Age determination of *Palaeoloxodon huaihoensis* from Penghu Channel, Taiwan: significance of their age distribution based on fossils (#56897)

First submission

Guidance from your Editor

Please submit by 28 Jan 2021 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 9 Figure file(s)
- 1 Table file(s)
- 2 Raw data file(s)

ĺ

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Age determination of *Palaeoloxodon huaihoensis* from Penghu Channel, Taiwan: significance of their age distribution based on fossils

Jia-Cih Kang¹, Chien-Hsiang Lin Corresp., 1, 2, Chun-Hsiang Chang Corresp., 1, 3

Corresponding Authors: Chien-Hsiang Lin, Chun-Hsiang Chang Email address: chlin.otolith@gmail.com, cch@mail.nmns.edu.tw

Fossil teeth of Palaeoloxodon huaihoensis have been recovered over decades from the Penghu Channel during fis es activities. The National Museum of Nature Science (NMNS) material, which differs in size and morphology and likely has a collection of such to represents ontogenetic variation and growth trajectory of various age groups of P. huaihoensis. However, little is known regarding P. huaihoensis age det ination. By using teetl ngth, enamel thickness (ET), and plate counts, we established the age distribution s, which is di y derived from the extant African forest elephant Loxodonta of the spe africana. When measuring signs of allometric growth, we found that in both the upper and lower jaws, tooth width was correlated negatively with lamellar frequency but positively with ET. In the same age group, the number of lamellae was higher in *P. huaihoensis* than in L. africana. The reconstructed age distribution indicated no difference in the upper or lower jaw. Notably, the age frequency distribution of *P. huaihoensis* differed significantly from that of **Mammuth** rimigenius: P. huaihoensi ore adult and older adult individuals in the population (median age: 33-34.5 years). This distinct pattern is speculated to be related to the harsh enviro ental conditions and intense interspecific competition among *P. huaihoensis* during the last ice age.

¹ Department of Life Science, Tunghai University, Taichung City, No. 1727, Sec. 4, Taiwan Blvd., Xitun Dist., Taiwan

² Biodiversity Research Center, Academia Sinica, Taipei, Taipei City, No. 128, Sec. 2, Academia Rd., Nangang Dist., Taiwan

Department of Geology, National Museum of Nature Science, Taichung, Taichung City, No. 1, Guanqian Rd., North Dist., Taiwan

Age determinati of *Palaeoloxodon huaihoensis* from Penghu Channel, Taiwan: significance of their age distribution based on fossils

4 5

1

2

3

Jia-Cih Kang¹, Chien-Hsiang Lin ^{1,2,*}, Chun-Hsiang Chang ^{1,3*}

6 7

- ¹ Department of Life Science, Tunghai University, Taichung, Taiwan
- 8 ² Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
 - ³ Department of Geology, National Museum of Nature Science, Taichung, Taiwan

10

9

- 11 Corresponding Author:
- 12 Chien-Hsiang Lin^{2*}
- 13 Chun-Hsiang Chang ^{3*}

14

- 15 Email address:
- 16 ^{2*} chlin.otolith@gmail.com
- 17 3* cch@mail.nmns.edu.tw

18 19

Abstract

20 Fos: eth of Palaeoloxodon huaihoensis have be covered over decades from the Penghu

- 21 Channel during fisheries activities. The National Museum of Nature Science (NMNS) has a
- 22 collection of such tooth material, which differs in size and morphology and likely represents
- 23 ontogenetic variation and growth trajectory of various age groups of *P. huaihoensis*. However,
- 24 little is known regarding *P. huaihoensis* age determination. By using teeth length, enamel
- 25 thickness (ET), and plate counts, we established the age distribution of the species, which is
- 26 directly derived from the extant African forest elephant *Loxodonta africana*. When measuring
- 27 signs of allometric growth, we found that in both the upper and lower jaws, tooth width was
- 28 correlated negatively with lamellar frequency but positively with ET. In the same age group, the
- 29 number of lamellae was higher in *P. huaihoensis* than in *L. africana*. The reconstructed age
- 30 distribution indicated no difference in the upper or lower jaw. Notably, the age frequency
- distribution of *P. huaihoensis* differed significantly from that of *Mammuthus primigenius*: *P.*
- 32 *huaihoensis* more adult and older adult individuals in the population (median age: 33–34.5
- years). This distinct pattern is speculated to be related to the harsh environmental conditions and
- 34 intense interspecific competition among *P. huaihoensis* during the last ice age.

3536

Keywords: age distribution, Pleistocene, subtropical west Pacific, elephant age group, lamellar frequency, tooth morphology, Taiwan, Penghu Channel

373839

Introduction

40 The fossil genus *Palaeoloxodon* (Palaeoloxodontinae, Elephantidae) has been elv recorded from Eurasia, Africa, and East Asia during the Late Pleistocene (Markiyama, 1924; Matsumoto 41 1929; Osborn, 1936; Zong, 1987; Haynes, 1991). *Palaeoloxodon* has eight known species: 42 43 antiquus (Falconer & Cautley, 1847; Osborn, 1942), P. namadicus (Falconer & Cautley, 1847; Osborn, 1924; Matsumoto, 1929), P. falconeri (Falconer, 1862; Busk, 1867; Vaufrey, 1929; 44 Osborn, 1942), P. mnaidriensis (Adams, 1870), P. cypriotes (Bate, 1903; Osborn 1942), P. recki 45 (Dietrich, 1916; Maglio, 1970; Maglio, 1973; Beden, 1979, unpublished data), P. naumanni 46 47 (Makiyama, 1924), and *P-hugihoensis* (Qi, 1999). In China and neighboring areas, records of bundant (Liu, 1977; Qi, 1999), and many specimens have been 48 Palaeoloxodon are relativ 49 tified as P. namadicus, P. naumanni or P. huaihoensis (Ho et al., 2000; Shieh et al., 2007; 50 UI, 1999). Among the three species, *P. namadicus* is found mostly in the Nihewan Basin, China 51 (Wei, 1976). Records of P. naumanni are widely distributed in China and Japan but not in Taiwan (Takahashi et al., 2001). Palaeoloxodon huaihoensis is the only known species from the 52 53 Penghu Channel, Taiwan (Shieh & Chang, 2007). Ho et al. (2000) stated that P. huaihoensis was once distributed both in the China and Taiwan area during the Pleistocene (Shieh & Chang, 54 55 2007). 56 57 You et al. (1995) divided the Eastern China Sea into three paleobiogeographic zones in the Late 58 Pleistocene, with the north of 38°N representing Mammuthus—Coelodonta fauna, 28 °N - 38 °N 59 representing Palaeoloxodon-Elaphurus davidianus fauna, and Ailuropoda-Stegodon fauna to south of 28°N. According to this scheme, Taiwan and the adjacent Penghu Channel should 60 61 belong to the Ailuropoda-Stegodon fauna category. However, the Penghu fauna is mainly 62 composed of E. davidianus, Bubalus teilhardi, and P. huaihoensis (Kuo, 1982; Hu & Tao, 1993; Ho, 1998; Qi, 1999), which is more similar to the fauna in the Huaihe River Region, which 63 belongs to the *Palaeoloxodon–E. davidianus* fauna (You, 1995; Chen, 2000; Ho et al., 2008). 64 65 Studies have in ited the existence of a narrow and semiclosed sea similar to a land bridge between the Yellow Sea and East Sea in the last ice age (Chen, 2000). Therefore, the 66 paleoclimate in the Pleistocene Taiwan Strait might belong to the tropical-temperate zone (Cai, 67 68 1999). Indeed, the so-called "Taiwan Landbridge Fauna" in es at least two distinct faunas during the Middle-Late Pleistocene: one spanning from the Middle to early Late Pleistocene 69 70 (Chochen fauna) and one confined to the Late Pleistocene (Penghu fauna) (Chen, 2000). 71 72 The fauna of Chochen area includes several large mammals, such as *Rhinoceros sinensis* hayasakai (Hayasakai, 1942). Stegodon (Parastegodon) akashiensis (Hayasakai, 1942; Shikama 73 74 et al., 1975; Otsuka, 1984), a (Parastegodon) aurorae (Shikama et al., 1975), but no fossils of P. huaihoensis were found (Kuo, 1982; Ho & Qi, 1999). The Chochen fauna is believed to 75 share more affinities with that of the Huanan area in southern China than in with the mammal 76 fauna from northern China (Ho, 1998; Cai, 1999; Ho & Oi, 1999; Shieh & Chang, 2007). 77 78 However, the taphonomic and postmortem transportation processes of Chochen area are very 79 complex and somewhat ambiguous, which resulted in both terrestrial and marine elements in the 80 whole fauna (e.g., Lin et al., 2019). However, the composition of the Penghu fauna indicates that all of it likely originated from northern China throughout the Pleistocene (Ho et al., 1997; Qi, 81 82 1999; Shieh & Chang, 2007).

83	
84	The elephant tee ssils provide crucial evidence about the ecosystem in the past. The tooth
85	growth patterns enables inference of the population's age distribution (Haynes, 1985) and the
86	related habitat distribution across vegetation and climate gradient (Webb, 1977; Janis, 1989;
87	Sukumar, 1992; Fox, 2000; Sukumar, 2003). However, analyses based on <i>Palaeoloxodon</i> teeth
88	have not been conducte proughly. Therefore, this study explored the age distribution and
89	structure of <i>P. huaihoensis</i> from Penghu Channel, Taiwan, using the teeth fossils. We defined
90	age groups v lescriptions, reconstructed their age distribution and compared it with other
91	fossil species, and interpreted species distribution in the area.
92	
93	Materials & Methods
94	Specimens and measurements
95	P. huaihoensis specimens were all dredged and recovered by fix nets from the Penghu
96	Channel, Taiwan, as in Chang (2015). The Penghu Channel (22°40′N–23°40′N, 119°00′E–
97	120°00′E) is located in the Taiwan Strait between Penghu Island (Pescadores) and Taiwan (Fig.
98	1). A total of 221 teeth (dp4 (n = 3), M1 (13), M2 (42), and M3 (163)), including 88, were
99	available at the National Museum of Nature Science (NMNS), Taiwan for this study. Eroded and
100	abraded specimens w ot analyzed (Fig. 2, Table S1)
101	
102	Figure 1: Map showing the sampling area in the Penghu Channel (rectangle). The base map
103	was created using ArcGIS.
104	
105	Figure 2: Images of <i>P. huaihoensis</i> specimens deposited at the National Museum of Nature
106	Science (NMNS). (A) Nine enamel loops complete of the lower left dp4 and erosion at both
107	ends, F027933. (B) All lamellae in wear and the lower right M1 is connected to M2, which is slightly worn and lacks enamel thickness (ET), F020284. (C) Nineteen lamellae of the lower left
108	M3 in buccal view, F051590. (D)(E) The upper right and left M3 with all lamellae in wear and
109 110	slightly eroded at both ends, F026947. (F) Buccal surface of the lower right M3, F020284. (G)
111	Anterior 2-3 enamel loops confluent on the occlusal surface of lower right M3 from catalog
111	number F020226. (H) Lingual view of the lower right M3, F020248. All scale bars represent 5
113	cm.
113	
115	We first used the plate counts to identify the room of the molar. Next, the tooth length, width,
116	and height were measured (Fig. 3), with the height taken vertically from the crown apex of the
117	plate. The enamel thickness (ET) was measured with calipers. To calculate lamellar frequency,
118	the number of complete plates at 10 cm at the crown base of both the lingual and buccal sides
119	was taken (Short, 1969; Hasegawa, 1972; Maglio, 1973; Shieh & Chang, 2007; Chang, 2010,
120	unpublished data).
121	1/.
122	Figure. 3. Measurements of an elephant to seed in this study.

PeerJ reviewing PDF | (2021:01:56897:0:1:NEW 6 Jan 2021)

123

- 124 **Age determination**
- We used the size, st re, and wear of teeth to determine the age distribution of *P. huaihoensis*
- (Morrison-Scott, 1947; Sikes, 1966; Maglio, 1973; Lang, 1980). Thirty age groups based on
- tooth morphology and shearing rate of deciduous teeth of African forest elephants were
- established by Laws (1966), and this method has been widely used for the reconstruction of age
- distribution in many elephant species (Haynes, 1991; Lister, 1999). We used this method too
- with slight modifications. For example, Laws' method indicates that M3 has a maximum number
- of 12 plates in *L. africana*, but in *P. huaihoensis*, as many as 22 plates can be found in M3. In
- this case, the remaining number of plates in *P. huaihoensis* can be obtained by the rate of tooth
- eruption of *L. africana* multiplied by the observed plates of *P. huaihoensis*. Thus, the age group
- 134 XX of Law's with 12 plates indicates that there will be six plates in the age groups of P.
- huaihoensis if $(22/12) \times 6 = 11$ plates are remaining (see Table S2). Consequently, we
- established 24 age groups defined using 88 jaws (Fig. 4).

- Figure 4: Definition of age groups I–XXIV. I: dp4 all lamellae in wear, M1 slight wear
- 139 (specimen number: F02793); II: dp4 well worn, approximately 3-4 plates remaining; M1 first 1-2
- lamellae in wear (F051613); III: M1 all in wear; M2 worn to enamel of first two lamellae
- 141 (F044264); IV: M1 first 1-2 enamel loops confluent, M2 slight wear (F020284); V: M1 well
- worn; M2 more enamel loops showing (F051497); VI: M1 only 5-6 enamel loops left, slight
- erosion of posterior border; M2 lamellae well formed (F051562); VII: M1 well worn, only three
- plates remain; M2 slight erosion of anterior edge, 9-10 enamel loops complete (F027950); VIII:
- 145 M2 first enamel loops confluent (F044271); IX: M1 worn out; M2 well into wear showing
- lozenges, more lamellae visible (F020247); X: M2 all except last 3 lamellae in wear (F020255);
- 147 XI: M2 complete, all lamellae in wear, and all enamel loops showing M2 erosion at both ends;
- M3 lamellae well formed (F027988); XII: M2 all lamellae in wear, 15 enamel loops complete
- (F026927); XIII: M2 only approximately 8-9 loops remain and erosion at both ends (F020287);
- 177 (1020)27), 7111. 112 only approximately 0 100ps remain that crosson at our charge (1020)20/3
- 150 XIV: M3 worn to enamel of first lamellae and more enamel loops (F030111); XV: M2 lost; M3
- 151 11-12 enamel loops complete (F020278); XVI: M2 worn out; M3 no erosion of anterior border,
- anterior 1-2 enamel loops confluent (F044257) II: M3 only 2 lamellae not in wear
- 153 (F027320); XVIII: M3 all except last lamellae in wear (F044266); XIX: M3 first 1-2 enamel
- loops may confluent (F051487); XX-I: M3 erosion at both borders, anterior 2-3 enamel loops
- 155 confluent (F026942); XX-II: M3 all except last lamellae in wear (F020258); XXI-I: M3 more
- enamel loops showing, slight erosion of the anterior border (F044270); XXI-II: M3 well worn,
- first enamel loops may be slightly confluent (F051560); XXII-I: M3 all lamellae in wear, no
- erosion at both ends (F044268); XXII-II: M3 erosion at both borders, anterior 2-3 enamel loops
- 159 confluent (F027963); XXIII-I: M3 only five complete enamel loops remain, anterior part broken
- off (F044261); XXIII-II: anterior third of tooth missing, only five complete lamellae remain
- 161 (F027967); XXIV: M3 only 2-3 loops remain (F051559).

162163

Statistical analysis

- 164 The tooth width and lamellar frequency in occlusal and buccal sides of the lower and upper jaws
- of dp4-M3 as well as the relationship between the width and enamel thickness (ET) of lower and
- upper jaws of dp4-M3 were plotted using R software (Core Team and Others 2013). The
- relationship between two variables was indicated using Pearson's correlation coefficient. These

181

189190

191

192

193

194

195

196

197

206

- relationships reflect whether the concerned variables revealed an allometric growth pattern. The number of lamellae throughout the lifespan was plotted against the estimated age of *P*.
- huai esis (see above, Age determination). Moreover, *L. africana* data were used for on (Laws, 1966).

173 A histogram based on the frequency distribution of specimens was established to reconstruct the age distribution of *P. huaihoensis*. Unlike studies in which only the lower 174 were considered (Laws, 1966), we included upper jaw specimens for comparison. A null hypothesis of the 175 distributions of upper and lower jaws was first tested using the two-sample t test. However, when 176 177 no significant difference between upper and lower jaws was detected, only lower jaw specimens were used in subsequent analyses. A Shapiro-Wilk test was conducted to test whether the fossil 178 age distribution data were distributed normally; if not, the median for the lower jaws was 179 180 calculated using the Wilcoxon–Mann–Whitney test.

Finally, we compared the age distribution based on fossil remains of *P. huaihoensis* with other species: the stable age distribution of fossil *Mammuthus primigenius* and *M. columbi*. A null hypothesis stating the same age distribution for each population pair was analyzed using Pearson's chi-square test. Here, the independence of age and the number of individuals in each of the two populations were tested. The *M. columbi* and *M. primigenius* data were derived from the studies of Louguet-Lefebvre (2013).

Nojtal (2001), respectively. All analyses were performed using R (Core Team and Others 2013).

Results

- Tooth width and lamellar frequency were negatively correlated on both the occlusal and buccal sides for dp4-M3. Lamellar frequency increased when tooth width decreased in both upper and lower jaws (Fig. 5a, b, d, e). By contrast, the tooth width and ET were positively correlated on both the sides (Fig. 5c, f). The size range overlapped in some cases; for instance, the M2 overlapped with M3 in occlusal width and lamellar frequency and width and ET of the lower jaw, respectively (Fig. 5d, f).
- 198 Figure 5: The relationships of various meristic measurements in the jaws of dp4-M3. (A) Tooth width and lamellar frequency in the occlusal surface of the upper jaw (r = -0.558, t =199 -7.699, p < 0.05). (B) Tooth width and lamellar frequency in the buccal side of the upper jaw (r 200 = -0.476, t = -6.201, p < 0.05). (C) Tooth width and enamel thickness (ET) of the upper jaw (r = 201 202 0.531, t = 7.179, p < 0.05). (D) Width and lamellar frequency in the occlusal surface of the lower jaw (r = -0.649, t = -7.915, p < 0.05). (E) Width and lamellar frequency in the buccal side of the 203 204 lower jaw (r = -0.453, t = -7.523, p < 0.05). (F) Width and ET of the lower jaw (r = 0.457, t = 205 4.759, p < 0.05).
- A summary of the various age groups derived from the tooth morphology, lamellar number, teeth position, and age estimation is presented in Table 1. The number of lamellae of *P. huaihoensis* was considerably higher than that of *L. africana* in the same age group (Fig. 6). Moreover, the

- 210 increasing rate of lamellae in P. huaihoensis was progressively more evident than that of L. africana from M1, eventually reaching 22 lamellae in M3. 211 212 213 Table 1: Comparison of estimated ages derived from the lower jaw of *P. huaihoensis* and *L.* 214 africana. The positions of the teeth used in Laws (1966) are indicated in parentheses. 215 216 Figure 6: Differences in the relationship of the number of lamellar and age in P. huaihoensis and 217 L. africana. Data of L. africana are from Laws (1966). 218 219 The reconstructed age distribution of *P. huaihoensis* revealed that the age peaked at 29–36 years, 220 indicating a higher number of adult individuals (Fig. 7). Notably, the distributions of the upper 221 and lower jaws were similar (two-sample t test, p = 0.941, t = 0.075), and they possibly 222 originated from a single population (mean = 0.04). The Shapiro-Wilk test indicated a nonnormal 223 age distribution (p < 0.05), and using the Wilcoxon–Mann–Whitney test, the medians of lower iaws indicated an age of 33-34.5 years. 224 225 226 Figure 7: Age distribution of *P. huaihoensis* from Penghu Channel, Taiwan. The frequency (%) 227 is based on the proportion of specimens (n). 228 229 Pearson's chi-square test revealed that P. huaihoensis age distribution was significantly different 230 from the stable age distribution of M. primigenius (p < 0.05, Fig. 8a) but not from that of M. 231 columbi (p > 0.05, Fig. 8b). M. primigenius mainly comprised juveniles and young-adult 232 individuals, whereas P. huaihoensis and M. columbi comprised mostly adults aged 30–40 years. 233 234 **Discussion** 235 Tooth eruption has widely been used for estimating extant elephant age (Laws, 1966; Krumery & 236 Buss, 1968; Shoshani, 1982; Roth & Shoshani, 1988). This method has also been applied to 237 fossil species—for example, the age distribution of the *Mammut* (Mastodon) (Haynes, 1985), M. 238 columbi (Saunders, 1980; Louguet-Lefebvre, 2013), and M. primigenius (Lister, 1999; Wojtal, 239 2001; Rountrey, 2012). However, in *P. huaihoensis*, plate count, length, ET, and lamellar 240 frequency measurements revealed substantial differences from the extant L. africana (e.g., Fig. 241 6). 242 243 Our age distribution for P. huaihoensis has a distinct pattern compared with that of M. 244 primigenius (Wojtal, 2001). In M. primigenius, numerous younger individuals (0–12 years) and 245 fewer adults were found in the European Kraków Spadzista site (Fig. 8a). Such ar 246 represents the natural deaths of the whole population, suggesting nonselective cumulative deaths 247 in the normal environment (Klein, 1985; Haynes, 1991; Haynes & Klimowicz, 2016).
- Figure 8: Comparison of the age distribution of *P. huaihoensis* with that of (A) *M. primigenius* and (B) *M. columbi*.

253

254255

256

257

258259

260

261

262

263

Although the upper and lower jaws of P. huaihoensis suggest that these specimens originate from a single population, the reconstructed age distribution indicates an older adult-dominant pattern (median = 33-34.5 years). The age profile of M. columbi seems to be similar to that of P. huaihoensis (Fig. 8b), but the living environment and taphonomic process for both species were ing site has yielded many specimens of M. columbi, and this completely disparate. The Ho to be not only essential for providing a water source for animals inhabiting areas are kn adjacent areas put also a natural trap with unstable sediments that preferentially traps larger adult individuals (Agenbroad & Mead, 1994). This may be the reason that the inferred M. columbi population mainly comprised adult individuals (Louguet-Lefebvre, 2013). Intense interspecific competition between adults under harsh environ ital conditions can cause massive death; we speculate that this was the case of P. huaihoensis. During the last ice age, climate change-related resource shortages likely resulted in sharp competition within the population of *P. huaihoensis*, particularly in large adult males (Valeix et al., 2007; Ferry et al., 2016).

264265266

267268

269

270

271

272273

274275

276277

278

279

280281

282283

284285

286

287

288

In addition to competition, the notable older age predominance may have been caused by sampling bias because our materials were collected by bottom trawl fisheries and smaller teeth of P. huaihoensis from younger individuals may not have been sufficiently represented. However, fossils from the Penghu Channel have been collected for decades and have resulted in a massive collection of a diverse fauna (e.g., Hu & Tao,), including fossil remains of much smaller sizes such as fragments of the tibia, vertebrae, ribs, and even a tiny lower jaw of *Homo* (Chang et al., 2015) were recovered using this method. In any case, small teeth of P. huaihoensis would be considerably represented if they existed. Therefore, the age frequency distribution suggests that the area around Penghu Channel might not have been a nursery ground for *P. huaihoensis*. Nevertheless, whether our material represents an equilibrium age distribution of *P. huaihoensis* remains uncertain because this age distribution could have existed only in fossil species. The fossil records of *P. huaihoensis* date from the Middle to Late Pleistocene (Liu, 1977; Chen, 2000). The species was first found in the northern part of Anhui, China (Liu, 1977). The further geographical distribution includes Huaihe River Region (Cai, 1999; Ho & Oi, 1999) and northern Jiangsu, China (Qian, 2017; Chen et al., 2020) (Fig. 9). In Taiwan, however, the species has only been found in the Penghu Channel and never southwards; thus, it is not found in the famous Chochen fauna (Kuo, 1982). Because of cold temperatures and water and food shortage, animals could have migrated from higher to lower latitudes; in particular, P. huaihoensis could have migrated southward in search of grasslands and water resources (Webb, 1977; Janis, 1989; Fox, 2000), especially given that the Penghu Channel was a ed to steppe habitats during the Late Pleistocene. However, possible ecological explanations, such as climate change and niche competition, have yet to be explored fully. Overall, the fossil records suggest that *P. huaihoensis* was distributed from northern China and to as far south as Penghu Channel in the last ice age but did not migrate across the Taiwan Strait to Taiwan Island (Fig. 9).

289 290

Figure 9: Postulated migration direction (black arrow) of *P. huaihoensis*. The species likely originated from northern China (black pins), where fossil records are more abundant. The extension of the record in the Penghu Channel (white pin) in the last ice age is currently its southern limit. The current sea depth contour (-120 m) delineates the ancient coastline during the last ice age. The map is derived from the National Centers for Environmental Information (https://www.ngdc.noaa.gov).

Conclu

297

298

299300

ConclusionsThe age distribution of such a large mammal as *P. huaihoensis*, which once inhabited the subtropical west Pacific in the Late Pleistocene, has been largely unknown. By using its fossil

h from the Penghu Channel, we reconstructed its age distribution and defined 24 age groups by measuring the ontogenetic morphological changes in teeth length, ET, and plate counts.

Compared with *M. primigenius*, *P. huaihoensis* from the Penghu Channel is distinct in having

significantly more adult and older adult individuals and very few juveniles, similar instead to *M*.

columbi. However, unlike taphonomic patterns of age distribution observed in the case of M.
 columbi, we speculate that environmental conditions and interspecific competition are possible

causes. The fossil records further indicate that *P. huaihoensis* was mainly distributed in northern

308 China and only extended southward in the Penghu Channel. The postulated ancient migration

309 route of the species and the possible underlying ecological reasons would benefit from further

310 investigation of the collection from northern China. Future studies should elucidate the exact age

311 distribution of *P. huaihoensis* in northern China compared with that of the Penghu Channel and

conduct isotope analyses to explore the pos vegetation and climatic impacts on the

migration and specific age distribution recovered from the Penghu Channel.

314 315

Acknowledgements

- We are grateful to Prof. Yi-Ching Lin and Mr. Xinyue Ou (Department of Life Science, Tunghai
- 317 University, Taiwan) for their constructive comments and suggestions on the statistical analyses.
- 318 This research was financially supported by the Taiwan Ministry of Science and Technology
- 319 (MOST 109-2116-M-178-002-)

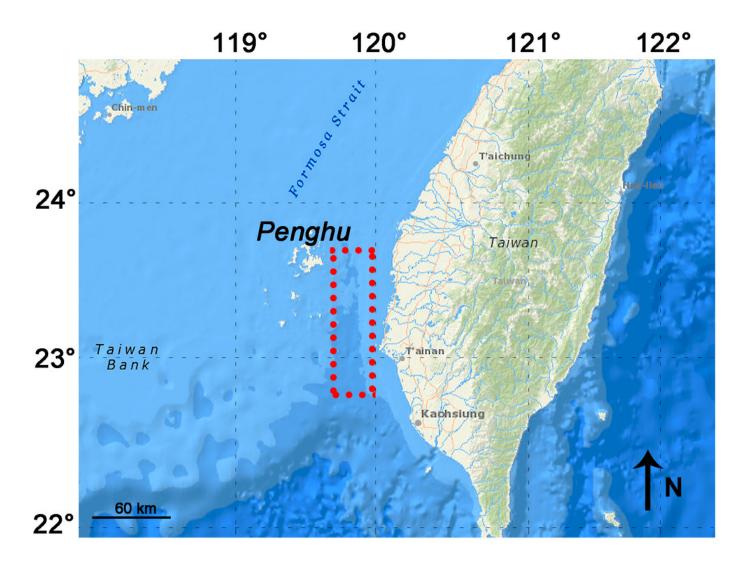
320321

Reference

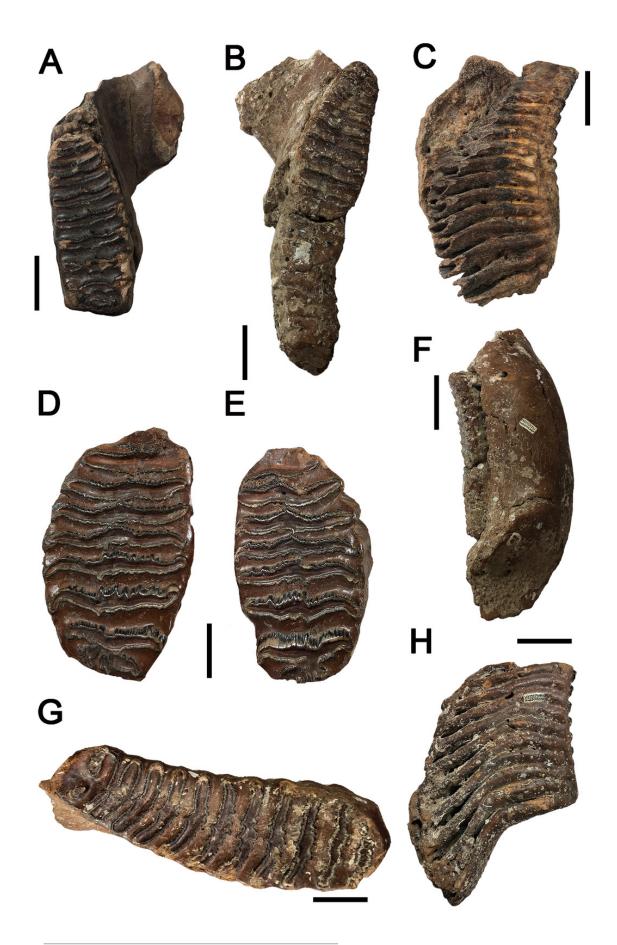
- Adams AL. 1870. Notes of a Naturalist in the Nile Valley and Malta: a narrative of exploration
- 323 and research in connection with the natural history, Geology and archaeology of the lower Nile
- 324 and Maltese Islands. Edinburgh, UK: Edmonston and Douglas. 295
- 325 Agenbroad LD, Mead JI. 1994. The Hot Springs Mammoth Site: a Decade of Field and
- 326 Laboratory Research in Paleontology, Geology, and Paleoecology, Mammoth Site of Hot
- 327 Springs. South Dakota, Inc., Hot Springs. 451 DOI: doi.org/10.1086/419383
- 328 Bate DMA. 1903. Preliminary note on the discovery of a pygmy elephant in the Pleistocene of
- 329 Cyprus. Proceedings of the Royal Society of London B197:347-60
- 330 Beden M. 1979. Les Elephants (Loxodonta et Elephas) d'Afrique Orientale: Systématique,
- 331 *Phylogénie, Intérêt Biochronologique*. D. Phil. Thesis, Université de Poitiers.

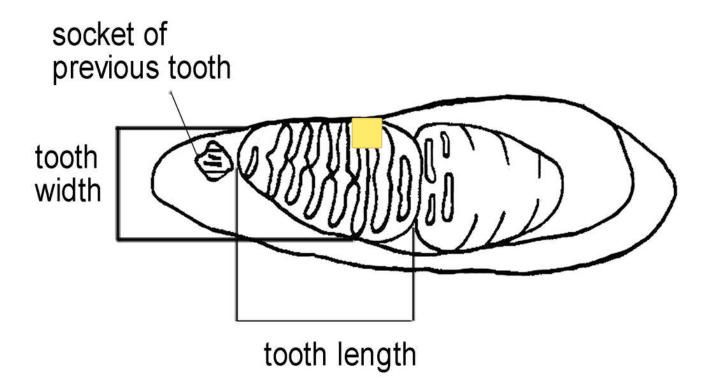
- Busk G. 1867. Description of the remains of three extinct species of elephant, collected by Capt.
- 333 Spratt, C. B. R. N., in the ossiferous cavern of Zebbug, in the island of Malta. Partly from the
- notes from the late H. Falconer, M. D. F. R. S. Transactions of the Zoological Society of London
- 335 *VI (PtV)* 227-306
- Cai BQ. 1999. The Later Pleistocene Fossil Mammals and the Palaeogeographical Environment
- of the Taiwan Strait. Journal of Xiamen University (Arts & Social Sciences) 4:29-33.
- 338 Chang CH. 2010. Evolution of Elephantide in the Quaternary of the Far East. D. Phil. Thesis,
- 339 University College London
- Chang CH, Kaifu Y, Takai M, Kono RT, Grün R, Matsu'ura S, Kinsley L, Lin LK. 2015. The
- first archaic Homo from Taiwan. *Nature Communications* 6:6037 DOI: 10.1038/ncomms7037
- 342 Chen X, Wu S, Wang P, Wang XB, Chao JH. 2020. A report on the Late Pleistocene vertebrate
- fossils from the Zhangshan locality, Suqian, Jiangsu Province. Acta Antheropologica Sinica
- 344 39(2):319-331 DOI: 10.16359/j.cnki.cn11-1963/q.2018.0021
- 345 Chen KT. 2000. On Taiwan Mammalian Faunas in Different Periods of Time and Related
- Problems: The Background Materials for Taiwan Zooarchaeological Studies: I. Bulletin of the
- 347 Institute of History and Philology Academia Sinica 71(1):129-198
- 348 Dietrich WO. 1916. Elephas antiquus Recki n.f. aus dem Diluvium Deutsch-Ostafiikas. Archives
- 349 *of Biology*. 4:1-80
- 350 Falconer H, Cautley PT. 1847. Fauna Antiqua Sivalensis, being the Fossil Zoology of the
- 351 Sewalik Hills in the North of India. London: Smith, Elder and Co.
- Falconer H. 1862. On Ossiferous Caves in Malta, Explored by Captain Spratt, R.N., C.B., with
- an account of *Elephas meletensis*, a pigmy species of fossil elephant and other remains found in
- 354 them. *Parthenon* 125:780
- Fatti LP, Smuts GL, Starfield AM, Spurdle AA. 1980. Age Determination in African Elephants.
- 356 *Journal of Mammalogy* 61(3):547-551 DOI: doi.org/10.2307/1379852
- Ferry N, Dray S, Fritz H, Valeix M. 2016. Interspecific interference competition at the resource
- patch scale: do large herbivores spatially avoid elephants while accessing water? *Journal of*
- 359 *Animal Ecology* 85(6):1574–85 DOI: 10.1111/1365-2656.12582
- 360 Hasegawa Y. 1972. The Naumann's elephant, *Palaeoloxodon naumanni* (MAKIYAMA) from
- 361 the late Pleistocene off Shakagahana, Shodoshima Is. In Seto Inland Sea, Japan. Bulletin of the
- 362 *National Science Museum* 15(3):513-591
- Hayasakai A. 1942. On the occurrence of mammalian remains in Taiwan a preliminary
- 364 summary. *Taiwan Tigaku Kizi* 13(4):95-109
- 365 Haynes G. 1985. Age Profiles in Elephant and Mammoth Bone Assemblages. *Quaternary*
- 366 Research 24(3):333-345 DOI: 10.1016/0033-5894(85)90055-9
- 367 Haynes G. 1991. Mammoths, Mastodons, and Elephants: Biology, Behavior, and the Fossil
- 368 Record. New York: Cambridge University Press. 413 DOI: 10.1002/gea.3340090506
- 369 Haynes G, Klimowicz J. 2016. The Meaning of the Mammoth Age Profile from Kraków

- 370 Spadzista Trench B+B1. In Wojtal P, Wilczynski J, Haynes G. (Eds.), A Gravettian Site in
- 371 Southern Poland: Kraków Spadzista. Institute of Systematics and Evolution of Animals, Polish
- 372 Academy of Sciences, Kraków, pp. 159-187
- Ho CK, Qi GQ, Chang CH. 1996. A preliminary study and reconstruction of Late Pleistocene
- 374 megafauna Bubalus teilhardi Young from the Penghu Channel. Taiwan Annual of Taiwan
- 375 *Museum* 39:1-15
- 376 Ho CK, Qi GQ, Chang CH. 1997. A Preliminary Study of Late Pleistocene Carnivore Fossils
- from the Penghu Channel, Taiwan. *Journal of the National Taiwan Museum* 40:195-224 DOI:
- 378 10.6548/ATMB
- 379 Ho CK. 1998. The mammalian of Penghu Channel in the Late Pleistocene. *Newsletter of Chinese*
- 380 Ethnology 36:3-11
- 381 Ho CK, Qi GQ. 1999. Quaternary fauna and paleoenvironment of Penghu submarine trench of
- 382 Taiwan. Quaternary Science 2:47-48
- 383 Ho CK, Qi GQ, Chang CH. 2000. Systematic Description and Classification of Late Pleistocene
- *Palaeoloxodon. Journal of the National Taiwan Museum* 43:49-105 DOI:
- 385 10.6548/ANTM.200012 43.0003
- 386 Ho CK, Qi GQ, Chang CH. 2008. A preliminary study of Late Pleistocene Megafauna Cervus sp.
- from the Penghu Channel, Taiwan. *Journal of Taiwan Museum* 61(1):1-16 DOI: 10.6532/JNTM
- 388 Hu CH, Tao HJ. 1993. The fossil faunas of Penghu Islands, Taiwan. Taiwan, Penghu: Penghu
- 389 District Cultural Center Publications.
- 390 Janis CM. 1989. A climatic explanation for patterns of evolutionary diversity in ungulate
- 391 mammals. Palaeontology. 32: 463-481
- 392 Klein RG. 1985. Age (mortality) profiles as a means of distinguishing hunted species from
- 393 scavenged ones in Stone Age archeological sites. *Paleobiology* 8(2):151-158
- Krumery WA, Buss IO. 1968. Age estimation, growth, and relationships between body
- dimensions of the female African elephant. *Journal of Mammalogy* 49:22-31 DOI:
- 396 10.2307/1377724
- 397 Kuo YW. 1982. Penghu fauna. Journal of Marine Science 27:123-132
- Lang EM. 1980. Observations on growth and molar change in the African elephant. African
- 399 *Journal of Ecology* 18:217-234 DOI: <u>10.1111/j.1365-2028.1980.tb00643.x</u>
- 400 Laws RM. 1966. Age criteria for the African elephant. The East African Wildlife Journal 4:1-37
- 401 DOI: 10.1111/j.1365-2028.1966.tb00878.x
- 402 Lin CH, Chien CW, Lee SW, Chang CW. 2019. Fish fossils of Taiwan: a review and
- 403 prospection. *Historical Biology* DOI: 10.1080/08912963.2019.1698563
- 404 Lister AM. 1999. Epiphyseal fusion and postcranial age determination in the woolly mammoth,
- 405 Mammuthus primigenius (Blum.). Deinsea 6:79-88
- 406 Liu JL. 1977. Palaeoloxodon from Huaiyuan District, northern part of Anhui. Vertebrata
- 407 PalAsiatica 15(4):278-286 DOI: 10.19615/j.cnki.1000-3118.1977.04.006
- 408 Louguet-Lefebvre S. 2013. The Columbian mammoths from the Upper Pleistocene of Hot
- Springs (South Dakota, United States). *PALEO* 24:149-171 DOI: doi.org/10.4000/paleo.2861


- 410 Maglio VJ. 1970. Early Elephantidae of Africa and tentative correlation of African Plio-
- 411 Pleistocene deposits. *Nature* 225:328-332
- 412 Maglio VJ. 1973. Origin and evolution of the Elephantidae. *Transactions of the American*
- 413 Philosophical Society, New Series 63:1-149 DOI: 10.2307/1006229
- 414 Makiyama J. 1924. Notes on a fossil elephant from Sahama, Totomi. *Memoirs of the College of*
- 415 Science. Kyoto Imperial University. Series B. Biology 1(2):255-264
- 416 Matsumoto H. 1929. On *Loxodonta* (*Palaeoloxodon*) tokunagai MATSUMOTO, with remarks
- 417 on the descent of Loxodontene elephants. Science reports of Tohoku University. Series, 2
- 418 *(Geology)* 13(1):7-9
- 419 Morrison-scott TCS. 1947. A revision of our knowledge of African elephants' teeth, with notes
- 420 on forest and 'pygmy' elephants. Proceedings of the Zoological Society of London 117:505-527
- 421 DOI: 10.1111/j.1096-3642.1947.tb00534.x
- Osborn HF. 1936. Proboscidea: a monograph on the discovery, evolution, migration and
- extinction of the mastodonts and elephants of the world. Moeritherioidea, Deinotherioidea,
- 424 Mastodontoidea, Volume I. New York: The American Museum Press. 864
- Osborn HF. 1942. Proboscidea: a monograph of the discovery, evolution, migration and
- extinction of the mastodonts and elephants of the world. Stegodontoidea, Elephantoidea, Volume
- 427 II. New York: American Museum of Natural History. 958
- Otsuka H. 1984. Stratigraphic position of the Chochen vertebrate Fauna of the Chochen District,
- southwest Taiwan, with special reference to its geologic age. Journal of the National Taiwan
- 430 *Museum* 37(1):37-55
- 431 Qian MP, Gao TS, Jiang R, Zhu QB, Jin GD, Yu JJ, MA X, Jiang Y. 2017. The discovery of a
- 432 late Pleistocene *Palaeoloxodon huaihoensis* skeleton from Sihong County in northern Jiangsu
- 433 Province. *Journal of Stratigraphy* 41(2):173-178
- Roth VL, Shoshani J. 1988. Dental identification and age determination in *Elephas maximus*.
- 435 Journal of Zoology (London) 214:567-588 DOI: 10.1111/j.1469-7998.1988.tb03760.x
- 436 Rountrey AN, Fisher DC, Tikhonov AN, Kosintsev PA, Lazarev PA, Boeskorov G, Buigues B.
- 437 2012. Early tooth development, gestation, and season of birth in mammoths. *Quaternary*
- 438 International 255:1-10 DOI: 10.1016/j.guaint.2011.06.006
- Shieh YT, Chang CH. 2007. Study on the Proboscidea Fossils of the National Taiwan Museum.
- 440 *Journal of Taiwan Museum* 60(1):33-44 DOI: 10.6532/JNTM
- Short RV. 1969. Notes on the teeth and ovaries of an African elephant (Loxodonta africana) of
- 442 known age. Journal of Zoology (London) 158:421-425 DOI: 10.1111/j.1469-
- 443 7998.1969.tb02159.x
- Shikama T, Otsuka H, Tomida Y. 1975. Fossil Proboscidea from Taiwan (I). Science reports of
- 445 the Yokohama National University, Section II, Biological and geological sciences 22:13-35
- Sikes K. 1967. The African elephant, 22: a field method for estimating age. *The Journal of*
- 447 Zoology 154:235-248 DOI: <u>10.1111/j.1469-7998.1968.tb01661.x</u>
- Sukumar R. 1992. The Asian Elephant: Ecology and Management. Cambridge studies in applied
- ecology and resource management. Cambridge: Cambridge University Press. 272

- 450 2003. The living elephants: Evolutionary ecology, behavior, and conservation. New York:
- 451 Oxford University Press. 496
- Takahashi K, Namatsu K. 2000. Origin of the Japanese Proboscidea in the Plio-Pleistocene.
- 453 Earth Science (Chikyu Kagaku) 54(4):257-267 DOI: <u>10.15080/agcjchikyukagaku.54.4 257</u>
- Valeix M, Chamaillé-Jammes S, Fritz H. 2007. Interference competition and temporal niche
- shifts: elephants and herbivore communities at waterholes. *Oecologia* 153:739-748 DOI:
- 456 <u>10.1007/s00442-007-0764-5</u>
- Vaufrey R. 1929. Les éléphants nains des iles méditerranéennes et la question des isthmes
- 458 Pléistocènes. Archives de TInstitut de Paléontologie Humaine, Paris 6:1-216
- Webb, S.D., 1977. A history of savanna vertebrates in the new world Part 1: North America.
- 460 Annu. Annual Review of Ecology and Systematics. 8:355–380
- Wei Q. 1976. Recent find of *Palaeoloxodon namadicus* from Nihewan Beds, NW Hebei.
- 462 Vertebrata PalAsiat 14:53-58
- Wojtal P. 2001. The woolly mammoth (Mammuthus primigenius) remains from the Upper
- Palaeolithic site Krakow Spadzista Street (B). Proceedings of the 1st International Congress.
- 465 CNR, Rome 367–372
- 466 You YZ, Dong XR, Cai BQ, Sun YL. 1995. The mammalian fossils from western Taiwan strait.
- 467 *Vertebrata PalAsiat* 33(3):231-237
- 468 Zong G. 1987. Note on some mammalian fossils of Yanyuan, Sichuan. Vertehrata PalAsiatica
- 469 25(2):137-45

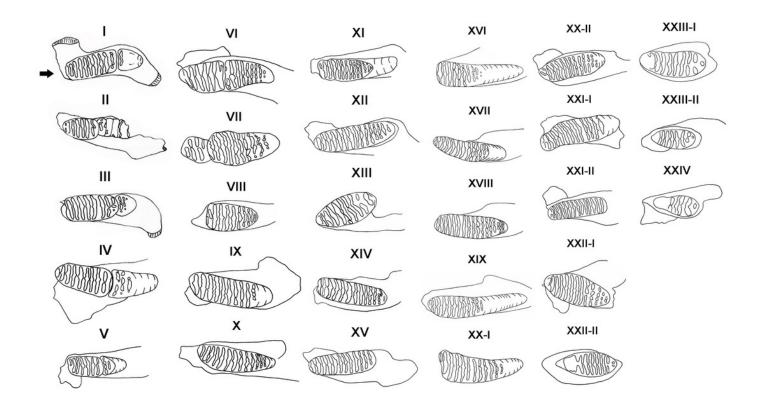

Map showing sampling area in the Penghu Channel (dash rectangle). The base map was created using ArcGIS.



Images of *P. huaihoensis* specimens deposited at the National Museum of Nature Science (NMNS).

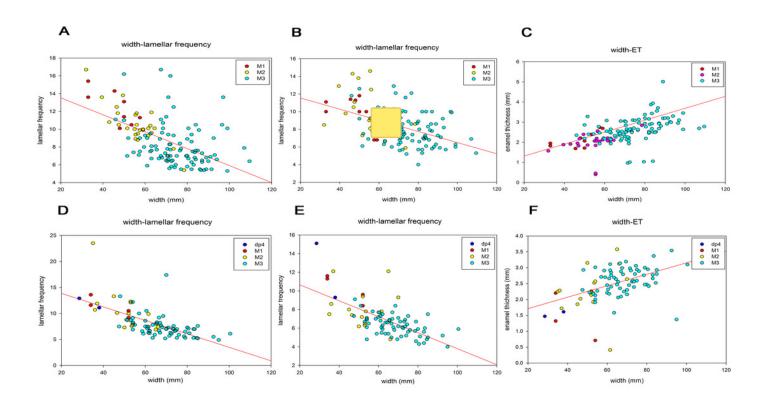
(A) Nine enamel loops complete of the lower left dp4 and erosion at both ends, F027933. (B) All lamellae in wear and the lower right M1 is connected to M2, which is slightly worn and lacks enamel thickness (ET), F020284. (C) Nineteen lamellae of the lower left M3 in buccal view, F051590. (D)(E) The upper right and left M3 with all lamellae in wear and slightly eroded at both ends, F026947. (F) Buccal surface of the lower right M3, F020284. (G) Anterior 2-3 enamel loops confluent on the occlusal surface of lower right M3 from catalog number F020226. (H) Lingual view of the lower right M3, F020248. All scale bars represent 5 cm.

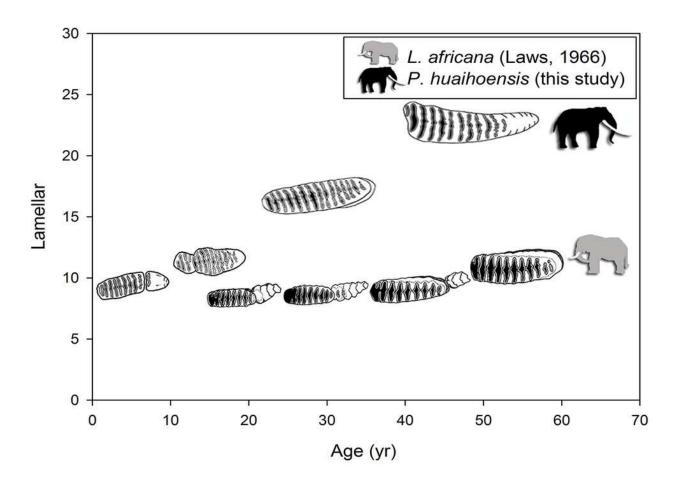
Measurements of an elephant tooth used in this study.



Definition of age groups I-XXIV.

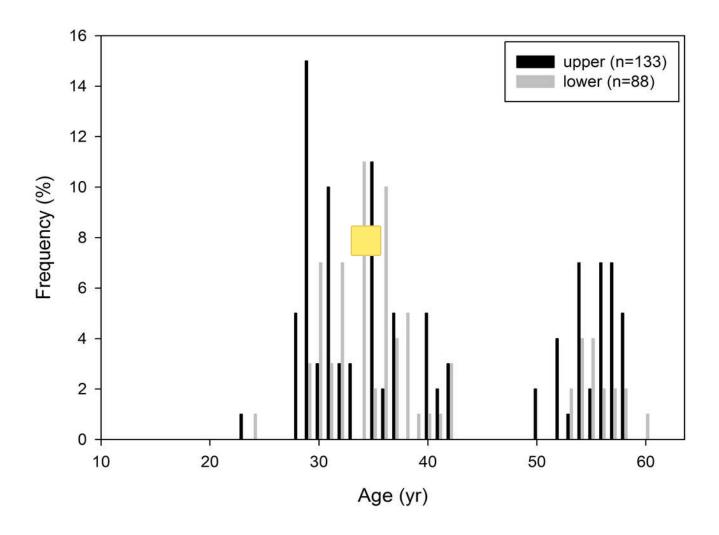
I: dp4 all lamellae in wear, M1 slight wear (specimen number: F02793); II: dp4 well worn, approximately 3-4 plates remaining; M1 first 1-2 lamellae in wear (F051613); III: M1 all in wear; M2 worn to enamel of first two lamellae (F044264); IV: M1 first 1-2 enamel loops confluent, M2 slight wear (F020284); V: M1 well worn; M2 more enamel loops showing (F051497); VI: M1 only 5-6 enamel loops left, slight erosion of posterior border; M2 lamellae well formed (F051562); VII: M1 well worn, only three plates remain; M2 slight erosion of anterior edge, 9-10 enamel loops complete (F027950); VIII: M2 first enamel loops confluent (F044271); IX: M1 worn out; M2 well into wear showing lozenges, more lamellae visible (F020247); X: M2 all except last 3 lamellae in wear (F020255); XI: M2 complete, all lamellae in wear, and all enamel loops showing M2 erosion at both ends; M3 lamellae well formed (F027988); XII: M2 all lamellae in wear, 15 enamel loops complete (F026927); XIII: M2 only approximately 8-9 loops remain and erosion at both ends (F020287); XIV: M3 worn to enamel of first lamellae and more enamel loops (F030111); XV: M2 lost; M3 11-12 enamel loops complete (F020278); XVI: M2 worn out; M3 no erosion of anterior border, anterior 1-2 enamel loops confluent (F044257); XVII: M3 only 2 lamellae not in wear (F027320); XVIII: M3 all except last lamellae in wear (F044266); XIX: M3 first 1-2 enamel loops may confluent (F051487); XX-I: M3 erosion at both borders, anterior 2-3 enamel loops confluent (F026942); XX-II: M3 all except last lamellae in wear (F020258); XXI-I: M3 more enamel loops showing, slight erosion of the anterior border (F044270); XXI-II: M3 well worn, first enamel loops may be slightly confluent (F051560); XXII-I: M3 all lamellae in wear, no erosion at both ends (F044268); XXII-II: M3 erosion at both borders, anterior 2-3 enamel loops confluent (F027963); XXIII-I: M3 only five complete enamel loops remain, anterior part broken off (F044261); XXIII-II: anterior third of tooth missing, only five complete lamellae remain


(F027967); XXIV: M3 only 2-3 loops remain (F051559).

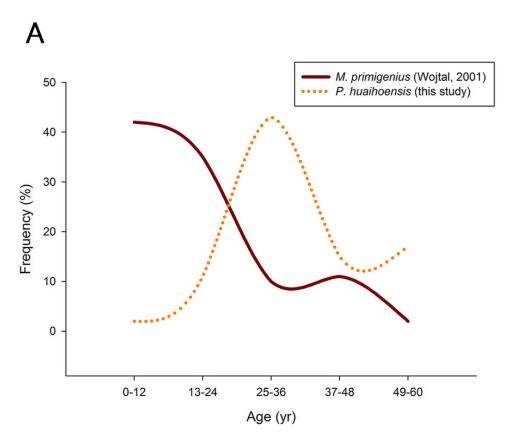


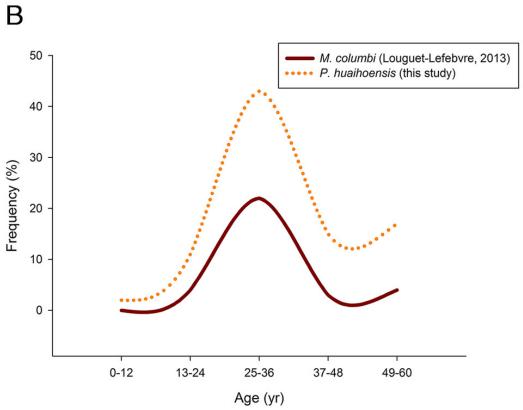
The relationships of various meristic measurements in the jaws of dp4-M3.

(A) Tooth width and lamellar frequency in the occlusal surface of the upper jaw (r=-0.558, t = -7.699, p < 0.05). (B) Tooth width and lamellar frequency in the buccal side of the upper jaw (r=-0.476, t = -6.201, p < 0.05). (C) Tooth width and enamel thickness (ET) of the upper jaw (r=0.531, t = 7.179, p < 0.05). (D) Width and lamellar frequency in the occlusal surface of the lower jaw (r=-0.649, t = -7.915, p < 0.05). (E) Width and lamellar frequency in the buccal side of the lower jaw (r=-0.453, t = -7.523, p < 0.05). (F) Width and ET of the lower jaw (r=0.457, t = 4.759, p < 0.05).

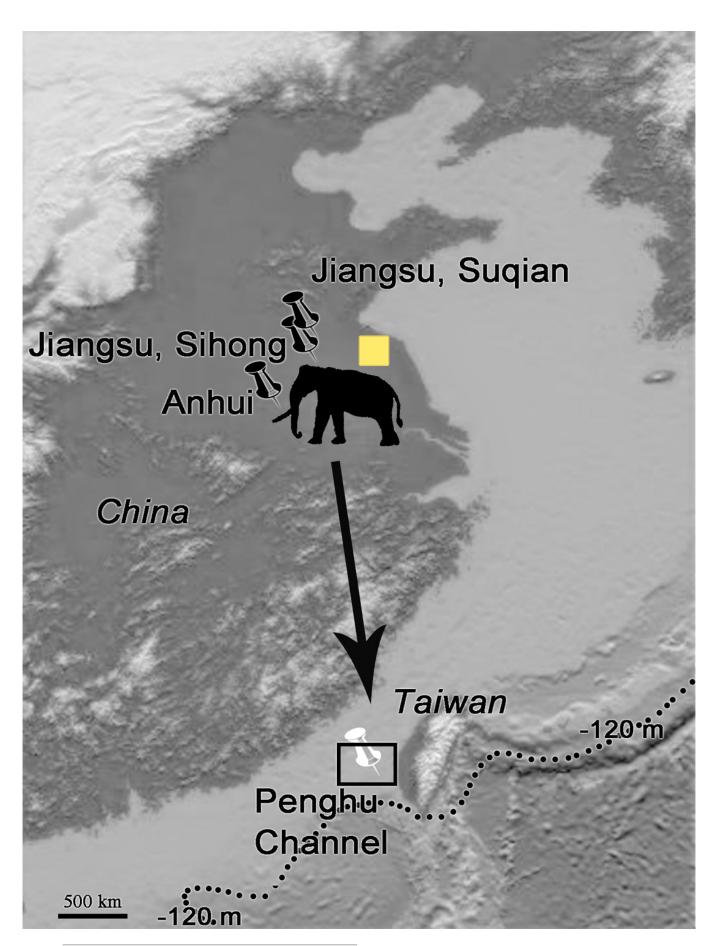


Differences in the relationship of the number of lamellar and age in *P. huaihoensis* and *L. africana*. Data of *L. africana* are from Laws (1966).


Age distribution of *P. huaihoensis* from Penghu Channel, Taiwan. The frequency (%) is based on the proportion of specimens (n).



Comparison of the age distribution of *P. huaihoensis* with that of (A) *M. primigenius* and (B) *M. columbi*.



Postulated migration direction (black arrow) of *P. huaihoensis*. The species likely originated from northern China (black pins), where fossil records are more abundant. The extension of the record in the Penghu Channel (white pin) in the last ice age

The current sea depth contour (-120 m) delineates the ancient coastline during the last ice age. The map is derived from the National Centers for Environmental Information (https://www.ngdc.noaa.gov).

Table 1(on next page)

Comparison of estimated ages derived from the lower jaw of *P. huaihoensis* and *L. africana*. The positions of the teeth used in Laws (1966) are indicated in parentheses.

Tooth position	L. africana (from Laws, 1966)		P. huaihoensis (this study)			
Tooth position	Age groups	No. of lamellae	Age (yrs)	Age groups	No. of lamellae	Age (yrs)
dp2	I–V	3	0–3	_	_	_
dp3	VI–X	7	4–13	_	_	_
dp4	XI–XV	9	15-24	I–IV	9	4–16
M1	XVI–XX	9	26–34	V-X	11	18–28
M2	XXI–XXV	10	36–47	XI–XVI	17	32–41
M3	XXVI–XXX	12	49–60	XVII–XXIV	22	43-57