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ABSTRACT
Relationships between species and their habitats are not always constant. Different
processes may determine changes in species-habitat association: individuals may
prefer different habitat typologies in different periods, or they may be forced to
occupy a different habitat in order to follow the changing environment. The aim of
our study was to assess whether cave salamanders change their habitat association
pattern through the year, and to test whether such changes are determined by
environmental changes or by changes in preferences. We monitored multiple caves
in Central Italy through one year, and monthly measured biotic and abiotic features
of microhabitat and recorded Italian cave salamanders distribution. We used mixed
models and niche similarity tests to assess whether species-habitat relationships
remain constant through the year. Microhabitat showed strong seasonal variation,
with the highest variability in the superficial sectors. Salamanders were associated
to relatively cold and humid sectors in summer, but not during winter. Such
apparent shift in habitat preferences mostly occurred because the environmental
gradient changed through the year, while individuals generally selected similar
conditions. Nevertheless, juveniles were more tolerant to dry sectors during late
winter, when food demand was highest. This suggests that tolerance for suboptimal
abiotic conditions may change through time, depending on the required resources.
Differences in habitat use are jointly determined by environmental variation through
time, and by changes in the preferred habitat. The trade-offs between tolerance and
resources requirement are major determinant of such variation.
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INTRODUCTION
The use of habitat models to evaluate factors determining species distributions is becoming

increasingly prevalent in ecological research (Peterson et al., 2011; Warren, 2012; Stein,

Gerstner & Kreft, 2014). Such models help understanding the factors determining species

occurrence, and may allow predicting potential areas of occupancy, with important conse-

quences for planning adequate conservation actions (Domı́guez-Vega et al., 2012; Bogaerts

et al., 2013). Despite repeated calls for mechanistic modelling (Kearney & Porter, 2009),

correlative habitat models remain the most frequently used approach. Correlative models

combine data on species occurrence (e.g., presence/absence, presence-only, abundance)

with information on environmental features, identifying statistical relationships which

represent the basis for model predictions (Guisan & Thuiller, 2005). Such models are

based on the assumptions that species presence is associated with favorable environmental

features (species-habitat association) (Godsoe, 2010).

However, patterns of species-habitat association may be not consistent during time.

Analyses of habitat associations generally assume that species are at quasi-equilibrium

with the environment, but this assumption may not always hold (e.g., during dispersion

or contraction phases) (Saupe et al., 2014). Furthermore, differences in habitat association

patterns may occur through two distinct, non-exclusive processes: the species may select

different habitats across their life-time (selection change hypothesis), and environmental

features may change through time (environmental change hypothesis). According

to the selection change hypothesis, a given species may be associated with different

environmental features in different time periods and/or life stages. For instance, many

species show seasonal activities, and select different environments depending on the

activities performed (e.g., nesting, foraging, wintering) (Seebacher & Alford, 1999;

Brambilla & Saporetti, 2014). In the long term, temporal variation for habitat association in

a given species may also occur due to evolution of novel adaptations (Nogués-Bravo, 2009;

Stigall, 2012). According to the environmental change hypothesis, temporal variation that

exists for the many biotic and abiotic features can affect species distribution (Kearney

et al., 2013). Such variation may occur over both short (e.g., variation of vegetation

cover or temperature among the seasons) and longer timescales (e.g., climate change,

habitat degradation) (Saupe et al., 2014). Both selection changes and environmental

changes may influence the possibility of predicting species distribution in different time

periods. Evaluating whether habitat association pattern changes through time, and the

factors determining such variation, is extremely important to assess the transferability and

generality of conclusions drawn from habitat modeling.

Among amphibians, plethodontid salamanders represent a very interesting study case.

Due to their particular physiology, they need a narrow combination of environmental

characteristics, and actively search places with suitable microclimatic conditions (cold

temperature and high moisture; Spotila, 1972; Camp & Jensen, 2007. Cave salamanders

(genus Hydromantes) may live both in surface and subterranean environments, but must

move underground during the arid and hot Mediterranean summer, when the surface

conditions become hot and dry (Lanza et al., 2006; Ficetola, Pennati & Manenti, 2012).
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In subterranean environments microclimatic features are often considered to remain

approximately stable, giving organisms the opportunity to inhabit caves constantly.

Some studies have shown that cave salamanders are associated with caves having specific

environmental features, such as low temperature, high humidity and presence of prey

(Ficetola, Pennati & Manenti, 2012; Lunghi, Manenti & Ficetola, 2014), but these studies

have been often performed during summer, when outdoor conditions are particularly

unsuitable for salamanders, and abundance in cave is highest. However, caves are not

closed systems, and environmental characteristics within caves can change over time due to

external influences (Romero, 2009). Such fluctuations mostly affect areas near the entrance

of caves (twilight zone) and can strongly influence cave communities (Ficetola, Pennati

& Manenti, 2013; Camp et al., 2014; Lunghi, Manenti & Ficetola, 2014). Nevertheless,

the few studies analyzing the seasonal variation in the distribution of European cave

salamanders (Salvidio et al., 1994; Vignoli, Caldera & Bologna, 2008) did not test whether

habitat selection changes through time.

The peculiar features of both caves and plethodontid salamanders make them an excel-

lent system for species-habitat association studies. Cave environments are dominated by

few, simple environmental gradients, such as light, depth, temperature, humidity and food

availability (Romero, 2009), affording simplistic habitat characterization. Furthermore,

species are easily detectable inside the delimited cave environments (Ficetola, Pennati &

Manenti, 2012), allowing a reliable identification of occupied and unoccupied sectors.

The aim of this study was analyzing the variation through time of species-habitat

association in the Italian cave salamander (Hydromantes italicus). First, we used habitat

models to identify the relationships between the distribution of salamanders and

microhabitat features, evaluating if the pattern of microhabitat association is constant

through time. Second, we assessed whether the temporal variation in microhabitat occurs

because the species selects different environmental features through the year, or because

habitat features are affected by seasonal variation (i.e., we evaluated the support of the

environmental changes vs. selection change hypotheses).

MATERIAL AND METHODS
Authorizations
All applicable institutional and/or national guidelines for the care and use of animals were

followed. The study was conducted under authorization of Apuan Alps Regional Park

(no 5, 4/04/2013), District of Prato (no 448, 2013), District of Pistoia (no 0022597/2013/P)

and District of Lucca (no 731, 21/02/2013).

Surveys
For 12 months (from January 2013 to December 2013) we monitored 15 caves occupied

by Hydromantes italicus in the North of Tuscan Apennines (Central Italy, between

43◦52′42′′N, 11◦07′18′′E and 43◦59′51′′N, 10◦13′48′′E). Preliminary surveys performed

in 2012 indicated the presence of H. italicus at all sites. Surveys were conducted during

day-time. The order of cave survey was chosen randomly, and the time interval between

Lunghi et al. (2015), PeerJ, DOI 10.7717/peerj.1122 3/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.1122


successive visits was 9–45 days. During surveys, for each cave we recorded monthly

environmental data both inside and outside caves. Outside caves, we registered air tem-

perature (accuracy: 0.1 ◦C) and humidity (accuracy: 0.1%) using a thermo-hygrometer

Lafayette TDP92, in a shaded area 5–10 m from the entrance. The interior of each cave

was divided into sectors of 3-m length, starting from the entrance and extending to

the deepest explored area: our exploration was conducted until the end of the caves,

or until the deepest sector reachable without speleological equipment. Three-m sectors

approximately correspond to the home range of Hydromantes during their hypogean

activity (Salvidio et al., 1994). Overall, we recorded data from 121 cave sectors [average

development explored per cave: 24.2 m (range 6–60), corresponding to 2–20 sectors

per cave]. At the time of surveys, in each sector we recorded four parameters known to

influence cave salamanders. Air temperature, humidity and incident light (illuminance,

measured using a Velleman DVM1300 light meter, minimum recordable light: 0.1 lux)

represented the abiotic conditions of caves, which influence metabolism, water balance and

activity (Kearney et al., 2013). The abundance of Meta menardi spiders was considered as a

biotic variable. On the one hand, Meta spiders are major predators of juvenile salamanders

(Lanza et al., 2006). Furthermore, Meta spiders are associated with areas showing high

invertebrate abundance, and have been proposed as an indicator of prey abundance in

cave environments (Manenti, Lunghi & Ficetola, in press). See Ficetola, Pennati & Manenti

(2013) for additional details on the recording of cave features.

We used visual encounter surveys to assess the presence/absence of H. italicus and

M. menardi spiders in each sector. This standardized technique allows to verify the

presence of species in an area during a defined time (Crump & Scott Jr, 1994; Jung et

al., 2000). If possible, salamanders were measured. Salamanders showing total length

>6.5cm or with male secondary characters were considered adults (Lanza et al., 2006),

the remaining salamanders were considered juveniles. All individuals were immediately

released at the collection point.

Statistical analyses
Variation of environmental features of caves
We used linear mixed models (LMM) to analyze the temporal variation of cave

microhabitat. We used the Akaike’s Information Criterion corrected for small sample

size (AICc) to identify the combination of parameters that better explain the variation

of microclimatic features inside caves (Stephens et al., 2007). In LMM, we considered

cave features (temperature, humidity, illuminance) as dependent factors, while outdoor

features (temperature and humidity), linear distance from the cave entrance (hereafter,

depth) and month of survey were considered as independent factors. We also considered

the interaction between depth and month of survey. We also included the time of survey

(hour and minute in which we began the survey) as an additional independent variable.

Cave and sector identity were considered as random categorical variables, as they shows

a typical combination of variables (both biotic and abiotic) independently from their

position and location. For all models, Variance Inflation Factor was <5, confirming lack
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of collinearity issues (Fox, 2002). Seasonal variation also occurs for the distribution of cave

spiders but was not analyzed here as it will be the focus of a separate study.

Relationships between species and environmental features
Not detecting a species during a survey does not necessarily mean that species is absent, as

most species have detection probability <1 (MacKenzie et al., 2006). Standard approaches

to the analysis of detection probability assume that sites are closed to changes in the

state of occupancy for the duration of sampling (MacKenzie et al., 2006). However, cave

salamanders quickly modify their occupancy patterns throughout the year in response to

environmental variation (Briggler & Prather, 2006; Camp & Jensen, 2007; Vignoli, Caldera

& Bologna, 2008), and therefore violate the closed population assumption. Approaches

assuming open populations also exist but, in this study case, their implementation would

require assumptions on population dynamics for which no data were available (Dail &

Madsen, 2011). Sampling effort was standardized across sectors. Therefore, following rec-

ommendations by Banks-Leite et al. (2014), we preferred performing analyses using stan-

dard mixed models, while verifying that low detection probability did not bias our results.

First, we used generalized linear mixed models (GLMM) assuming binomial error to

identify the relationships between the presence of salamanders and environmental features

(air temperature, humidity, illuminance and spider abundance) of each sector, throughout

the 12 months of sampling. To assess whether the habitat selection pattern is constant

through time, we included the interactions between sampling month and environmental

features. Sector and cave identity were included as random categorical factors. We built all

possible model combinations, and ranked them using AICc. Complex models with AICc

values higher than the simpler, nested models were not considered as candidate models

(Richards, Whittingham & Stephens, 2011). We used a likelihood ratio test to assess the

significance of terms in the best-AICc model. As microhabitat selection may be different

among age classes (Ficetola, Pennati & Manenti, 2013), this analysis was repeated three

times: first, considering all individuals, then considering adults and juveniles separately.

The results of the previous models may be affected by imperfect detection. We used the

MacKenzie & Kendall (2002) approach to test detection probability of cave salamanders,

on the basis of data collected in 22 sectors from three different caves. These caves were

surveyed in late June-early July: during this interval, Hydromantes movements among

sectors are expected to be limited (Lanza et al., 2006). For these sectors, two surveys were

performed 9–14 days apart, therefore we assumed constant occupancy in this interval

and estimated detection probability using single-season closed population occupancy

models with the unmarked package in R (Fiske & Chandler, 2011). The analysis of detection

probability was repeated twice: assuming constant detection across sectors, and assuming

that detection probability is related to distance from cave entrance. We then used AIC to

identify the best detection probability model.

Analyses (see results) showed a per-visit detection probability of 0.75, i.e., two surveys

allow to ascertain presence/absences with 94% confidence (Sewell, Beebee & Griffiths,

2010). To assess the robustness of habitat models to imperfect detection, we also repeated

the GLMM analysis by comparing two contrasting periods seasons: January–February
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and June–July. Movements between superficial and deep sectors are more frequent during

spring and autumn (Lanza et al., 2006), thus we assumed that occupancy was relatively

stable within these periods. We merged data from two-months periods respectively into

winter (January–February) and summer (June–July), and repeated the analyses using the

same variables of the best-AICc models obtained from the analyses of full dataset.

Testing the stability of habitat selection pattern
We used niche equivalency tests to assess whether salamanders select sectors with similar

environmental features in different months, after taking into account differences for the

availability of microhabitat conditions (Broennimann et al., 2012). The similarity of the

habitat selection pattern in two distinct seasons was assessed using Schoener’s D, a metric

of niche similarity (Warren, Glor & Turelli, 2008; Saupe et al., 2014). For equivalency tests,

salamander occurrences from different months were pooled and then randomly split

in two datasets, maintaining the same number of occurrences of the original datasets;

Schoener’s D was then calculated. This procedure was repeated 300 times to assess whether

niche similarity was significantly lower than expected by chance. The equivalency test

was repeated for the two environmental variables (temperature and humidity) for which

habitat models suggested differences among months. We focused on univariate rather

than multivariate tests because we were interested on variation of habitat selection due

to change of specific variables (Saupe et al., 2014). This analysis was performed on

four months (January, February, June and July) showing contrasting patterns of habitat

association (see results), and during which we do not expect major movements among cave

sectors (i.e., within these intervals the quasi-equilibrium assumption is more likely to be

hold than when seasonal migrations occur). The analysis was performed on all individuals

together and for each age category (juveniles only and adults only). Since six pairwise tests

were performed for each group and for each variable, significance values were corrected

using sequential Bonferroni’s correction (Rice, 1989).

RESULTS
Variation of environmental features inside caves
Internal temperature was strongly related to external temperature and humidity, month,

depth and interaction between month and depth: all variables except depth were

significant (Tables 1A and 2A). Seasonal change led to thermal inversion inside caves:

from late autumn to early spring temperature increased with depth, while from late

spring to early autumn temperature decreased in the deep sectors (Fig. 1A). Humidity

inside caves was strongly related to external humidity, month, depth and to the time

of survey. Furthermore, the significant interaction between month and depth indicated

that the humidity gradient was not constant through the year (Tables 1B and 2B). The

deepest sectors showed high stability of humidity through time, while fluctuations due to

external variation were evident in sectors nearby the cave entrance. External humidity

was particularly high in autumn and spring, determining an increase of humidity in

the first sector of caves (Fig. 1B). Internal light incidence was related to depth and

external humidity (Tables 1C and 2C). The deepest sectors always showed lower light
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Figure 1 Annual variation of external environment and cave microhabitat. Internal variables are
(A) temperature, (B) humidity and (C) illuminance (lux). In each graph, colored plots represent sectors
located at different distance from the entrance (from 3 to 21 m). These sectors represent the area
in which microclimate variability is higher; at 21 m illuminance was constantly 0 lux. Error bars are
standard errors. For temperature and humidity, the trend of the respective external feature is also shown,
represented by a continuous red line.
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Table 1 Best AIC models explaining the variation in microhabitat features of caves. We considered as
dependent variables inner abiotic features of caves: (A) Temperature, (B) Humidity and (C) Illuminance.
We used as independent variables: Month of survey, Time in which the survey began, Depth of sector,
External Temperature, External Humidity and interaction between Month and Depth (Prof : M). For
each continuous variable, the regression coefficient is reported if the variable is included into a given
model. For both categorical variables and interactions, + indicates their presence into the model. For
each independent variable, we report the first five best models.

Independent variables included into the model df AICc Δ − AICc Weight

Month Time of
survey

Depth External
temperature

External
humidity

Prof : M

(A) Temperature

+ 0.07 0.22 0.02 + 29 5,703 0 0.825

+ 0.05 0.07 0.21 0.02 + 30 5,706.3 3.34 0.155

+ 0.07 0.18 + 28 5,710.5 7.50 0.019

+ 0.01 0.07 0.18 + 29 5,717.6 14.67 0.001

+ 0.12 0.07 + 28 5,811.7 108.78 0

(B) Humidity

+ 0.34 0.27 0.15 + 29 8,314.1 0 0.517

+ 0.31 0.27 0.11 0.16 + 30 8,314.2 0.15 0.480

+ 0.26 0.24 0.15 0.17 19 8,325.2 11.09 0.002

+ 0.27 0.16 0.15 + 29 8,329.8 15.75 0

+ 0.31 0.24 0.16 18 8,329.8 15.75 0

(C) Illuminance

−0.04 −0.01 6 3,232.3 0 0.967

−0.04 0.01 −0.01 7 3,239.7 7.41 0.024

−0.01 −0.04 −0.01 3,241.7 9.40 0.009

−0.01 −0.04 0.01 −0.01 3,248.7 16.39 0

−0.04 0.01 3,256 23.72 0

than the superficial ones. However, incident light increased in summer and during periods

characterized by low humidity (Fig. 1C).

Detection of cave salamanders
Through the 180 cave surveys, we obtained 1,087 detections of cave salamanders (289 adult

males, 393 adult females, 49 not sexed adults and 356 juveniles). The average sampling

effort was of 7.5 min/sector. Salamanders were detected throughout the year with 13% of

detections in winter, 39% in spring, 30% in summer and 18% in autumn months. The

model assuming constant detection probability across sectors showed a lower AIC value

(AIC: 53.3) than the model assuming that detection probability is related to distance from

the entrance (AIC: 53.9). Detection probability of salamanders within sectors was high

(detection probability ± SE: 0.75 ± 0.12).

Analysis of occurrence of H. italicus through the year
Presence of H. italicus was strongly related to month, and was generally associated with

sectors characterized by high humidity, low light and abundant M. menardi spiders
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Table 2 Parameters related to microclimatic change of caves through the year: best-AICc models. The
dependent variables were three major features of cave microclimate: (A) internal temperature, (B) inter-
nal humidity and (C) illuminance. Independent variables were: Month of survey, Depth of sector, Temp.
ext (external temperature), Hum. ext (external humidity), Time (hour of survey).

Factor B χ2
1 P

(A) Temperature (internal)

Month 151 <0.001

Depth 0.07 0.81 0.368

Temp. ext 0.21 144.2 <0.001

Hum. ext 0.02 18.96 <0.001

Month × depth 680.71 <0.001

(B) Humidity (internal)

Month 117.03 <0.001

Depth 0.27 105.91 <0.001

Hum. ext 0.16 205.3 <0.001

Time 27.95 <0.001

Month × depth 94.92 <0.001

(C) Illuminance

Depth −0.03 34.60 <0.001

Hum. ext −0.01 49.66 <0.001

(Tables 3A and 4A). Furthermore, significant interactions between month and temper-

ature and between month and humidity indicated different microhabitat selection patterns

among months (Table 4A). Specifically, in winter periods salamanders were associated

with warmest sectors, while in summer periods they were associated with coldest and most

humid sectors (Figs. 2A and 2B).

The microhabitat selection pattern was similar if adults only were considered. Adults

were more abundant in sectors with low light and abundant M. menardi (Tables 3B

and 4B). Furthermore, differences among months were strong, and the interactions

between month and both humidity and temperature were significant. Adults were

associated with relatively cold sectors during summer, while in winter they were associated

with warmer sectors (Fig. 2C). In summer, adults were associated with the most humid

sectors; however, they showed a clear preference for the most humid sectors also in

February (Fig. 2D).

Juveniles were more frequent in sectors with high humidity and abundant M. menardi

spiders; furthermore the effect of month, and the interactions humidity-month and

temperature-month were significant (Tables 3C and 4C). Juveniles were associated with

the coldest sectors during winter and with warmer sectors during spring (Fig. 2E). From

late winter until spring, juveniles were associated with sectors characterized by lower

humidity, while during summer this apparent preference shifted in favor of most humid

sectors (Fig. 2F).
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Table 3 Five best AIC models relating salamander distribution to environmental features. We considered as dependent variable the presence of
(A) the species, (B) presence of Adults and (C) presence of Juveniles. We used as independent variables: internal humidity (Humid), Month of survey,
illuminance (Lux), Meta spiders abundance and internal temperature (Temp). Furthermore, we also used as independent variables interaction
between month and internal humidity (Hum : M), month and illuminance (Lux : M), month and Meta spiders (Meta : M) and month and internal
temperature (Temp : M). For each continuous variable, the regression coefficient is reported if the variable is included into a given model. For
categorical variables and interactions, + indicates that the variable or the interaction is included into the model.

Independent variables included into the model df AICc Δ − AICc Weight

Humid Month Lux Meta Temp Hum : M Lux : M Meta : M Temp : M

(A) Presence of the species

1.12 + −0.34 0.44 0.27 + + 40 1,384.8 0 0.709

1.64 + −0.36 0.26 + + + 39 1,388.9 4.15 0.089

−2.47 + −20.74 0.45 0.25 + + 51 1,389.3 4.5 0.075

1.41 + 0.45 0.27 + + 39 1,390.2 5.45 0.046

7.79 + −0.35 0.43 + 28 1,392.1 7.35 0.018

(B) Presence of adults

1.27 + −0.43 0.39 0.16 + + 40 1,253.8 0 0.721

1.7 + −0.44 0.16 + + 39 1,256.2 2.44 0.213

1.67 + 0.42 0.16 + + 39 1,261 7.25 0.019

6.83 + −0.42 0.4 + 28 1,261.5 7.78 0.015

1.46 + −0.44 −0.15 0.18 + + + 51 1,262.7 8.92 0.008

(C) Presence of juveniles

1.46 + 0.61 0.41 + + 39 807.2 0 0.428

1.23 + −0.26 0.58 0.4 + + 40 807.3 0.1 0.407

2.14 + −0.3 0.39 + + 39 810.5 3.22 0.085

2.57 + 0.39 + + 38 810.8 3.57 0.072

−2.85 + −20.8 0.59 0.35 + + + 51 816 8.72 0.005

Analysis between contrasting seasons
As detection probability was imperfect, we repeated the analysis by focusing on the

comparison between two contrasting seasons (winter/summer), in which migration of

salamanders is probably limited. During these two intervals we observed 112 salamanders

in winter and 257 salamanders in summer. The results of this analysis were generally

consistent with the analysis of the full dataset. If all individuals were pooled, salamanders

were associated with the darkest sectors. Season strongly affected the presence of

salamanders; furthermore, we detected a significant interaction between temperature

and season; the interaction between humidity and season was marginally not significant

(Table S1A). During these two seasons, salamanders were generally associated with sectors

in which microclimate was different from outdoor climate conditions: in fact, they were

associated with the most humid and cold sectors during summer, while in winter they

preferred relatively warm sectors (Figs. S1A and S1B). Results were nearly identical in the

analysis of adults-only (Table S1B; Figs. S1C and S1D). In the analysis of juveniles, only the

interaction between season and temperature remained significant (Table S1C, Figs. S1E

and S1F). However, it should be remarked that sample size was relatively small in this latter

analysis (112 juveniles observed), and this may have limited statistical power, compared to

the previous analyses.
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Table 4 Parameters related to presence/absence of salamanders. The dependent variables were the
presence of (A) Species, (B) Adults only and (C) Juveniles only. See Table 1 for explanation of variable
names. Only the best-AICc models are shown.

Factor B χ2
1 P

(A) Species

Month 140.2 <0.001

Humidity −2.65 4.3 0.039

Lux −20.79 7.6 0.006

Meta abund. 0.36 6.3 0.012

Temperature 0.25 1.4 0.238

Hum × month 30.6 0.001

Temp × month 31.2 0.001

(B) Adults

Month 128.7 <0.001

Humidity −1.57 1.4 0.233

Lux −1.95 9.4 0.002

Meta abund. −2.31 4.6 0.033

Temp 1.74 0.3 0.567

Hum × month 37.3 <0.001

Temp × month 32.7 <0.001

(C) Juveniles

Month 37.8 <0.001

Humidity −3.60 5.4 0.02

Meta abund. 0.75 5.7 0.017

Temp 0.35 3.6 0.059

Hum × month 37 <0.001

Temp × month 39 <0.001

Stability of habitat selection pattern
Most of equivalency tests were not significant, suggesting that habitat selection pattern was

consistent through months (Table 5). However, in the analyses of humidity considering

all individuals and juveniles only, niche equivalency was significantly lower than expected

by chance between February and June, and between February and July. Salamanders were

more tolerant for low-humidity habitats than during winter (Fig. 3). Conversely, if adults

only were analyzed, none of similarity tests were rejected (Table 5).

DISCUSSION
Caves are often described as stable environments (Romero, 2012), but their features and the

distribution of their inhabitants shows strong fluctuations through the year, particularly in

the superficial sectors. No doubt, the strong seasonal variation of salamander distribution

was mostly dictated by the fluctuations of microhabitats. Nevertheless, habitat preferences

and requirements may change across seasons, as in the case of juveniles that select

microhabitats with slightly different conditions in different times (Figs. 2E and 2F).
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Figure 2 Annual variation of the coefficients of regressions between presence/absence of cave sala-
manders, temperature and humidity. (A)–(B): results of regression models analyzing all individuals en-
countered; (C)–(D) results of models analyzing adults only (E)–(F) results of models analyzing juveniles
only. Results for December were not reported due to small sample size.

Cave depth represented the major gradient along with microhabitat features varied:

as expected, humidity always increased and light decreased in the deepest sectors. The

relationship between temperature and depth was more complex. During winter a positive

relationship between temperature and depth was observed, while the relationship became

negative during the warm months (Fig. 1A). Furthermore, all cave abiotic features

(temperature, humidity and light) followed the variation of external conditions, which

indeed were the major cause of fluctuations of internal microhabitats. While this influence
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Figure 3 Violin plots representing humidity in cave sectors available (white) and occupied by cave
salamanders (grey), during three months. The area of violin plots represents the distribution of cave
sectors according to microclimate feature. Width of plots is proportional to the number of sectors
showing such microclimate condition. The black points represent the medians, the grey boxes represent
the second and third quartiles. The violin plots for temperature are available in Fig. S2.

Table 5 Equivalency of species-habitat relationships (measured as Shoener’s D) observed in different
months. Pairs of months for which the species-habitat relationships were not equivalent (after Bonfer-
roni’s correction: α′

= 0.0083) are in bold.

Temperature Humidity

(A) All individuals

Feb Jun Jul Feb Jun Jul

Jan 0.917 0.684 0.771 0.520 0.695 0.762

Feb 0.616 0.639 0.336 0.375

Jun 0.832 0.770

(B) Adults only

Feb Jun Jul Feb Jun Jul

Jan 0.844 0.644 0.703 0.650 0.595 0.612

Feb 0.704 0.795 0.650 0.601

Jun 0.790 0.650

(C) Juveniles only

Feb Jun Jul Feb Jun Jul

Jan 0.807 0.688 0.601 0.234 0.706 0.693

Feb 0.528 0.428 0.077 0.069

Jun 0.700 0.950

was strongest in the first meters of the caves, it remained clearly detectable at depths >20 m

(Fig. 1), and therefore influenced the conditions experienced by salamanders.

During our surveys, detection probability of Hydromantes italicus was high, allowing us

to obtain many observations, which are a necessary prerequisite for any habitat association
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study. The observation of H. italicus was strongly related to time of survey. As observed

in other studies (Ficetola, Pennati & Manenti, 2012; Lunghi, Manenti & Ficetola, 2014),

salamanders were strongly associated with sectors characterized by specific microhabitat

features, such as high humidity, low light and abundant spiders. Individuals showed

differences in their response to abiotic features, which resulted in a different distribution of

salamanders inside caves (Ficetola, Pennati & Manenti, 2013). Adults were associated with

the wettest microclimates, while juveniles were present in apparently more stressful sectors

as they were also present in sectors with lower humidity and less suitable temperatures.

Such presence of juveniles also in suboptimal microhabitats has been observed also in other

species of cave salamanders (Ficetola, Pennati & Manenti, 2013), and may allow juveniles to

exploit more superficial environments, where they can find more food.

Beside some differences in habitat selection between adults and juveniles, a strong

interaction between temperature, humidity and time of survey was consistently observed

in most analyses (Tables 3, 4 and Fig. 2). For instance, salamanders tended to be associated

to the coldest and wettest sectors of caves, but this pattern was not evident during late

winter/spring (Figs. 2A and 2B). Such heterogeneity in habitat selection may occur both

because individuals select different conditions during different times or life stage (selection

change hypothesis) or because of the strong variability of available microhabitat conditions

(environmental change hypothesis). In principle, it might be also possible that in certain

periods juveniles are forced to move toward suboptimal areas because of competition

with adults. However, this explanation is unlikely: previous studies explicitly testing this

hypotheses have found evidence that juveniles are not displaced by adults (Ficetola, Pennati

& Manenti, 2013), while behavioral analyses suggested lack of competition for territories

(Berti & Corti, 2010).

Our data mostly support the environmental change hypothesis. First, the temperature

gradient showed a clear inversion through the seasons (Fig. 1A). If salamanders always

select the same optimal temperature (about 10–15 ◦C; Fig. S2), they can only find such

conditions in the deepest sectors of caves, in which temperature is relatively warm

during winter, and coolest during summer. Actually, most of equivalency tests were not

significantly different from random expectations, indicating that the species consistently

selected the same microhabitat. In other words, apparent changes in species-habitat

relationships (e.g., positive relationship with temperature in winter and negative

relationship in summer) occurred because the habitat occupied by salamander remained

the same, but environmental gradients changed through the time. As a consequence,

the relationships between microclimatic conditions and salamanders were not constant

with time: in summer individuals tended to select the coldest, most humid sectors of

caves, while the relationship was different during winter months (Fig. 2 and Table 5).

In practice, selection of the same habitat resulted in regression coefficients that were

remarkably different among seasons (Fig. 2). The difficulty of extrapolating regression

results and linear relationships beyond the limits of environmental gradients tested is a

major issue in ecological modelling (Randin et al., 2006; Zurell, Elith & Schroder, 2012). In

principle, only sampling the whole spectrum of potential habitat conditions may allow
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a full reconstruction of habitat preferences, but this is not feasible in the real world,

because the available environmental gradients generally cover a limited range of conditions

(Soberon & Nakamura, 2009; Elith, Kearney & Phillips, 2010).

Most of variation in species-habitat relationships was likely caused by the seasonal

variation of temperature and humidity. Nevertheless, particularly in the analysis of

humidity with juveniles, tests of niche equivalency between late winter and summer

months were consistently rejected (Table 5). Cave salamanders are able to exploit the

whole cave; therefore, if salamanders just require optimal abiotic conditions they can

remain in farthest sectors where suitable microclimate is more stable. Conversely, in this

study, salamanders during summer were associated to more humid sectors than in winter.

This suggests a higher tolerance for dry sectors during winter, and supports the selection

change hypothesis. Multiple, non-exclusive explanations are possible for such selection

change. First, newborns Hydromantes normally hatch at the end of summer (Lunghi et al.,

2014). Therefore, in the following winter, acquiring energy is a major priority for juveniles.

The most superficial cave sectors are the ones with driest microclimate (Table 2), but show

the highest abundance of prey. Actually, in our study caves, the potential prey richness

(calculated as the summed N of species of Araneae (excluding M. menardi) and Diptera,

as these taxa are the major food items for cave salamanders (Vignoli, Caldera & Bologna,

2006; Crovetto, Romano & Salvidio, 2012)) quickly decreases with depth (generalized linear

model with Poisson error, taking into account month of survey: B ± SE = −0.024 ± 0.006,

χ2
1 = 201.3, P < 0.0001). This indicates that juveniles may trade-off microclimatic optima

for food availability (Vlachos et al., 2014). Actually, the end of winter may be a particularly

important period, as in this period many invertebrates end their winter latency (Bale

& Hayward, 2010). Efficient exploitation of seasonal peaks of food resources may be a

key of fast development during the first years. Furthermore, the negative consequences

of low humidity may be stronger in summer. Low environmental temperature reduces

metabolism in ectotherms, which limits oxygen needs. As lungless salamanders exchange

gasses mainly through their skin, and the efficiency of this skin function increases with

high level of moisture (Spotila, 1972), during the cold season the individuals could be more

tolerant to low humidity because of their lower respiration needs.

The peculiar physiology of plethodontids forces these salamanders to live within

very narrow typologies of habitat. However, under certain circumstances, individuals

may select conditions that are closer to their physiological limits (Kearney et al., 2013).

This is likely the case for juveniles. Underground environments suffer constant food

scarcity (Romero, 2009), but juveniles require consistent food supply in order to grow

and reach maturity. Scarce access to food resources during juvenile stages poses major

constraints on development, and may have prolonged consequences and even impact

lifetime fitness (Wong & Kölliker, 2014). Therefore, in certain months, young salamanders

exploit superficial sectors with more stressful abiotic conditions, but they receive enough

food input from the outdoor environment to offset the risk.

In principle, the “optimal” habitat of a species should match species requirements for

multiple parameters, ranging from metabolism to water balance and food availability.

Lunghi et al. (2015), PeerJ, DOI 10.7717/peerj.1122 15/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.1122


However, such “ideal” conditions are rarely available in the real world, and species have to

deal with environmental variability, which causes frequent changes of habitat conditions

and resources availability (Seebacher & Alford, 1999; Araújo et al., 2010; Fredericksen, 2014).

Our study explores the complexity of habitat use patterns under variable conditions, and

highlights difficulties in determining habitat selection processes. When necessary resources

are inversely correlated along environmental gradients, habitat choice will be the results of

a trade-off between the multiple requirements of a species. We showed that such trade-off

may be not constant with time or life stage, as both species priorities and habitat features

may change across time. Individuals often require different resources depending on their

life stage, and thus must shift their habitat selection to exploit different environments to

satisfy their needs (Cox & Cresswell, 2014; Dittmar et al., 2014; Webb et al., 2014). Habitat

selection studies are often based on data collected over temporal snapshots. However,

seasonality is a pervasive feature of natural environments, highlighting the importance to

always take into account the potential seasonal variation and considering the interactions

between the requirement of individuals and the variability of habitats.
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