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Fossil teeth of Palaeoloxodon huaihoensis have been recovered over decades from the
Penghu Channel during fisheries activities. The National Museum of Nature Science (NMNS)
has a collection of such tooth material, which differs in size and morphology and likely
represents ontogenetic variation and growth trajectory of various age groups of P.
huaihoensis. However, little is known regarding P. huaihoensis age determination. By using
teeth length, enamel thickness (ET), and plate counts, we established the age distribution
of the species, which is directly derived from the extant African forest elephant Loxodonta
africana. When measuring signs of allometric growth, we found that in both the upper and
lower jaws, tooth width was correlated negatively with lamellar frequency but positively
with ET. In the same age group, the number of lamellae was higher in P. huaihoensis than
in L. africana. The reconstructed age distribution indicated no difference in the upper or
lower jaw. Notably, the age frequency distribution of P. huaihoensis differed significantly
from that of Mammuthus primigenius: P. huaihoensis more adult and older adult
individuals in the population (median age: 33–34.5 years). This distinct pattern is
speculated to be related to the harsh environmental conditions and intense interspecific
competition among P. huaihoensis during the last ice age.
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19 Abstract
20 Fossil teeth of Palaeoloxodon huaihoensis have been recovered over decades from the Penghu 

21 Channel during fisheries activities. The National Museum of Nature Science (NMNS) has a 

22 collection of such tooth material, which differs in size and morphology and likely represents 

23 ontogenetic variation and growth trajectory of various age groups of P. huaihoensis. However, 

24 little is known regarding P. huaihoensis age determination. By using teeth length, enamel 

25 thickness (ET), and plate counts, we established the age distribution of the species, which is 

26 directly derived from the extant African forest elephant Loxodonta africana. When measuring 

27 signs of allometric growth, we found that in both the upper and lower jaws, tooth width was 

28 correlated negatively with lamellar frequency but positively with ET. In the same age group, the 

29 number of lamellae was higher in P. huaihoensis than in L. africana. The reconstructed age 

30 distribution indicated no difference in the upper or lower jaw. Notably, the age frequency 

31 distribution of P. huaihoensis differed significantly from that of Mammuthus primigenius: P. 

32 huaihoensis more adult and older adult individuals in the population (median age: 33–34.5 

33 years). This distinct pattern is speculated to be related to the harsh environmental conditions and 

34 intense interspecific competition among P. huaihoensis during the last ice age.

35

36 Keywords: age distribution, Pleistocene, subtropical west Pacific, elephant age group, lamellar 

37 frequency, tooth morphology, Taiwan, Penghu Channel

38

39 Introduction
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40 The fossil genus Palaeoloxodon (Palaeoloxodontinae, Elephantidae) has been widely recorded 

41 from Eurasia, Africa, and East Asia during the Late Pleistocene (Markiyama, 1924; Matsumoto, 

42 1929; Osborn, 1936; Zong, 1987; Haynes, 1991). Palaeoloxodon has eight known species: P. 

43 antiquus (Falconer & Cautley, 1847; Osborn, 1942), P. namadicus (Falconer & Cautley, 1847; 

44 Osborn, 1924; Matsumoto, 1929), P. falconeri (Falconer, 1862; Busk, 1867; Vaufrey, 1929; 

45 Osborn, 1942), P. mnaidriensis (Adams, 1870), P. cypriotes (Bate, 1903; Osborn 1942), P. recki 

46 (Dietrich, 1916; Maglio, 1970; Maglio, 1973; Beden, 1979, unpublished data), P. naumanni 

47 (Makiyama, 1924), and P. huaihoensis (Qi, 1999). In China and neighboring areas, records of 

48 Palaeoloxodon are relatively abundant (Liu, 1977; Qi, 1999), and many specimens have been 

49 identified as P. namadicus, P. naumanni or P. huaihoensis (Ho et al., 2000; Shieh et al., 2007; 

50 Qi, 1999). Among the three species, P. namadicus is found mostly in the Nihewan Basin, China 

51 (Wei, 1976). Records of P. naumanni are widely distributed in China and Japan but not in 

52 Taiwan (Takahashi et al., 2001). Palaeoloxodon huaihoensis is the only known species from the 

53 Penghu Channel, Taiwan (Shieh & Chang, 2007). Ho et al. (2000) stated that P. huaihoensis was 

54 once distributed both in the China and Taiwan area during the Pleistocene (Shieh & Chang, 

55 2007).

56

57 You et al. (1995) divided the Eastern China Sea into three paleobiogeographic zones in the Late 

58 Pleistocene, with the north of 38°N representing Mammuthus–Coelodonta fauna, 28 °N - 38 °N 

59 representing Palaeoloxodon–Elaphurus davidianus fauna, and Ailuropoda–Stegodon fauna to 

60 south of 28°N. According to this scheme, Taiwan and the adjacent Penghu Channel should 

61 belong to the Ailuropoda–Stegodon fauna category. However, the Penghu fauna is mainly 

62 composed of E. davidianus, Bubalus teilhardi, and P. huaihoensis (Kuo, 1982; Hu & Tao, 1993; 

63 Ho, 1998; Qi, 1999), which is more similar to the fauna in the Huaihe River Region, which 

64 belongs to the Palaeoloxodon–E. davidianus fauna (You, 1995; Chen, 2000; Ho et al., 2008). 

65 Studies have indicated the existence of a narrow and semiclosed sea similar to a land bridge 

66 between the Yellow Sea and East Sea in the last ice age (Chen, 2000). Therefore, the 

67 paleoclimate in the Pleistocene Taiwan Strait might belong to the tropical-temperate zone (Cai, 

68 1999). Indeed, the so-called “Taiwan Landbridge Fauna” includes at least two distinct faunas 

69 during the Middle-Late Pleistocene: one spanning from the Middle to early Late Pleistocene 

70 (Chochen fauna) and one confined to the Late Pleistocene (Penghu fauna) (Chen, 2000).

71

72 The fauna of Chochen area includes several large mammals, such as Rhinoceros sinensis 

73 hayasakai (Hayasakai, 1942), Stegodon (Parastegodon) akashiensis (Hayasakai, 1942; Shikama 

74 et al., 1975; Otsuka, 1984), and S. (Parastegodon) aurorae (Shikama et al., 1975), but no fossils 

75 of P. huaihoensis were found (Kuo, 1982; Ho & Qi, 1999). The Chochen fauna is believed to 

76 share more affinities with that of the Huanan area in southern China than in with the mammal 

77 fauna from northern China (Ho, 1998; Cai, 1999; Ho & Qi, 1999; Shieh & Chang, 2007). 

78 However, the taphonomic and postmortem transportation processes of Chochen area are very 

79 complex and somewhat ambiguous, which resulted in both terrestrial and marine elements in the 

80 whole fauna (e.g., Lin et al., 2019). However, the composition of the Penghu fauna indicates that 

81 all of it likely originated from northern China throughout the Pleistocene (Ho et al., 1997; Qi, 

82 1999; Shieh & Chang, 2007).
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83

84 The elephant teeth fossils provide crucial evidence about the ecosystem in the past. The tooth 

85 growth patterns enables inference of the population’s age distribution (Haynes, 1985) and the 

86 related habitat distribution across vegetation and climate gradient (Webb, 1977; Janis, 1989; 

87 Sukumar, 1992; Fox, 2000; Sukumar, 2003). However, analyses based on Palaeoloxodon teeth 

88 have not been conducted thoroughly. Therefore, this study explored the age distribution and 

89 structure of P. huaihoensis from Penghu Channel, Taiwan, using the teeth fossils. We defined 

90 age groups with descriptions, reconstructed their age distribution and compared it with other 

91 fossil species, and interpreted species distribution in the area.

92

93 Materials & Methods
94 Specimens and measurements

95 P. huaihoensis specimens were all dredged and recovered by fishing nets from the Penghu 

96 Channel, Taiwan, as in Chang (2015). The Penghu Channel (22°40′N–23°40′N, 119°00′E–

97 120°00′E) is located in the Taiwan Strait between Penghu Island (Pescadores) and Taiwan (Fig. 

98 1). A total of 221 teeth (dp4 (n = 3), M1 (13), M2 (42), and M3 (163)), including 88 jaws, were 

99 available at the National Museum of Nature Science (NMNS), Taiwan for this study. Eroded and 

100 abraded specimens were not analyzed (Fig. 2, Table S1)

101

102 Figure 1: Map showing the sampling area in the Penghu Channel (dash rectangle). The base map 

103 was created using ArcGIS.

104

105 Figure 2: Images of P. huaihoensis specimens deposited at the National Museum of Nature

106 Science (NMNS). (A) Nine enamel loops complete of the lower left dp4 and erosion at both 

107 ends, F027933. (B) All lamellae in wear and the lower right M1 is connected to M2, which is 

108 slightly worn and lacks enamel thickness (ET), F020284. (C) Nineteen lamellae of the lower left 

109 M3 in buccal view, F051590. (D)(E) The upper right and left M3 with all lamellae in wear and 

110 slightly eroded at both ends, F026947. (F) Buccal surface of the lower right M3, F020284. (G) 

111 Anterior 2-3 enamel loops confluent on the occlusal surface of lower right M3 from catalog 

112 number F020226. (H) Lingual view of the lower right M3, F020248. All scale bars represent 5 

113 cm.

114

115 We first used the plate counts to identify the position of the molar. Next, the tooth length, width, 

116 and height were measured (Fig. 3), with the height taken vertically from the crown apex of the 

117 plate. The enamel thickness (ET) was measured with calipers. To calculate lamellar frequency, 

118 the number of complete plates at 10 cm at the crown base of both the lingual and buccal sides 

119 was taken (Short, 1969; Hasegawa, 1972; Maglio, 1973; Shieh & Chang, 2007; Chang, 2010, 

120 unpublished data).

121

122 Figure. 3. Measurements of an elephant tooth used in this study.

123
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124 Age determination

125 We used the size, structure, and wear of teeth to determine the age distribution of P. huaihoensis 

126 (Morrison-Scott, 1947; Sikes, 1966; Maglio, 1973; Lang, 1980). Thirty age groups based on 

127 tooth morphology and shearing rate of deciduous teeth of African forest elephants were 

128 established by Laws (1966), and this method has been widely used for the reconstruction of age 

129 distribution in many elephant species (Haynes, 1991; Lister, 1999). We used this method too 

130 with slight modifications. For example, Laws’ method indicates that M3 has a maximum number 

131 of 12 plates in L. africana, but in P. huaihoensis, as many as 22 plates can be found in M3. In 

132 this case, the remaining number of plates in P. huaihoensis can be obtained by the rate of tooth 

133 eruption of L. africana multiplied by the observed plates of P. huaihoensis. Thus, the age group 

134 XX of Law’s with 12 plates indicates that there will be six plates in the age groups of P. 

135 huaihoensis if (22/12) × 6 = 11 plates are remaining (see Table S2). Consequently, we 

136 established 24 age groups defined using 88 jaws (Fig. 4).

137

138 Figure 4: Definition of age groups I–XXIV. I: dp4 all lamellae in wear, M1 slight wear 

139 (specimen number: F02793); II: dp4 well worn, approximately 3-4 plates remaining; M1 first 1-2 

140 lamellae in wear (F051613); III: M1 all in wear; M2 worn to enamel of first two lamellae 

141 (F044264); IV: M1 first 1-2 enamel loops confluent, M2 slight wear (F020284); V: M1 well 

142 worn; M2 more enamel loops showing (F051497); VI: M1 only 5-6 enamel loops left, slight 

143 erosion of posterior border; M2 lamellae well formed (F051562); VII: M1 well worn, only three 

144 plates remain; M2 slight erosion of anterior edge, 9-10 enamel loops complete (F027950); VIII: 

145 M2 first enamel loops confluent (F044271); IX: M1 worn out; M2 well into wear showing 

146 lozenges, more lamellae visible (F020247); X: M2 all except last 3 lamellae in wear (F020255); 

147 XI: M2 complete, all lamellae in wear, and all enamel loops showing M2 erosion at both ends; 

148 M3 lamellae well formed (F027988); XII: M2 all lamellae in wear, 15 enamel loops complete 

149 (F026927); XIII: M2 only approximately 8-9 loops remain and erosion at both ends (F020287); 

150 XIV: M3 worn to enamel of first lamellae and more enamel loops (F030111); XV: M2 lost; M3 

151 11-12 enamel loops complete (F020278); XVI: M2 worn out; M3 no erosion of anterior border, 

152 anterior 1-2 enamel loops confluent (F044257); XVII: M3 only 2 lamellae not in wear 

153 (F027320); XVIII: M3 all except last lamellae in wear (F044266); XIX: M3 first 1-2 enamel 

154 loops may confluent (F051487); XX-I: M3 erosion at both borders, anterior 2-3 enamel loops 

155 confluent (F026942); XX-II: M3 all except last lamellae in wear (F020258); XXI-I: M3 more 

156 enamel loops showing, slight erosion of the anterior border (F044270); XXI-II: M3 well worn, 

157 first enamel loops may be slightly confluent (F051560); XXII-I: M3 all lamellae in wear, no 

158 erosion at both ends (F044268); XXII-II: M3 erosion at both borders, anterior 2-3 enamel loops 

159 confluent (F027963); XXIII-I: M3 only five complete enamel loops remain, anterior part broken 

160 off (F044261); XXIII-II: anterior third of tooth missing, only five complete lamellae remain 

161 (F027967); XXIV: M3 only 2-3 loops remain (F051559).

162

163 Statistical analysis

164 The tooth width and lamellar frequency in occlusal and buccal sides of the lower and upper jaws 

165 of dp4-M3 as well as the relationship between the width and enamel thickness (ET) of lower and 

166 upper jaws of dp4-M3 were plotted using R software (Core Team and Others 2013). The 

167 relationship between two variables was indicated using Pearson’s correlation coefficient. These 
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168 relationships reflect whether the concerned variables revealed an allometric growth pattern. The 

169 number of lamellae throughout the lifespan was plotted against the estimated age of P. 

170 huaihoensis (see above, Age determination). Moreover, L. africana data were used for 

171 comparison (Laws, 1966).

172

173 A histogram based on the frequency distribution of specimens was established to reconstruct the 

174 age distribution of P. huaihoensis. Unlike studies in which only the lower jaws were considered 

175 (Laws, 1966), we included upper jaw specimens for comparison. A null hypothesis of the 

176 distributions of upper and lower jaws was first tested using the two-sample t test. However, when 

177 no significant difference between upper and lower jaws was detected, only lower jaw specimens 

178 were used in subsequent analyses. A Shapiro–Wilk test was conducted to test whether the fossil 

179 age distribution data were distributed normally; if not, the median for the lower jaws was 

180 calculated using the Wilcoxon–Mann–Whitney test.

181

182 Finally, we compared the age distribution based on fossil remains of P. huaihoensis with other 

183 species: the stable age distribution of fossil Mammuthus primigenius and M. columbi. A null 

184 hypothesis stating the same age distribution for each population pair was analyzed using 

185 Pearson’s chi-square test. Here, the independence of age and the number of individuals in each 

186 of the two populations were tested. The M. columbi and M. primigenius data were derived from 

187 the studies of Louguet-Lefebvre (2013) and Wojtal (2001), respectively. All analyses were 

188 performed using R (Core Team and Others 2013).

189

190 Results
191 Tooth width and lamellar frequency were negatively correlated on both the occlusal and buccal 

192 sides for dp4-M3. Lamellar frequency increased when tooth width decreased in both upper and 

193 lower jaws (Fig. 5a, b, d, e). By contrast, the tooth width and ET were positively correlated on 

194 both the sides (Fig. 5c, f). The size range overlapped in some cases; for instance, the M2 

195 overlapped with M3 in occlusal width and lamellar frequency and width and ET of the lower 

196 jaw, respectively (Fig. 5d, f).

197

198 Figure 5: The relationships of various meristic measurements in the jaws of dp4-M3.

199 (A) Tooth width and lamellar frequency in the occlusal surface of the upper jaw (r = −0.558, t = 

200 −7.699, p < 0.05). (B) Tooth width and lamellar frequency in the buccal side of the upper jaw (r 

201 = −0.476, t = −6.201, p < 0.05). (C) Tooth width and enamel thickness (ET) of the upper jaw (r = 

202 0.531, t = 7.179, p < 0.05). (D) Width and lamellar frequency in the occlusal surface of the lower 

203 jaw (r = −0.649, t = −7.915, p < 0.05). (E) Width and lamellar frequency in the buccal side of the 

204 lower jaw (r = −0.453, t = −7.523, p < 0.05). (F) Width and ET of the lower jaw (r = 0.457, t = 

205 4.759, p < 0.05).

206

207 A summary of the various age groups derived from the tooth morphology, lamellar number, teeth 

208 position, and age estimation is presented in Table 1. The number of lamellae of P. huaihoensis 

209 was considerably higher than that of L. africana in the same age group (Fig. 6). Moreover, the 
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210 increasing rate of lamellae in P. huaihoensis was progressively more evident than that of L. 

211 africana from M1, eventually reaching 22 lamellae in M3.

212

213 Table 1: Comparison of estimated ages derived from the lower jaw of P. huaihoensis and L. 

214 africana. The positions of the teeth used in Laws (1966) are indicated in parentheses.

215

216 Figure 6: Differences in the relationship of the number of lamellar and age in P. huaihoensis and 

217 L. africana. Data of L. africana are from Laws (1966).

218

219 The reconstructed age distribution of P. huaihoensis revealed that the age peaked at 29–36 years, 

220 indicating a higher number of adult individuals (Fig. 7). Notably, the distributions of the upper 

221 and lower jaws were similar (two-sample t test, p = 0.941, t = 0.075), and they possibly 

222 originated from a single population (mean = 0.04). The Shapiro–Wilk test indicated a nonnormal 

223 age distribution (p < 0.05), and using the Wilcoxon–Mann–Whitney test, the medians of lower 

224 jaws indicated an age of 33–34.5 years.

225

226 Figure 7: Age distribution of P. huaihoensis from Penghu Channel, Taiwan. The frequency (%) 

227 is based on the proportion of specimens (n).

228

229 Pearson’s chi-square test revealed that P. huaihoensis age distribution was significantly different 

230 from the stable age distribution of M. primigenius (p < 0.05, Fig. 8a) but not from that of M. 

231 columbi (p > 0.05, Fig. 8b). M. primigenius mainly comprised juveniles and young-adult 

232 individuals, whereas P. huaihoensis and M. columbi comprised mostly adults aged 30–40 years.

233

234 Discussion
235 Tooth eruption has widely been used for estimating extant elephant age (Laws, 1966; Krumery & 

236 Buss, 1968; Shoshani, 1982; Roth & Shoshani, 1988). This method has also been applied to 

237 fossil species—for example, the age distribution of the Mammut (Mastodon) (Haynes, 1985), M. 

238 columbi (Saunders, 1980; Louguet-Lefebvre, 2013), and M. primigenius (Lister, 1999; Wojtal, 

239 2001; Rountrey, 2012). However, in P. huaihoensis, plate count, length, ET, and lamellar 

240 frequency measurements revealed substantial differences from the extant L. africana (e.g., Fig. 

241 6).

242

243 Our age distribution for P. huaihoensis has a distinct pattern compared with that of M. 

244 primigenius (Wojtal, 2001). In M. primigenius, numerous younger individuals (0–12 years) and 

245 much fewer adults were found in the European Kraków Spadzista site (Fig. 8a). Such a pattern 

246 represents the natural deaths of the whole population, suggesting nonselective cumulative deaths 

247 in the normal environment (Klein, 1985; Haynes, 1991; Haynes & Klimowicz, 2016).

248

249 Figure 8: Comparison of the age distribution of P. huaihoensis with that of (A) M. primigenius 

250 and (B) M. columbi.
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251

252 Although the upper and lower jaws of P. huaihoensis suggest that these specimens originate 

253 from a single population, the reconstructed age distribution indicates an older adult–dominant 

254 pattern (median = 33–34.5 years). The age profile of M. columbi seems to be similar to that of P. 

255 huaihoensis (Fig. 8b), but the living environment and taphonomic process for both species were 

256 completely disparate. The Hot spring site has yielded many specimens of M. columbi, and this 

257 areas are known to be not only essential for providing a water source for animals inhabiting 

258 adjacent areas but also a natural trap with unstable sediments that preferentially traps larger adult 

259 individuals (Agenbroad & Mead, 1994). This may be the reason that the inferred M. columbi 

260 population mainly comprised adult individuals (Louguet-Lefebvre, 2013). Intense interspecific 

261 competition between adults under harsh environmental conditions can cause massive death; we 

262 speculate that this was the case of P. huaihoensis. During the last ice age, climate change-related 

263 resource shortages likely resulted in sharp competition within the population of P. huaihoensis, 

264 particularly in large adult males (Valeix et al., 2007; Ferry et al., 2016).

265

266 In addition to competition, the notable older age predominance may have been caused by 

267 sampling bias because our materials were collected by bottom trawl fisheries and smaller teeth of 

268 P. huaihoensis from younger individuals may not have been sufficiently represented. However, 

269 fossils from the Penghu Channel have been collected for decades and have resulted in a massive 

270 collection of a diverse fauna (e.g., Hu & Tao, 1993), including fossil remains of much smaller 

271 sizes such as fragments of the tibia, vertebrae, ribs, and even a tiny lower jaw of Homo (Chang et 

272 al., 2015) were recovered using this method. In any case, small teeth of P. huaihoensis would be 

273 considerably represented if they existed. Therefore, the age frequency distribution suggests that 

274 the area around Penghu Channel might not have been a nursery ground for P. huaihoensis. 

275 Nevertheless, whether our material represents an equilibrium age distribution of P. huaihoensis 

276 remains uncertain because this age distribution could have existed only in fossil species.

277 The fossil records of P. huaihoensis date from the Middle to Late Pleistocene (Liu, 1977; Chen, 

278 2000). The species was first found in the northern part of Anhui, China (Liu, 1977). The further 

279 geographical distribution includes Huaihe River Region (Cai, 1999; Ho & Qi, 1999) and 

280 northern Jiangsu, China (Qian, 2017; Chen et al., 2020) (Fig. 9). In Taiwan, however, the species 

281 has only been found in the Penghu Channel and never southwards; thus, it is not found in the 

282 famous Chochen fauna (Kuo, 1982). Because of cold temperatures and water and food shortage, 

283 animals could have migrated from higher to lower latitudes; in particular, P. huaihoensis could 

284 have migrated southward in search of grasslands and water resources (Webb, 1977; Janis, 1989; 

285 Fox, 2000), especially given that the Penghu Channel was adapted to steppe habitats during the 

286 Late Pleistocene. However, possible ecological explanations, such as climate change and niche 

287 competition, have yet to be explored fully. Overall, the fossil records suggest that P. huaihoensis 

288 was distributed from northern China and to as far south as Penghu Channel in the last ice age but 

289 did not migrate across the Taiwan Strait to Taiwan Island (Fig. 9).

290
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291 Figure 9: Postulated migration direction (black arrow) of P. huaihoensis. The species likely 

292 originated from northern China (black pins), where fossil records are more abundant. The 

293 extension of the record in the Penghu Channel (white pin) in the last ice age is currently its 

294 southern limit. The current sea depth contour (−120 m) delineates the ancient coastline during 

295 the last ice age. The map is derived from the National Centers for Environmental Information 

296 (https://www.ngdc.noaa.gov).

297

298 Conclusions
299 The age distribution of such a large mammal as P. huaihoensis, which once inhabited the 

300 subtropical west Pacific in the Late Pleistocene, has been largely unknown. By using its fossil 

301 teeth from the Penghu Channel, we reconstructed its age distribution and defined 24 age groups 

302 by measuring the ontogenetic morphological changes in teeth length, ET, and plate counts. 

303 Compared with M. primigenius, P. huaihoensis from the Penghu Channel is distinct in having 

304 significantly more adult and older adult individuals and very few juveniles, similar instead to M. 

305 columbi. However, unlike taphonomic patterns of age distribution observed in the case of M. 

306 columbi, we speculate that environmental conditions and interspecific competition are possible 

307 causes. The fossil records further indicate that P. huaihoensis was mainly distributed in northern 

308 China and only extended southward in the Penghu Channel. The postulated ancient migration 

309 route of the species and the possible underlying ecological reasons would benefit from further 

310 investigation of the collection from northern China. Future studies should elucidate the exact age 

311 distribution of P. huaihoensis in northern China compared with that of the Penghu Channel and 

312 conduct isotope analyses to explore the possible vegetation and climatic impacts on the 

313 migration and specific age distribution recovered from the Penghu Channel.

314
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Figure 1
Map showing the sampling area in the Penghu Channel (dash rectangle). The base map
was created using ArcGIS.
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Figure 2
Images of P. huaihoensis specimens deposited at the National Museum of Nature
Science (NMNS).

(A) Nine enamel loops complete of the lower left dp4 and erosion at both ends, F027933. (B)
All lamellae in wear and the lower right M1 is connected to M2, which is slightly worn and
lacks enamel thickness (ET), F020284. (C) Nineteen lamellae of the lower left M3 in buccal
view, F051590. (D)(E) The upper right and left M3 with all lamellae in wear and slightly
eroded at both ends, F026947. (F) Buccal surface of the lower right M3, F020284. (G) Anterior
2-3 enamel loops confluent on the occlusal surface of lower right M3 from catalog number
F020226. (H) Lingual view of the lower right M3, F020248. All scale bars represent 5 cm.
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Figure 3
Measurements of an elephant tooth used in this study.
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Figure 4
Definition of age groups I–XXIV.

I: dp4 all lamellae in wear, M1 slight wear (specimen number: F02793); II: dp4 well worn,
approximately 3-4 plates remaining; M1 first 1-2 lamellae in wear (F051613); III: M1 all in
wear; M2 worn to enamel of first two lamellae (F044264); IV: M1 first 1-2 enamel loops
confluent, M2 slight wear (F020284); V: M1 well worn; M2 more enamel loops showing
(F051497); VI: M1 only 5-6 enamel loops left, slight erosion of posterior border; M2 lamellae
well formed (F051562); VII: M1 well worn, only three plates remain; M2 slight erosion of
anterior edge, 9-10 enamel loops complete (F027950); VIII: M2 first enamel loops confluent
(F044271); IX: M1 worn out; M2 well into wear showing lozenges, more lamellae visible
(F020247); X: M2 all except last 3 lamellae in wear (F020255); XI: M2 complete, all lamellae
in wear, and all enamel loops showing M2 erosion at both ends; M3 lamellae well formed
(F027988); XII: M2 all lamellae in wear, 15 enamel loops complete (F026927); XIII: M2 only
approximately 8-9 loops remain and erosion at both ends (F020287); XIV: M3 worn to enamel
of first lamellae and more enamel loops (F030111); XV: M2 lost; M3 11-12 enamel loops
complete (F020278); XVI: M2 worn out; M3 no erosion of anterior border, anterior 1-2 enamel
loops confluent (F044257); XVII: M3 only 2 lamellae not in wear (F027320); XVIII: M3 all
except last lamellae in wear (F044266); XIX: M3 first 1-2 enamel loops may confluent
(F051487); XX-I: M3 erosion at both borders, anterior 2-3 enamel loops confluent (F026942);
XX-II: M3 all except last lamellae in wear (F020258); XXI-I: M3 more enamel loops showing,
slight erosion of the anterior border (F044270); XXI-II: M3 well worn, first enamel loops may
be slightly confluent (F051560); XXII-I: M3 all lamellae in wear, no erosion at both ends
(F044268); XXII-II: M3 erosion at both borders, anterior 2-3 enamel loops confluent
(F027963); XXIII-I: M3 only five complete enamel loops remain, anterior part broken off
(F044261); XXIII-II: anterior third of tooth missing, only five complete lamellae remain

PeerJ reviewing PDF | (2021:01:56897:0:1:NEW 6 Jan 2021)

Manuscript to be reviewed



(F027967); XXIV: M3 only 2-3 loops remain (F051559).
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Figure 5
The relationships of various meristic measurements in the jaws of dp4-M3.

(A) Tooth width and lamellar frequency in the occlusal surface of the upper jaw (r = −0.558, t
= −7.699, p < 0.05). (B) Tooth width and lamellar frequency in the buccal side of the upper
jaw (r = −0.476, t = −6.201, p < 0.05). (C) Tooth width and enamel thickness (ET) of the
upper jaw (r = 0.531, t = 7.179, p < 0.05). (D) Width and lamellar frequency in the occlusal
surface of the lower jaw (r = −0.649, t = −7.915, p < 0.05). (E) Width and lamellar frequency
in the buccal side of the lower jaw (r = −0.453, t = −7.523, p < 0.05). (F) Width and ET of
the lower jaw (r = 0.457, t = 4.759, p < 0.05).
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Figure 6
Differences in the relationship of the number of lamellar and age in P. huaihoensis and
L. africana. Data of L. africana are from Laws (1966).
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Figure 7
Age distribution of P. huaihoensis from Penghu Channel, Taiwan. The frequency (%) is
based on the proportion of specimens (n).
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Figure 8
Comparison of the age distribution of P. huaihoensis with that of (A) M. primigenius and
(B) M. columbi.
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Figure 9
Postulated migration direction (black arrow) of P. huaihoensis. The species likely
originated from northern China (black pins), where fossil records are more abundant.
The extension of the record in the Penghu Channel (white pin) in the last ice age

The current sea depth contour (−120 m) delineates the ancient coastline during the last ice
age. The map is derived from the National Centers for Environmental Information (
https://www.ngdc.noaa.gov ).
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Win McLaughlin
The pins are a little odd. Stars maybe? With the pins it’s unclear if the site is at the tip of the pin or where the body of the pin sits. 



Table 1(on next page)

Comparison of estimated ages derived from the lower jaw of P. huaihoensis and L.
africana. The positions of the teeth used in Laws (1966) are indicated in parentheses.

PeerJ reviewing PDF | (2021:01:56897:0:1:NEW 6 Jan 2021)

Manuscript to be reviewed



L. africana (from Laws, 1966) P. huaihoensis (this study)
Tooth position

Age groups No. of lamellae Age (yrs) Age groups No. of lamellae Age (yrs)

dp2 I–V 3 0–3 – – –

dp3 VI–X 7 4–13 – – –

dp4 XI–XV 9 15–24 I–IV 9 4–16

M1 XVI–XX 9 26–34 V–X 11 18–28

M2 XXI–XXV 10 36–47 XI–XVI 17 32–41

M3 XXVI–XXX 12 49–60 XVII–XXIV 22 43–57

1

PeerJ reviewing PDF | (2021:01:56897:0:1:NEW 6 Jan 2021)

Manuscript to be reviewed


