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ABSTRACT
Background: The rapid expansion of urbanization leads to significant losses of soil
ecological functions. Microbes directly participate in key soil processes and play
crucial roles in maintaining soil functions. However, we still have a limited
understanding of underlying mechanisms shaping microbial communities and the
interactions among microbial taxa in park soils.
Methods: In this study, the community variations of bacteria and fungi in urban and
suburban park soils were investigated in Shanghai, China. Real-time PCR and
high-throughput Illumina sequencing were used to examine the microbial
abundance and community composition, respectively.
Results: The results showed that soil molecular biomass and fungal abundance in
urban park soils were significantly higher than those in suburban park soils, while no
significant difference was observed in the bacterial abundance between urban and
suburban park soils. The alpha diversity of soil microbes in urban and suburban park
soils was similar to each other, except for Chao1 index of fungal communities.
The results of similarity analysis (ANOSIM) revealed remarkable differences in the
composition of bacterial and fungal communities between urban and suburban park
soils. Specifically, park soils in urban areas were enriched with the phyla
Methylomirabilota and Verrucomicrobiota, while the relative abundance of
Gemmatimonadota was higher in suburban park soils. Moreover, the fungal class
Eurotiomycetes was also enriched in urban park soils. Compared with suburban park
soils, nodes and average paths of the bacterial and fungal networks were higher in
urban park soils, but the number of module hubs and connectors of the bacterial
networks and negative interactions among bacterial taxa were lower. Compared with
suburban park soils, Acidobacteriota bacterium and Mortierellomycota fungus
played more important roles in the ecological networks of urban park soils. Soil
available zinc (Zn), available nitrogen (N), pH, and total potassium (K) significantly
affected fungal community composition in park soils in Shanghai. Soil available Zn
was also the most important factor affecting the bacterial community composition in
this study.
Conclusion: There were significant differences in the soil molecular biomass, fungal
abundance, and the community composition and co-occurrence relations of both soil
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bacterial and fungal communities between urban and suburban park soils. Soil
available Zn played an important part in shaping the structures of both the bacterial
and fungal communities in park soils in Shanghai.

Subjects Biodiversity, Ecology, Microbiology, Molecular Biology, Soil Science
Keywords Urban development, Microbial community composition, Molecular ecological network,
Soil properties, Heavy metals

INTRODUCTION
Urbanized areas have been rapidly expanding for decades (Grimm et al., 2008). Urban park
soil, which is neither sealed nor compacted, represents one of the most important
components of urban ecosystems and provides essential ecosystem services, such as
nutrient cycling and carbon sequestration (Edmondson et al., 2014; Setälä et al., 2016),
pollutant degradation (Escobedo, Kroeger & Wagner, 2011), and storm water interception
and purification (Taka et al., 2017; Valtanen, Sillanpää & Setälä, 2015). Previous
studies have reported that urban development has significant effects on the physical and
chemical properties of urban soils (Ghosh, Scharenbroch & Ow, 2016; Li et al., 2011; Park
et al., 2010; Yan et al., 2018); however, microbes in urban soils, especially in urban park
soils, have received relatively little attention (Bünemann et al., 2018; Li et al., 2018).

Microbes are directly linked to key soil processes and play crucial roles in maintaining
ecosystem services (Barrios, 2007; Haritash & Kaushik, 2009; Ledin, 2000; Li et al., 2009).
Moreover, microbial communities in park soils may also have implications in human
health because soil microbes are an important source of airborne microbial diversity
(Bertolini et al., 2013;Hanski et al., 2012; Li et al., 2018). A growing number of studies have
investigated microbes in park soils (Francini et al., 2018; Hui et al., 2017; Ramirez et al.,
2014; Wang et al., 2018; Wang, Wu & Kumari, 2018; Xu et al., 2014). Some studies
have shown that soil bacterial diversity in highly urbanized areas was significantly lower
than that in suburban areas (Xu et al., 2014; Yan et al., 2016). In contrast, Ramirez et al.
(2014) found similar bacterial diversity between soil from Central Park in New York
City and the global data set (including arctic, tropical and desert soils). Recently, a study
conducted in Shanghai, China showed that the dominant bacterial phyla in urban park
soils were Proteobacteria and Acidobacteriota, which was in agreement with studies on
bacterial communities from agricultural or forest soils (Wang, Wu & Kumari, 2018).
It should be noted that these studies mainly focused on soil bacteria. Studies that
simultaneously account for both bacteria and fungi within urban ecosystems are still
lacking, even though they are both important for plant growth and soil ecological function.
Moreover, to our knowledge, there has been no research exploring the co-occurrence
patterns and interactions among taxa within the microbial community in park soils.

Driving factors of soil microbes have received substantial interest in natural ecosystems,
however, few studies have focused on how soil microbes are influenced by biotic and
abiotic factors in park soils (Francini et al., 2018; Hu et al., 2018; Hui et al., 2017; Wang
et al., 2018; Xu et al., 2014; Yan et al., 2016). Bacterial diversity and composition have
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been shown to be affected by soil pH, moisture, and the carbon:nitrogen (C:N) ratio in
urban parks, which is similar to the effects of these variables in natural ecosystems
(Wang et al., 2018; Xu et al., 2014; Yan et al., 2016). In addition, urban park soil is generally
enriched with heavy metals because of anthropogenic activities, such as the combustion of
fossil fuels (Setälä et al., 2017; Yesilonis, Pouyat & Neerchal, 2008). It has been reported
that heavy metal concentration was the main factor influencing microbial biomass and
microbial community functional diversity in urban areas (Zhao et al., 2013). However,
there are still not enough studies to clarify how these abiotic variables shape soil bacterial
and fungal communities in urban parks and their relative importance in determining
microbial community assemblages. A better understanding of the distributional patterns
and major drivers of both bacteria and fungi in urban park soils is therefore important for
elucidating microbial processes and for maintaining urban ecosystem functions.

Our main aim was to investigate soil bacterial and fungal communities in park soils and
identify the primary driving factors that structure soil microbial communities. For this
purpose, we investigated the abundance and composition of the bacterial and fungal
communities in 20 park soil samples in urban and suburban areas in Shanghai.
We hypothesized that (1) the abundance and diversity of the microbial communities in
urban park soils may be significantly lower than those in suburban park soils; (2) the
composition and network architecture of the microbial communities in urban park soils
were significantly different from those in suburban park soils; and (3) the major factors
driving the bacterial and fungal communities would differ due to the differences in their
metabolic processes.

MATERIALS AND METHODS
Study area and sampling
The metropolitan city of Shanghai was selected as the study area (31.14�N, 121.29�E).
Adjacent to the Pacific Ocean, this area has a subtropical monsoon climate. The mean
annual temperature and precipitation are 15.8 �C and 1,122 mm, respectively (Shi et al.,
2008). The development of ring roads is a feature of urban sprawl in Chinese cities
(Yan et al., 2016). Currently, four ring roads have been developed in Shanghai, including
the Inner Ring Highway, the Middle Ring Highway, the Outer Ring Highway, and the
Suburb Ring Expressway. The area inside of the Inner Ring Highway was considered as the
urban area. The area outside of the Suburb Ring Expressway was considered as the
suburban area. According to the location relative to the city ring road, the park is classified
as “urban” or “suburban”. Ten monospecific stands (20 × 20 m) of Cinnamomum
camphora (L.) Presl, were randomly chosen in urban and suburban parks, respectively
(Table 1). The Cinnamomum camphoramonocultures were at the age of 20 ~ 25 years old.
Plants in all the studied stands were similar. Besides Cinnamomum camphora, stands also
contained a few Ophiopogon japonicus (Linn. f.) Ker-Gawl in the herbage layer. Soil
samples were collected in November 2017. In each stand, nine random soil samples
(0–20 cm) were collected using a soil corer (2.5 cm diameter) and then mixed thoroughly
and pooled into one composite sample. Soil was sieved through a 2-mmmesh immediately
after sampling. Sampling and sieving of soil samples were carried out within 20 min.
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Each soil sample was divided into two subsamples. One subsample was air-dried to
determine the chemical properties of the soil, and the other subsample was stored at
−80 �C for DNA extraction.

Soil property measurements
Soil pH was measured in a 1:2.5 soil:water (w/v) mixture using a pH meter. Soil organic
carbon (SOC) was analyzed using the dichromate oxidation method (Cui et al., 2019).
Total nitrogen (N) was measured by the Kjeldahl method (Bremner & Mulvaney, 1982).
Total phosphorus (P) was determined following H2SO4–HClO4 digestion (Olsen &
Sommers, 1982). Total potassium (K) was determined by flame photometry after digestion
in nitric acid, perchloric acid and hydrofluoric acid. Soil available N was measured by
the alkali hydrolysis and diffusion method (Cornfield, 1960). Available P, K, copper (Cu),
lead (Pb), cadmium (Cd), chromium (Cr), zinc (Zn), nickel (Ni), and arsenic (As) were
extracted by AB-DTPA (ammonium bicarbonate-diethylenetriamine pentaacetic acid)
(Soltanpour & Schwab, 1977). The available concentrations of K, Cu, Pb, Cd, Cr, and Zn
were measured using ICP-OES (7000DV; Optima, Brookfield, WI, USA), and the available
concentrations of P, Ni, and As were measured using ICP-MS (NexION 300X;
PerkinElmer, Inc., Waltham, MA, USA).

Table 1 General attributes of the stands in this study.

Sample ID Name of Park Latitude Longitude Mean tree
height (m)

Diameter at
breast height (cm)

Tree density
(stem hm −2)

Urban 1 Shiji Park 31�12′54.55443″ 121�32′29.59623″ 14.4 13.3 1,050

Urban 2 Guangchang Park 31�13′38.06663″ 121�28′16.48950″ 10.0 12.0 862

Urban 3 Guangchang Park 31�13′36.48693″ 121�28′05.11618″ 9.9 12.9 766

Urban 4 Renmin Park 31�14′03.22925″ 121�28′01.35861″ 11.0 13.4 833

Urban 5 Shiji Park 31�12′55.65345″ 121�32′51.89794″ 15.6 13.8 1,175

Urban 6 Shiji Park 31�13′11.82202″ 121�33′18.67060″ 14.9 12.2 925

Urban 7 Jingnan Park 31�14′14.08009″ 121�32′54.90683″ 9.9 11.7 1,090

Urban 8 Jingnan Park 31�14′15.59368″ 121�32′55.81082″ 9.5 11.8 964

Urban 9 Mengqing Park 31�15′09.26895″ 121�26′11.83790″ 10.1 13.5 1,025

Urban 10 Luxun Park 31�16′14.51271″ 121�28′43.13616″ 13.6 14.1 825

Suburban 1 Haiwan Forest Park 30�52′03.90882″ 121�41′23.72492″ 11.9 11.4 650

Suburban 2 Haiwan Forest Park 30�52′05.02758″ 121�41′38.02877″ 12.8 11.7 1,125

Suburban 3 Haiwan Forest Park 30�51′51.91215″ 121�41′58.22355″ 11.7 13.2 807

Suburban 4 Binhai Forest Park 30�58′20.40587″ 121�54′23.35727″ 10.0 11.5 825

Suburban 5 Binhai Forest Park 30�58′04.89937″ 121�54′26.69332″ 9.8 12.2 975

Suburban 6 Binhai Forest Park 30�57′42.28336″ 121�54′33.31795″ 11.9 12.2 1,050

Suburban 7 Xincheng Park 31�37′21.29734″ 121�25′18.67193″ 10.4 12.7 1,191

Suburban 8 Xincheng Park 31�37′18.08624″ 121�25′13.42979″ 9.5 12.6 795

Suburban 9 Dongping Forest Park 31�40′47.06888″ 121�28′39.31260″ 11.8 13.7 864

Suburban 10 Dongping Forest Park 31�41′33.20447″ 121�28′23.03739″ 11.5 11.3 1,120
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DNA extraction
Total genomic DNAwas extracted from 0.5 g soil material using a FastDNA� SPIN Kit for
soil (MP Biomedicals, Santa Ana, CA, USA) according to the manufacturer’s instructions.
DNA concentration was determined on a Nanodrop 2000 UV-Vis Spectrophotometer
(Thermo Scientific, Waltham, MA, USA). DNA quality was checked by 1% agarose gel
electrophoresis and stored at −80 �C until use.

Real-time PCR assay
Quantification of the bacterial 16S rRNA and fungal 18S rRNA gene was performed on
a Light Cycler� 96 System (Roche, Mannheim, Germany). The bacterial 16S rRNA gene
was quantified using the primers 338F and 518R (Park & Crowley, 2006), and the
fungal 18S rRNA gene was quantified using the primers SSU-0817F and SSU-1196R
(Borneman & Hartin, 2000). Real-time PCR assays were carried out in a 20 ml reaction
volume using SYBR� Premix Ex TaqTM II (Takara, Kusatsu, Japan). Each 20 ml
amplification reaction system contained 10 ml of SYBR Green PCRMix, 0.2 mM of forward
and reverse primers, and approximately 8 ng extracted DNA. The cycling conditions
were as follows: 95 �C for 5 min; 40 cycles of 95 �C for 10 s, 55 �C for 30 s, and
72 �C for 40 s. Product specificity was confirmed by melting curve analysis and gel-
electrophoresis of the amplified fragments. For standard curve preparation, amplicons of
each targeted gene were cloned into the pMDTM18-T vector (Takara, Kusatsu, Japan).
Plasmids containing the target genes were extracted and used as standards for real-time
PCR. The sequences of target genes used to construct the standard curves of bacteria
and fungi have high sequence similarity (100%) with the members of the order
Acidobacteriales and genus Neobulgaria premnophila, respectively. Plasmid DNA
concentration was determined on a Nanodrop 2000 UV-Vis Spectrophotometer (Thermo
Scientific, Waltham, MA, USA). To generate standard curves, three independent
experiments were carried out using ten-fold serial dilutions of linearized plasmids.
Amplification efficiencies for the bacterial and fungal assays were 103% and 93%,
respectively. Data are shown as rRNA gene copy numbers per gram of dried soil.

Illumina sequencing of bacterial 16S rDNA and fungal ITS region
An aliquot of the extracted DNA from each sample was used as a template for
amplification. The primers 338F and 806R were used to amplify the V3−V4 hypervariable
region of the bacterial 16S rRNA gene (Cui et al., 2019; Huse et al., 2008). The primers
ITS1F and ITS2R were used to amplify the ITS1 region of the fungal rDNA (Gardes &
Bruns, 1993;White et al., 1990). The PCR products were sequenced on an Illumina MiSeq
platform (Illumina, San Diego, CA, USA).

Bioinformatic analysis
The primer sequences were trimmed after the raw sequences were denoised, sorted and
separated using Trimmomatic (Bolger, Lohse & Usadel, 2014). The qualified sequences
were clustered into operational taxonomic units (OTUs) at a 97% similarity level using
Uparse (Edgar, 2013). The singletons were removed before the downstream analyses.
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The taxonomic identification of representative sequences for each OTU was determined
using the Silva reference database (http://www.arb-silva.de) for the 16S rRNA genes and
the Unite reference database (http://unite.ut.ee/index.php) for the ITS using an RDP
classifier (Wang et al., 2007). To account for the effects of different sequencing depths,
the OTU tables were normalized to identical sequencing depth. The Chao1, Shannon-
Wiener, and inverse Simpson indices were calculated to evaluate the richness and diversity
of the soil microbial community in mothur (Schloss et al., 2009). All sequences were
submitted to the NCBI Sequence Read Archive under SRP216567 and SRP216582.

Data analyses
Student’s t-test was used to examine the differences in soil characteristics, soil molecular
biomass, microbial abundance, and alpha diversity between samples collected in urban and
suburban park soils. Pearson correlation analysis was used to assess the associations
between the abundance and alpha diversity of the microbial communities and
environmental factors. These statistical analyses were performed using SPSS 16.0 software
(SPSS Inc., Chicago, IL, USA). Differences at P < 0.05 were regarded as statistically
significant. To meet assumptions of normality, the original data were log transformed
prior to analysis when necessary. A similarity analysis (ANOSIM) based on the relative
abundance of bacterial or fungal genera was conducted to test the significant difference of
the microbial community composition between urban and suburban park soils in the
R software package using the vegan library (http://www.r-project.org). To identify the
microbial taxa responsible for the community differentiation between urban and suburban
park soils, we employed student’s t-test on all of the genera using STAMP software (Parks
et al., 2014). The differential genera with false discovery rate-corrected P values < 0.05
were identified as indicator genera (Benjamini & Hochberg, 1995). Network analysis was
conducted for bacterial and fungal communities based on OTU relative abundances in
urban and suburban park soils, yielding a total of 4 networks. Only OTUs detected in 7 out
of 10 replicate samples were used for network analysis. Random matrix theory (RMT)
was used to identify the appropriate similarity threshold before network construction
(Zhou et al., 2010). The cutoff values for the similarity matrix were 0.920 and 0.850 for
the bacterial and fungal networks, respectively. Network analysis was performed in
Molecular Ecological Network Analyses (MENA) Pipeline (http://ieg2.ou.edu/MENA/)
(Deng et al., 2012). Within-module connectivity (Zi) and among-module connectivity (Pi)
were used to sort nodes as peripherals (Zi < 2.5 and Pi < 0.62), connectors (Pi > 0.62),
module hubs (Zi > 2.5) or network hubs (Zi > 2.5 and Pi > 0.62) (Deng et al., 2012;
Olesen et al., 2007). Principal component analysis (PCA) was conducted to evaluate the
differences of soil characteristics between urban and suburban park soils (Canoco 5.0).
Redundancy analysis (RDA) was conducted to identify significant factors shaping the
structures of the microbial communities at the genus level (Canoco 5.0). Conditional
effects of the environmental factors were calculated through the Monte Carlo permutation
test (999 permutations) in RDA analysis. Conditional effects represent the amount of
additional variation each environmental factor contributes when it is added to the model
(Leps & Smilauer, 2003; Ter Braak & Smilauer, 2012). Environmental factors were divided
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into two sections including soil properties (pH, SOC, total and available N, total and
available P, total and available K) and pollutants (available Cu, Pb, Cd, Cr, Ni, Zn, and As).
Variation partitioning analysis was used to evaluate the influence of soil properties and
pollutants on the soil microbial community structure (Canoco 5.0).

RESULTS
Soil characteristics
Most soil characteristics differed significantly between urban and suburban park soils
(Table 2). All soil samples were alkaline. The soil pH was significantly higher in suburban
park soils than that in urban park soils. The concentrations of SOC, total N, and available
P in urban park soils were significantly higher than those in suburban park soils, but
total K and available N showed the opposite trend (Table 2). The concentrations of total P
and available K in urban and suburban park soils were similar to each other. As expected,
the concentrations of soil heavy metals, such as available Pb, Cr, Zn were significantly
higher in urban park soils than those in suburban park soils (Table 2). However, the
concentrations of available Cu, Cd, Ni, and As in urban and suburban park soils were
similar to each other. The PCA results showed a separation between urban and suburban
park soils along the first axis (Fig. 1).

Microbial abundance
Soil molecular biomass in urban park soils was ~1.8 fold greater than that in suburban
park soils (Fig. 2). Compared to suburban park soils, the abundance of fungi in urban park
soils significantly increased, while no significant difference was observed in the abundance
of bacterial communities in urban and suburban park soils (Fig. 3).

Table 2 Soil chemical properties of the park soils collected in urban and suburban areas in Shanghai.

Soil properties Urban park soils Suburban park soils

pH 7.71 ± 0.07 b 8.25 ± 0.04 a

Soil organic carbon (g kg−1) 18.98 ± 1.23 a 14.46 ± 1.23 b

Total nitrogen (g kg−1) 1.33 ± 0.09 a 0.93 ± 0.12 b

Total phosphorus (g kg−1) 0.70 ± 0.02 a 0.75 ± 0.03 a

Total potassium (g kg−1) 18.26 ± 0.38 b 20.89 ± 0.41 a

Available nitrogen (mg kg−1) 88.80 ± 5.70 b 114.06 ± 8.44 a

Available phosphorus (mg kg−1) 17.33 ± 3.21 a 8.05 ± 1.26 b

Available potassium (mg kg−1) 215.80 ± 15.04 a 230.09 ± 18.66 a

Available copper (mg kg−1) 10.32 ± 0.77 a 8.66 ± 0.35 a

Available lead (mg kg−1) 9.00 ± 0.60 a 4.68 ± 0.29 b

Available cadmium (mg kg−1) 0.12 ± 0.02 a 0.07 ± 0.003 a

Available chromium (mg kg−1) 0.06 ± 0.04 a 0.008 ± 0.003 b

Available nickel (mg kg−1) 0.46 ± 0.03 a 0.39 ± 0.03 a

Available zinc (mg kg−1) 11.38 ± 1.33 a 2.99 ± 0.17 b

Available arsenic (mg kg−1) 0.18 ± 0.01 a 0.17 ± 0.01 a

Note:
a, b means significant differences between soil samples at P < 0.05.
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Microbial alpha diversity, community composition and ecological
network
In total, 366,300 bacterial sequences and 1,022,560 fungal sequences were used for analysis.
Shannon, Chao1, and inverse Simpson indices were used to compare the levels of
microbial alpha diversity. Soils from suburban parks presented a lower fungal Chao1 index
and differed significantly from those of urban park soils (Fig. S1). In contrast, the bacterial
Chao1 index was similar between the soils collected from urban and suburban parks.
No significant difference was observed in the Shannon and inverse Simpson indices of soil
bacterial and fungal communities (Fig. S1).

Proteobacteria (25.8%), Actinobacteriota (20.6%), Acidobacteriota (16.7%), and
Chloroflexi (10.4%) were the predominant bacterial phyla in all soil samples (Fig. 4).
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The relative abundances of these bacterial phyla were similar between soils collected
from urban and suburban parks. In contrast, the relative abundances of several
bacterial phyla were significantly different between urban and suburban soils,
such as Methylomirabilota, Gemmatimonadota, and Verrucomicrobiota (Fig. 4).
Methylomirabilota and Verrucomicrobiota were significantly enriched in urban park soils,
while Gemmatimonadota was significantly enriched in suburban park soils. A total of 680
bacterial genera were observed in this study, and 614 bacterial genera shared between
urban and suburban park soils (Fig. S2). The most abundant genera (relative abundance
>1%) were shown in Fig. S3, including MND1, Gaiella, and Pedomicrobium. The relative
abundances of 53 bacterial genera in urban park soils were significantly different from
those in suburban park soils (Table S1). The relative abundance of MND1 in suburban
park soils was significantly higher than that in urban park soils. However, the relative
abundance ofGaiella exhibited the opposite trend. The result of the ANOSIM also revealed
significant variations in the bacterial communities between the different sampling areas
(R = 0.384, P = 0.001). The bacterial sequences were clustered into 3,606 OTUs in this
study, and the majority in very low relative abundances (<0.1%) (Table S2).

The fungal community in park soils was dominated by sequences assigned to Ascomycota
(74.8%), Basidiomycota (15.8%), and Mortierellomycota (4.0%). Sordariomycetes (44.5%),
Dothideomycetes (10.7%), Eurotiomycetes (10.7%), Agaricomycetes (5.8%), and
Tremellomycetes (5.7%) were the abundant fungal classes in all soil samples (Fig. 5).
The relative abundance of Eurotiomycetes was significantly higher in urban park soils
compared to that in suburban park soils. A total of 654 fungal genera were observed in this
study, and 431 fungal genera shared between urban and suburban park soils (Fig. S2).
The most abundant genera (relative abundance > 1%) were shown in Fig. S3, including
Talaromyces, Metarhizium, and Neocosmospora. The relative abundances of all the fungal
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Figure 5 Relative abundances of the fungal classes in the park soils. Error bars indicate the standard
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genera in urban and suburban park soils were similar to each other. However, the result of
the ANOSIM indicated that fungal community structures differed significantly between the
different sampling areas (R = 0.233, P = 0.001). The fungal sequences were clustered into
3,234 OTUs in this study. Similar to bacteria, the majority of the fungal OTUs were also in
very low relative abundances (<0.1%) (Table S2).

Relationships among the bacterial and fungal taxa were estimated by constructing
molecular ecological networks for soils collected from urban or suburban parks (Table 3).
The bacterial networks with 952 and 945 nodes were constructed from urban and
suburban park soils, respectively. The fungal networks with 254 and 222 nodes were
constructed from urban and suburban park soils, respectively. R2 of power-law for the
networks of our study ranged from 0.765 to 0.933, indicating the scale-free property of the
networks (Table 3). The modularity values were from 0.736 to 0.877, suggesting that
the constructed networks were modular. Furthermore, we determined the topological role
of each OTU in microbial networks via RMT-based network analysis (Fig. 6). Regarding
the bacterial networks, suburban park soils had more module hubs (13 OTUs) and
connectors (7 OTUs) than urban park soils (10 and 0 OTUs, respectively). In urban
park soils, the majority of bacterial module hubs were affiliated with Acidobacteriota,
Actinobacteriota, and Proteobacteria, while the majority of module hubs and connectors
belonged to Chloroflexi, Gemmatimonadota, Myxococcota, Desulfobacterota, and
Proteobacteria in the bacterial network of suburban park soils (Table S3). In addition, a
decrease in negative interactions in the bacterial network of urban park soils was observed,
compared to suburban park soils. Regarding the fungal networks, urban park soils had
more module hubs (5 OTUs) than suburban park soils (2 OTUs). Fungal module hubs
and connectors in suburban park soils were exclusively affiliated with the specific
Ascomycota phylum, while two of the three connectors belonged to Mortierellomycota in
the fungal network of urban park soils (Table S3). A moderate decrease in negative
interactions in the fungal network of urban park soils was observed, compared to suburban
park soils (Table 3).

Table 3 Topological properties of the molecular ecological networks of bacterial and fungal
communities in the park soils.

Networks Bacteria Fungi

Urban Suburban Urban Suburban

Total nodes 952 945 254 222

Total links 1,211 1,134 309 352

Negative link percentage (%) 47.5 52.6 46.0 49.7

R2 of power-law 0.933 0.907 0.836 0.765

Average degree (avgK) 2.544 2.400 2.433 3.171

Average path distance (GD) 9.427 9.022 7.139 5.940

Average clustering coefficient (avgCC) 0.147 0.155 0.148 0.202

Transitivity 0.346 0.306 0.272 0.287

Modularity 0.865 0.877 0.829 0.736
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Effect of environmental variables on the abundance and composition
of microbial communities
The Pearson correlation analysis showed that soil molecular microbial biomass was
positively correlated with SOC, total N, available Pb, and available Zn, and negatively
correlated with soil pH (Table S4). Similar to soil molecular microbial biomass, 18S rRNA
gene copies were also positively correlated with SOC and total N (Table S4).
The correlation analysis showed that the soil bacterial Chao1 index was negatively
correlated with soil available N, total P, and total K, but positively correlated with available
Cr and Ni (Table S4). The soil fungal Chao1 index was negatively correlated with soil pH,
and positively correlated with SOC, total N, available Pb, and available As (Table S4).
The RDA analysis indicated that available Zn was the most important factor shaping the
bacterial and fungal communities (Fig. 7; Table 4). In addition to available Zn, available N,
pH, and total K were also the primary drivers of fungal community composition.

-1.0 1.0

6.0-
1.

0

pH SOC

AP

TK

ACu

APb

ACd

ANi

AZn

RDA1 : 23.7%

%7.12:
2

A
D

R

-1.0 1.0

8.0-
0.

8

pH
SOC
AP

TK

ACu

APb

ACd

ANi

AZn

RDA1 : 23.7%

%7.12:
2

A
D

R

-0.8 1.0

6.0-
1.

0

pH

SOC
TN

AN TP

AP

TK

APb

ACr

AZn

RDA1 ：19.0%

%8.01:
2

A
D

R

-1.0 1.0

6.0-
0.

8

pH

SOC
TN

AN
TP

AP

TK

APb

ACr

AZn

RDA1 ：19.0%

%8.01:
2

A
D

R

Urban 1
Urban 2

Urban 3

Urban 4

Urban 5

Urban 6

Urban 7

Urban 8

Urban 9

Urban 10

Suburban 1

Suburban 3

Suburban 2

Suburban 5

Suburban 4

Suburban 6

Suburban 7
Suburban 8

Suburban 9

Suburban 10

Urban 1

Urban 3

Urban 4

Urban 6

Urban 7

Urban 8

Urban 9

Urban 10

Suburban 9

Suburban 4

Suburban 6

Suburban 7

Suburban 8

Suburban 10

Urban 2

Urban 5

Suburban 3

Suburban 5

Suburban 1
Suburban 2

(a) Bacteria (b) Bacteria

(c) Fungi (d) Fungi

Figure 7 Redundancy analysis used to identify the relationships among the bacterial (A, B) and
fungal (C, D) genera (trilateral), soil properties and heavy metals. Blue closed circles: the urban
park soil; red closed circles: the suburban park soil. Full-size DOI: 10.7717/peerj.11231/fig-7

Zhang et al. (2021), PeerJ, DOI 10.7717/peerj.11231 13/23

http://dx.doi.org/10.7717/peerj.11231/supp-8
http://dx.doi.org/10.7717/peerj.11231/supp-8
http://dx.doi.org/10.7717/peerj.11231/supp-8
http://dx.doi.org/10.7717/peerj.11231/supp-8
http://dx.doi.org/10.7717/peerj.11231/fig-7
http://dx.doi.org/10.7717/peerj.11231
https://peerj.com/


The relative contributions of soil properties and pollutants to the microbial community
variance were assessed by variance partitioning analysis. The results showed that soil
properties contributed to 7.9% of the bacterial community variation, pollutants explained
9.3% of the variation, and the interaction between the two explained 17.3% of the variation.
In addition, soil properties and pollutants independently explained 18.3% and 0.8% of
the total fungal community variance, respectively. The interaction between soil properties
and pollutants explained 7.2% of the variance in the fungal community.

DISCUSSION
Our study used high-resolution molecular techniques to analyze the distribution patterns
and drivers of the soil microbial communities in urban parks. In this study, three key
results were found. First, compared to suburban park soils, soil molecular biomass and
fungal abundance in urban park soils significantly increased. Second, the community
composition and networks of both bacteria and fungi were significantly different between
urban and suburban park soils. Third, contrary to natural ecosystems, soil available Zn was
the most important factor for shaping the structures of the bacterial and fungal
communities in park soils.

Differences in microbial community composition and ecological
networks between urban and suburban park soils
Soil molecular biomass in urban park soils was significantly higher than that in suburban
park soils, which may be due to the higher fungal abundance in these soils. The alpha
diversity of soil microbes in urban and suburban park soils was similar to each other,
except for Chao1 index of fungal communities. These results did not support our first
hypothesis. Our results indicated that compared to the microbial diversity, soil molecular
biomass was more sensitive to environmental changes, and might be used as an indicator
of soil quality (Sébastien et al., 2012).

Table 4 Conditional effects of the environmental factors on the community composition of bacteria
and fungi determined by the Monte Carlo permutation test in RDA analysis.

Soil chemical
properties

Baceria Soil chemical
properties

Fungi

Conditional
effects (%)

P-value Conditional
effects (%)

P-value

Avaible Zn 22.4 0.002 Avaible Zn 14.9 0.002

Avaible Cu 9.5 0.076 Avaible N 9.1 0.008

pH 8.7 0.052 pH 8.1 0.010

SOC 6.6 0.132 Total K 7.0 0.040

Total K 6.9 0.084 SOC 6.4 0.066

Avaible Pb 3.7 0.282 Total P 5.5 0.120

Avaible P 3.4 0.366 Avaible P 4.5 0.272

Avaible Ni 2.2 0.604 Avaible Pb 3.8 0.454

Avaible Cd 2.1 0.692 Avaible Cr 3.1 0.604

Total N 2.7 0.730
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The results of similarity analysis (ANOSIM) revealed that the composition of the
microbial communities in urban park soils was significantly different from that in
suburban park soils, supporting our second hypothesis. In this study, the main bacterial
phyla Proteobacteria, Acidobacteriota, Actinobacteriota, and Chloroflexi were observed in
all soil samples. These results were consistent with previous studies conducted in urban
ecosystems, indicating that the dominant phyla of bacterial communities in urban soils
may be similar (Ramirez et al., 2014;Wang, Wu & Kumari, 2018; Xu et al., 2014; Zhalnina
et al., 2015). Moreover, it has been reported that the bacterial phyla Proteobacteria,
Acidobacteriota, and Actinobacteriota were also predominant in agricultural soils, forest
soils, and even in heavy metal polluted soils (Hemmat-Jou et al., 2018; Sul et al., 2013;
Zhang et al., 2017). Thus, the similar relative abundances of these bacterial phyla in
urban and suburban park soils may be due to the fact that these phyla can well adapt to
various environments. In contrast to the predominant bacterial phyla, the relative
abundances of Methylomirabilota, Gemmatimonadota, and Verrucomicrobiota differed
significantly among the soils collected in different areas, indicating that these phyla were
more sensitive than the predominant bacterial phyla to environmental changes. In this
study, the relative abundance of Gemmatimonadota was found to be higher in
suburban park soils than those in urban park soils, while the relative abundance of
Verrucomicrobiota exhibited the opposite trend. Gemmatimonadota is usually defined
as copiotrophic members, and Verrucomicrobiota is generally slow-growing and
oligotrophic (Bergmann et al., 2011; Fierer, Bradford & Jackson, 2007; Li et al., 2014).
The differences in bacterial communities indicated that compared with soils in
suburban parks, soils in urban parks were more conducive to the growth of oligotrophic
bacteria, which may be due to their lower concentrations of available N and total K (Li
et al., 2014; Wang et al., 2018). Moreover, warming could reduce the abundance of
Gemmatimonadota, which may be another explanation for lower relative abundance of
Gemmatimonadota in urban park soils (Aislabie & Deslippe, 2013). It has been reported
that soil temperature in urban areas was 0.7 �C higher than that in suburban areas because
of urban heat island effect (Carreiro et al., 2009). The fungal class Eurotiomycetes was
significantly enriched in urban park soils. The most abundant taxa in this class included
Penicillium, Aspergillus, and Talaromyces. These genera were also reported as heavy metal
tolerant genera in agricultural and forest soils with heavy metal contamination (Abdel-
Azeem et al., 2007; Torres-Cruz et al., 2018). Thus, compared to suburban park soils, the
higher relative abundances of these genera in urban park soils may be due to their
resistance to heavy metals. It should be noted that these genera were also strongly
associated with allergic respiratory disease, especially asthma (Abdel-Azeem & Rashad,
2013; Horner et al., 1995). Therefore, from the perspective of human health, more
attention should be paid to the increase of Eurotiomycetes in urban park soils in future.

Compared with suburban park soils, nodes and average paths of the bacterial and fungal
networks were higher in urban park soils, indicating that the topological roles of the soil
microbes were significantly different between urban and suburban park soils. Moreover,
the numbers of module hubs and connectors of the bacterial networks were higher in
suburban park soils than those in urban park soils. Previous studies have shown that
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module hubs and connectors of the network may be considered as key species of the
communities because they play important roles in maintaining network integrity (Faust &
Raes, 2012; Olesen et al., 2007). Losses of these ‘keystone’ nodes may reduce the stability
of the microbial community to perturbation (Lu et al., 2013; Olesen et al., 2007).
Moreover, four of twenty module hubs and connectors of the bacterial network in
suburban park soils belonged to Chloroflexi, the members of which can respire
organochlorines (Krzmarzick et al., 2011). Losses of these module hubs and connectors in
urban park soils may reduce the ability of soil to purify such organic pollutants. Two OTUs
which belonged to the genus Mortierella were observed as connectors of the fungal
network in urban park soils. It has been reported that the healthy soil microbiome
contained more genus Mortierella than the microbiomes of Fusarium wilt-diseased soil
(Yuan et al., 2020). Compared to suburban park soils, the lower relative abundance of the
genus Fusarium in urban park soils in this study confirmed that the existence of these
connectors of the fungal network may improve the ability of urban park soil to resist soil
borne pathogens. In addition, compared to the network of suburban park soils, the
decrease in negative interactions was observed in the networks of urban park soils,
especially the bacterial network, suggesting that antagonistic or competitive interactions
decreased in the microbial communities in urban park soils.

Drivers of soil bacterial and fungal communities in park soils
The soil properties and pollutants in our study had obvious distributions between
urban and suburban park soils, which may lead to differences in the distribution of the
abundance and composition of the belowground microbial communities. Previous
studies showed that heavy metal pollution decreased soil microbial biomass and diversity
because of a decrease in the substrate utilization efficiency for microbes subjected to metal
stress (Chen et al., 2014; Giller, Witter & Mcgrath, 2009; Xie et al., 2016). In contrast,
in this study, compared with suburban park soils, soil molecular biomass and the
abundance of fungi were higher in urban park soils, where the contents of heavy metals
were higher. A possible reason for our results was that several heavy metals, such as Zn
and Cu, were essential for the physiological functioning of soil microbes, and they only
became toxic at high concentrations (Kamal, Prasad & Varma, 2010). The results
confirmed that increasing metal stress in soils may lead to an increase or decrease in
microbial abundance, which depends on the concentrations of heavy metals (Giller, Witter
& Mcgrath, 2009).

In our study, the RDA analysis indicated that soil available Zn was the most important
factor shaping the bacterial and fungal communities in park soils. A study conducted in
Beijing, China, showed that total Zn was closely correlated with bacterial diversity and
community composition in urban ecosystems (Hu et al., 2018). Compared to other
soil characteristics, Zn played a more substantial role in shaping the soil microbial
communities, which may be due to its relatively higher concentration in park soils than
natural soils.

In this study, we divided the environmental factors into two groups based on soil
properties and pollution factors to determine which are more important in shaping the
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composition of the microbial community. The results of RDA and variance partitioning
analysis showed that the bacterial community in park soils was driven more by shifts in
the heavy metals than in the soil pH and nutrients. Moreover, compared to fungi, the
bacterial community in park soils was more sensitive to variations in heavy metals.

CONCLUSIONS
This study provides insights into the distributional patterns, co-occurrence relations, and
drivers of microbial communities in urban and suburban park soils in Shanghai, and
improves our understanding of microbial ecology in urban ecosystems. Soil molecular
biomass and fungal abundance in urban park soils were significantly higher than those in
suburban park soils. However, the alpha diversity of soil microbes in urban and suburban
park soils was similar to each other, except for Chao1 index of fungal communities.
These results indicated that compared to the microbial diversity, soil molecular biomass
was more sensitive to environmental changes and might be used as an indicator of soil
quality in urban ecosystems. The results of similarity analysis (ANOSIM) revealed
remarkable differences in the composition of bacterial and fungal communities at the
genus level between urban and suburban park soils. The predominant bacterial phyla in
park soils were Proteobacteria, Acidobacteriota, Actinobacteriota, and Chloroflexi, and the
relative abundances of these phyla in urban and suburban park soils were similar to
each other. In contrast, urban park soils were enriched with the phyla Methylomirabilota
and Verrucomicrobiota, while the relative abundance of Gemmatimonadota was higher in
suburban park soils. Fungal class Eurotiomycetes was significantly enriched in urban
park soils, possibly due to their resistance to heavy metals. In addition, the topological roles
of the soil microbes were significantly different between urban and suburban park soils.
Compared with suburban park soils, Acidobacteriota bacterium and Mortierellomycota
fungus played more important roles in the ecological networks of urban park soils. Both
soil properties and pollutants had significant impacts on the abundance and composition
of microbial communities. Compared with the fungal community, bacteria were more
sensitive to heavy metal pollution stress in park soils. Soil available Zn was the most
important factor shaping the structures of both bacterial and fungal communities in this
study. In conclusion, there were significant differences in the microbial communities
between urban and suburban park soils, and soil available Zn played an important part in
shaping the structures of both the bacterial and fungal communities in park soils in
Shanghai.
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