were highly conserved in individual MPKs of B. distachyon
inbred lines (Figs. S8 and S9). These analyses revealed that the activation loop TEY in
groups A, B, and C, and TDY in group D, were consistent with results from previous
studies. Most notably, the activation loop TEY motif in all B. distachyon MPK11s was
replaced by the MEY motif (Fig. 1). MAPKs harbored a CD domain featuring a cluster of
negatively-charged amino acids with consensus sequences M/L-L-A/V-F-D-P-X2-R-P/I-
T/S-A/V-X-E-A-L (Fig. 1) that bind the basic residues at the N-terminus of the docking
site in MAPK-interaction proteins (Jiang et al., 2018). MPK7-2s belonged to leucine-rich
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repeat receptor kinases (LRR-RKs) that had LRR domains and an NB-ARC domain,
only appearing in seven kinds of B. distachyon inbred lines (Fig. 1). Moreover, the DLK
active site within the MPK7-1s signature was conserved; however, Luc1MPK7-1 and
ABR6MPK7-1 were replaced with a DLN motif. Foz1MPK7-2 and Mur1MPK7-2 with
DLN motifs were treated similarly (Fig. S8). Specifically, all MPK11s had a DLR motif
instead of a DLK active site (Fig. S8). Furthermore, an elongation factor hand (EF-hand)
calcium binding protein (CBP) with the consensus sequences “NDNNEQHASDQER”
was observed in all B. distachyon MPK17s at their C-terminal end (Fis. 1, 5A and 5B).
Further analysis indicated that 13 MPK17 members (group T+: BdTR13cMPK17,
Bis-1MPK17, Bd21-3MPK17, BdMPK17, Adi-2MPK17 and BdTR13aMPK17; group
EDF+: Tek-2MPK17, Tek-4MPK17, Bd29-1MPK17, ABR9MPK17, BdTR8iMPK17,
BdTR7aMPK17, and Bd1-1MPK17) had a mutation in which E changed to D, which only
resulted from a single nucleotide substitution of A changed to C (Fig. 5C). This mutation
may be have no effect on the function due to the canonical EF-hand (for example the
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calcineurin B-like (CBL) protein), that are characterized by a conserved Asp (D) and Glu
(E) residue with completely constant spacing (Kolukisaoglu et al., 2004; Jiang et al., 2020).
Remarkably, the MPK17s exhibited the conserved domain specific to B. distachyon
members compared to other plant species, especially eudicots (Fig. 5D).

As same as the MAPKs, MKKs also contained some important domains or motifs
including the activation or T-loop S/T-X5-S/T motif (Asai et al., 2002), the docking site

Figure 3 Intron number polymorphisms of MPKs (A) and MKKs (B) from 53 diverse B. distachyon
inbred lines. Different colors represent different genomic groups.
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(K/R2–3X1–5L/IXL/I) in the N-terminal domain (Bardwell & Shah, 2006; Jiang & Chu,
2018), the GxGxxGxV motif in the NB domain and HK-X6-ALK motif in the ATP binding
site (Hadiarto et al., 2006), and the active site D(I/L/V)K motif (Goyal et al., 2018).
A detailed analysis of the conserved sequences of MKKs was displayed in alignment of
individual MKKs (Figs. S10 and S11). Groups A, B, and C MKKs had the typical
T-loop S/T-X5-S/T motif, while group D MKKs (MKK10s) had a part mutation in the
phosphorylation site which coincided with a wide range of plant species (Fig. 2; Fig. S10)
(Jiang & Chu, 2018). Interestingly, the average abundance of serine or threonine

kb 1kb 2kb 3kb 4kb 5kb 6kb

5 3
0.02

CDS Upstream/downstream Intron 0 1 2: intron phase

BA

Figure 4 Gene structure of MPK21-2 genes. (A) Maximum Likelihood phylogenetic trees of the full CDS sequences of genes encoding MPK21-2
from diverse B. distachyon inbred lines. (B) The exon/intron structure of eachMPK21-2 gene was displayed. Yellow boxes represent exons, gray lines
represent introns and blue boxes represent UTRs. The exons are drawn to scale. Full-size DOI: 10.7717/peerj.11238/fig-4
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lines MPK17s. (A) Maximum Likelihood phylogenetic trees of the full sequences of genes
encoding MPK17s from B. distachyon inbred lines. (B) ClustalW multiple-sequence alignment of
the region containing the EF-hand motif within MPK17s. Conserved residues are shown in dark
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(S/T-X5-S/T), which were the most crucial amino acids in B. distachyon inbred lines, were
7.2 and 3.32, respectively, while the same results were 7.2 and 3.32 in Bd21 (Table S7),
respectively. This suggests that these amino acids remained constant. We speculated that
the MKKs may have experienced fundamental functional conservation. Further analysis
showed that variations of some the conserved MKKs were also present. For instance, in
addition to BdTR13CMKK4 being replaced by a DIL motif, the D(I/L/V)K active site
within the signature of MKKs was conserved despite occasional variations (Fig. S10).
We found the HRPTGRCYALK motif in the ATP binding site of MKK5 members,
however, BdTR3cMKK5 was replaced by the HRPPGRCYALK motif (Fig. S10).
Furthermore, our data showed that the nuclear transport factor 2 (NTF2) domains existed
in all MKK3s from B. distachyon inbred lines (Fig. 2).

The differential evolution ofMKK10 paralogs with tandem duplications
Gene duplication was the necessary material source for evolutionary novelty, leading to
the gene responsible for the gene families (Lynch & Conery, 2000). In addition, some
tandem duplication was observed in monocotMKK10 paralogues, such as in B. distachyon
(Jiang & Chu, 2018). A 6,7-dimethyl-8-ribityllumazine (DMRL) synthase gene was
observed between two MKK members (Jiang & Chu, 2018). We surveyed the duplicated
genes in different B. distachyon inbred lines genome to further comprehend the
duplication and evolutionary events of the B. distachyon MKK10 paralogues. As expected,
most of MKK10 paralogues with the exception of five kinds of B. distachyon inbred
lines (Mon3, Bd3-1, Adi-10, BdTR10c, and Gaz-8) presented tandem duplication in the
canonical form of the MKK-DMRL-MKK model with occasional variations (Fig. 6).
In addition, Tek-4 had the PNN (pinin) gene instead of the DMRL gene between twoMKK
gene members (Fig. 6). Twenty B. distachyon inbred lines had the same canonical
model with Bd21 in the form of the MKK-DMRL-MKK-MKK model. Eight B. distachyon
inbred lines possessed the tandem duplication in the form of the MKK-DMRL-MKK
model (Fig. 6). Moreover, some small variations were also found in other B. distachyon
inbred lines. For example, we also found the tandem gene clusters with the MKK-DMRL-
UDPGT-UDPGT-MKK (UDPGT: UDP-glucoronosyl and UDP-glucosyl transferase)
model in Mur1, MKK-DMRL-MKK-ChaC-MKK (ChaC: ChaC-like protein) model in
BdTR12c, and MKK-DMRL-PK-PK-MKK (PK: protein tyrosine kinase) model in Sig2
(Fig. 6). These results indicated that the tandem MKK10 gene clusters in B. distachyon

Figure 5 (continued)
application (http://weblogo.threeplusone.com/). The overall height of each stack indicates the sequence
conservation at that position (measured in bits), whereas the height of symbols within the stack reflects
the relative frequency of the corresponding base at that position. (D) ClustalW multiple-sequence
alignment of the region containing the EF-hand motif within MPK17 in different plant species.
The specific domain was marked by thick line. At: Arabidopsis thaliana; Bd: Brachypodium distachyon;
Cru: Capsella rubella; Cc: Citrus clememtina; Cs: Cucumis sativus; Eg: Erythranthe guttata; Egr: Euca-
lyptus grandis; Gr: Gossypium raimondii; Me: Manihot esculenta; Os: Oryza sativa; Pt: Populus tricho-
carpa; Sb: Sorghum bicolor; Si: Setaria italica; Tc: Theobroma cacao; Zm: Zea mays.
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inbred lines originated in the common ancestral genomic contexts and a certain variation
developed in order to adapt to the environment differences including light, temperature, or
elevation.
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Expression variation in theMPK andMKK gene family in three selected
genomes
The expression profiles for five different tissues (root, stem, leaf blade, leaf sheath, and
spikelet) and abiotic stresses (salt, drought, and heat) of MPK and MKK genes were
performed (Table S8) to explore the expression variation in Bd21, BdTR8i, and Bd30-1,
which belong to three different genetic groups. We observed the different expression
levels of 15 MPK and 11 MKK genes apart from the MKK10-4 gene (Figs. 7 and 8), which
may be involved with the barely detectable low expression level of the MKK10-4 gene
observed in previous research (Jiang & Chu, 2018). Among these MPK and MKK genes,
most genes showed distinct quantitative expression patterns in their different genetic
backgrounds. For instance, the expression level of MPK4s at root was higher in BdTR8i
and moderate in Bd21 compared with in Bd30-1 (Fig. 7). MPK3s had the same reaction
after 6 h of drought treatment (Fig. 8). MKK10-3s had higher expression in spikelet’s in
BdTR8i compared with in Bd21 and Bd30-1 (Fig. 7). Moreover, these genes also had
similar expression patterns in different genetic backgrounds, such as MPK16s, MPK20-4s,
MKK3-2s, andMKK10-1s in spikelet,MKK5s in leaf sheath,MPK6s andMKK10-2s in leaf
blade, MPK16s and MKK10-5s in stem, MPK16s, and MPK20-5s and MKK10-1s in root
(Fig. 7). MKK4s had a higher expression under drought conditions in BdTR8i compared
with in Bd21 and Bd30-1 (Fig. 8). MPK3s had a relatively low expression under heat
treatment in three backgrounds, while the expressions of MPK14s and MPK20-1s were
opposite (Fig. 8). Expression variations were also observed in the different tissues and/or
abiotic stresses. For example, MKK10-1s were more highly expressed in three genetic
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backgrounds in roots than in other tissues (Fig. 7). Almost all genes had higher expression
levels after 6 h of exposure to three abiotic stresses in BdTR8i (Fig. 8). We further
found that certain genes had unique expression profiles in specific tissues of a particular
genetic background. For example, BdTR8iMPK4 was highly expressed in only the root
(Fig. 7) and BdTR8iMKK1 was highly expressed in heat, salt, and drought stresses (Fig. 8).
The striking variations of MPK and MKK gene family members expressed in different
genetic contexts increases the diversity of the potential biological functions of these genes.

DISCUSSION
Exon-intron compositions with conservative and divergent patterns
The conservation of exon length was associated with constraints of the gene function of
organisms (Davila-Velderrain, Servin-Marquez & Alvarez-Buylla, 2014). The non-coding
regions, such as the intron, may affect gene functions by a gradual deletion, which
may be the result of recombination throughout the evolution of the intron (Hu, 2006).
Therefore, we investigated the exon-intron composition of the corresponding MPKs and
MKKs. Our results showed that the exon-intron architecture, including lengths and
numbers of intron, intron phase, and lengths of UTR, was generally conserved in
corresponding orthologs (Figs. S6 and S7). However, some variability was also found.
For example, type IIMPK21-2s harbored 5′-UTR and 3′-UTR which were absent in type I
MPK21-2s (Fig. 4), although they were in agreement with their phylogenetic relationships
(Fig. 1), indicating that they may have a difference in expression and functional divergence.
The UTR length-dependent functional specificity significantly increases the coding
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Figure 8 Expression patterns ofMPK andMKK genes in Bd21, BdTR8i and Bd30-1 seedlings under
different abiotic stresses. Full-size DOI: 10.7717/peerj.11238/fig-8
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capacity of the genome that regulates multiple plant process, including nutrient
homeostasis, stress responses, and plant growth and development (Srivastava et al., 2018).
In addition, there was a large difference in the intron lengths and numbers among
B. distachyon MPK7-1s and MPK20-3s (Fig. S6). A detailed analysis showed that the
fourth intron of BdTR8iMPK20-3 was shorter than BdMPK20-3 and Bd30-1MPK20-3
(Fig. S6). Moreover, BdTR8iMPK20-3 had a lower expression level in roots and spikelets
compared to the other corresponding members as described in a previous study that intron
lengths were correlated with gene expression (Rose et al., 2016). Our findings indicated
that the exon-intron composition affect the evolutionary patterns and expression efficiency
of MPK and MKK orthologs.

Tandem duplications contributed to MKK10s gene expansion
Our analysis suggested thatMKK10 paralogs undergo an ancient tandem duplication event
with differential evolution. Further examination of tandem MKK10 gene clusters revealed
that a DMRL gene often occurred (Fig. 6). These results are supported by previous
studies (Jiang & Chu, 2018), indicating that they were derived from common ancestral
genomic contexts. However, some variations have also been found among B. distachyon
inbred lines such as an insertion of RRM (RNA recognition motif protein) instead of
the DMRL gene (Fig. 6). This may result in a difference of gene expression. Indeed, tandem
duplicates generally show more similar expression patterns than remote duplicates
(Dai, Xiong & Dai, 2014; Lan & Pritchard, 2016) and preferentially retain the cis-PPIs
(protein–protein interactions) after WGD (Makino & McLysaght, 2008, 2012). Therefore,
ancient tandem duplications of MKK10s may have contributed to gene expansion and
function conservation and/or divergence during the evolution process of monocots.

Expression divergence of MAPKs and MKKs within three
B. distachyon genetic groups
Tissue-specific expression patterns ofMAPK andMKK genes have been characterized with
corresponding functions in plant growth and development. For instance, the expression
levels of AtMKK10 are high in pollen but do not appear in shoot apices, mesophyll cells,
or mature leaves (Yoo et al., 2008), indicating a potential role in flower tissues (Jiang &
Chu, 2018). CaMPK19-2 genes are highly expressed in roots and stems in pepper, while
CaMPK1 is highly expressed in in leaves (Liu et al., 2015), which indicates that these genes
are expressed preferentially in different tissues and developmental stages (Wei et al., 2014).
We investigated the tissue-specific expression profiles in different B. distachyon inbred
lines. The result indicated that most MPK and MKK genes had quantitative distinct
expression patterns among the three different genetic contexts in different tissues and
various abiotic stresses. For example, MPK17 had higher expression levels in the root,
stem, leaf blade, and salt treatment in Bd30-1 compared with Bd21 and BdTR8i (Figs. 7
and 8). These results are indicative of the distinct function of MPK17s, which may result
from the nonsynonymous substitutions at some pivotal amino acid sites in EF-hand CBP
motif in their C-terminal extensions (Fig. 5) as described previously (Yang et al., 2019).
Moreover, MKK10-3 and MKK10-5 had similar expression patterns in the leaf blade in

Jiang et al. (2021), PeerJ, DOI 10.7717/peerj.11238 17/24

http://dx.doi.org/10.7717/peerj.11238/supp-6
http://dx.doi.org/10.7717/peerj.11238/supp-6
http://dx.doi.org/10.7717/peerj.11238
https://peerj.com/


Bd30-1 and BdTR8i and distinct profiles in Bd21 (Fig. 7). These results coincide with
the tandem gene cluster model (Fig. 6) and are supported by previous reports that
physically linked genes (tandem duplicates) usually had less expression differences than
distant genes (Ghanbarian & Hurst, 2015; Lan & Pritchard, 2016). Furthermore, the
MKK3-2 gene had similar patterns under heat and salt condition (Fig. 8). Taken together,
these results suggest that MAPKs and MKKs had an expression divergence which was
correlated with the differential evolution in B. distachyon inbred lines.

CONCLUSION
A total of 799 MPK and 618 MKK genes were retrieved from 53 kinds of B. distachyon
inbred lines based on their conserved TXY or S/T-X5-S/T domain, respectively, using
bioinformatics approaches. Phylogenetic analyses showed that most MAPKs and MKKs
clustered into same branch, with the exception of MPK21-2s, which was divided into
two groups, designated as type I and II. Further analysis found that the divergence of
MPK21-2 may be involved with the presence of UTRs. MKK10s expanded during the
evolutionary process by ancient tandem duplications with a differential model. This may
have resulted in expression differences and functional divergence. We discovered that the
expression of the MPK and MKK gene members varied in different tissues and across
abiotic stresses in three different genetic contexts, suggesting that these genes may have
diverse biological functions. Taken together, our results revealed a more comprehensive
understanding of the function and evolutionary patterns of MAPKs and MKKs in diverse
B. distachyon inbred lines.
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