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ABSTRACT
Background. NAC (NAM, ATAF1/2, and CUC2) transcription factors play an im-
portant role in plant growth and development. However, in tumorous stem mustard
(Brassica juncea var. tumida), one of the economically important crops cultivated in
southwest China and some southeast Asian countries, reports on the identification of
NAC family genes are lacking. In this study, we conducted a genome-wide investigation
of theNAC family genes inB. juncea var. tumida, based on its recently published genome
sequence data.
Methods. The NAC genes were identified in B. juncea var. tumida using the bioinfor-
matics approach on the whole genome level. Additionally, the expression of BjuNAC
genes was analyzed under high- and low-temperature stresses by quantitative real-time
PCR (qRT-PCR).
Results. A total of 300 BjuNAC genes were identified, of which 278 were mapped to
specific chromosomes. Phylogenetic analysis of B. juncea var. tumida, Brassica rapa,
Brassica nigra, rice and Arabidopsis thaliana NAC proteins revealed that all NAC genes
were divided into 18 subgroups. Furthermore, gene structure analysis showed thatmost
of the NAC genes contained two or three exons. Conserved motif analysis revealed
that BjuNAC genes contain a conserved NAM domain. Additionally, qRT-PCR data
indicated that thirteen BjuNAC genes with a varying degree of up-regulation during
high-temperature stress. Conversely, four BjuNAC genes (BjuNAC006, BjuNAC083,
BjuNAC170 and BjuNAC223) were up-regulated and two BjuNAC genes (BjuNAC074
and BjuNAC295) down-regulated under low temperature, respectively. Together, the
results of this study provide a strong foundation for future investigation of the biological
function of NAC genes in B. juncea var. tumida.

Subjects Agricultural Science, Molecular Biology, Plant Science
Keywords Brassica juncea var. Tumida, NAC gene family, Transcription factors, Bioinformatics

INTRODUCTION
Plant transcription factors are a group of regulators that inhibit the transcription rate
of target genes by regulating their expression during plant growth and development to
facilitate the response to various biotic and abiotic stresses (Latchman, 1997; Jin et al.,
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2017). Transcription factors form a transcriptional complex of regulatory genes by binding
to DNA sequences or specifically interacting with other proteins (Welner et al., 2015;
Kim, Nam & Lim, 2016). The NAC (NAM, ATAF1/2, and CUC2) transcription factor
family is one of the largest families of transcription factors in plants. NAC transcription
factors are named after no apical meristem (NAM) proteins found in Petunia hybrids
(Souer et al., 1996), Arabidopsis transcription activation factor (ATAF1/2) proteins, and
cup-shaped cotyledon (CUC2) proteins of Arabidopsis thaliana (Aida et al., 1997). The
N-terminal of NAC proteins contains a conserved domain comprising 150–160 amino
acid, which is further divided into five subdomains (A–E), whereas the C-terminal is
a height diversity transcriptional regulatory region (Welner et al., 2015). Additionally, a
group of NAC proteins, named NTL proteins (NAC with transmembrane motif 1-like),
have been identified, which contain transmembrane regions with α-helical transmembrane
motifs (Kim et al., 2006; Seo & Park, 2010).

Genes encoding NAC transcription factors have been identified in many plant species,
including Arabidopsis, rice (Oryza sativa), radish (Raphanus sativus), melon (Cucumis
melo), Brassica napus, Tartary buckwheat (Fagopyrum tataricum), cacao (Theobroma
cacao), and sesame (Sesamum indicum) (Ooka et al., 2003; Nuruzzaman et al., 2010; Wang
et al., 2015; Wei et al., 2016; Karanja et al., 2017; Zhang et al., 2018b; Liu et al., 2019; Shen
et al., 2019). In some plant species, the NAC transcription factors were known to play
diverse roles. The first NAC genes identified in Petunia were shown to regulate the
formation of embryos and flowers (Souer et al., 1996). Subsequent studies have shown
that NAC transcription factors are involved in the response to many biotic and abiotic
stresses (Nakashima et al., 2012; Lv et al., 2016), such as drought (Wu, Wang & Wang,
2016; Hussain et al., 2017), salt stress (Wang et al., 2017; Alshareef et al., 2019), floral
morphogenesis (Hendelman et al., 2013), lateral root development (He et al., 2005), leaf
senescence (Guo & Gan, 2006; Kim, Nam & Lim, 2016), embryo development (Dalman
et al., 2017), hormone signaling (Wang, Rashotte & Dane, 2014), and xylogenesis, fiber
development, and wood formation in vascular plants (Ouyang et al., 2016; Sun et al., 2018;
Zhang et al., 2018a; Yao et al., 2020).

Currently, various NACTFs are reportedly induced by temperature stress and participate
in plant responses to cold and hot stress. Reports have shown that the expression of NAC
TFs is significantly increased in tomato (Liu et al., 2012) and chickpeas (Ha et al., 2014)
due to high and low temperatures. Overexpression of GmNAC20 enhances salt and
freezing tolerance in transgenic Arabidopsis plants. GmNAC20 mediates stress tolerance by
regulating the expression of COR (cold-responsive) genes, DREB1A/CBF3 (Dehydration
Responsive Element-Binding Protein/C-repeat Binding Factor 3), and DREB1C/CBF2.
GmNAC20 can directly bind to the promoters of DREB1A/CBF3 and DREB1C/CBF2,
thereby causing increased transcription of CBF3 and decreased transcription of CBF2.
MaNAC1 acts as a target gene of MaICE1 (Musa acuminata inducer of CBF expression 1),
whereinMaNAC1 protein interacts with MaCBF1 to regulate the cold tolerance of banana
fruit (Hao et al., 2011). The overexpression of a Malus baccata NAC transcription factor
gene MbNAC25 also increases cold and salt tolerances of Arabidopsis (Han et al., 2020).
NAC transcription factors play an essential role in high temperature stress. Arabidopsis
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plants with NAC019 overexpression are more heat-tolerant than the wild-type, and
heat shock factors (HSFs) binding to the promoter element of heat shock proteins are the
primarymechanisms for heat shock protein accumulation under heat stress. Heat stress can
also regulate the expression of RCF2 (regulators of C-REPEAT BINDING FACTOR gene
expression 2) (Guan et al., 2014), which interacts with and dephosphorylatesNAC019 ; both
proteins are necessary for heat induction of HSFs and thermotolerance. High temperature
causes accumulation of H2O2 in plant cells, whereas positive feedback induces NTL4 gene
expression in Arabidopsis. Reactive oxygen species (ROS) induce NTL4 gene transcription
and NTL4 protein processing, wherein NTL4 gene and ROS constitute a positive feedback
loop. High temperatures cause rapid accumulation of ROS in Arabidopsis and recycling of
nutrients and metabolites in damaged tissues to meristems or newly formed leaves, thereby
causing local programmed cell death and enhancing plants’ survival rate (Lee et al., 2014).

Tumorous stemmustard (Brassica juncea var. tumida) is an economically important crop
widely cultivated in China. B. juncea is an allotetraploid (AABB, 2n= 36) that originated
from hybridization between Brassica rapa (AA, 2n= 20) and Brassica nigra (BB, 2n= 16),
followed by chromosome doubling. The enlarged stem of B. juncea var. tumida is used
as an important seasoning, such as Fuling mustard. The growth of B. juncea var. tumida
is affected by temperature, humidity, and light (Liu, 1996). The current research on B.
juncea var. tumida is mainly focused on increasing yield via genetic breeding; however,
few studies have been conducted on its internal molecular regulation mechanism of NAC
genes. The genome data of Brassica juncea var.tumida has been published recently, which
made it possible for us to find more information (Yang et al., 2016).

In this study, we used the HMMsearch software (Potter et al., 2018) to identify the NAC
transcription factors in B. juncea var. tumida cultivar ‘‘Yongan xiaoye’’. The physiological
and biochemical characteristics of BjuNAC transcription factors were analyzed, and a
phylogenetic tree of B. juncea var. tumida, Brassica rapa, Brassica nigra, rice and Arabidopsis
thaliana NAC proteins was constructed. Additionally, the expression of temperature-
sensitive BjuNAC genes was analyzed at high and low temperatures, and the yield and
quality of mustard tubers was investigated at high temperature (39 ◦C), low temperature
(5 ◦C), and room temperature (25 ◦C; control). Overall, our results provide a theoretical
basis of heat and cold stress tolerance in mustard.

MATERIALS & METHODS
Identification of NAC transcription factors
The genome sequence of B. juncea var. tumida was downloaded from the Brassica database
(http://brassicadb.cn/#/Download/). The Hidden Markov Model (HMM) profile (Eddy,
1998) of the NAC protein (PF02365), which was downloaded from the Pfam database
(http://pfam.xfam.org/) (Finn et al., 2014), was used as a query to identify theNAC genes in
the B. juncea var. tumida genome using the local HMMER3.1 software, with E-value <1E-10
(Potter et al., 2018). Then, a species-specificHMMfile ofB. juncea var. tumidawas generated
using the HMMbuild protocol, and a new HMMsearch was performed. All putative NAC
genes were identified using the NCBI CDD search (https://www.ncbi.nlm.nih.gov/cdd)
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(Marchler-Bauer & Bryant, 2004); the conservedNAMdomainwas identified using SMART
(http://smart.embl-heidelberg.de/).

Multiple sequence alignment and phylogenetic analysis
The AtNAC protein sequences were downloaded from The Arabidopsis Information
Resource database (https://www.arabidopsis.org/) (Garcia-Hernandez et al., 2002).
Furthermore, the NAC protein sequences in rice were obtained from Rice Genome
Annotation Project (http://rice.plantbiology.msu.edu/) (Kawahara et al., 2013). The
NAC protein sequences of Brassica nigra were obtained using HMMsearch method
above. And NAC proteins in Brassica rapa were downloaded from the Brassica database
(http://brassicadb.cn/#/SearchTranscriptionFactorGene/?subfamily=NAC). All amino acid
sequences of BjuNAC, AtNAC, Brassica rapa, Brassica nigra and rice proteins were aligned
using Muscle alignment (Edgar, 2004), and a neighbor-joining phylogenetic tree was
constructed using MEGA X, with 1,000 bootstrap replications (Kumar et al., 2018).

Characterization of BjuNAC proteins and BjuNAC genes
The physicochemical properties (such as molecular weight and isoelectric point) of
all putative BjuNAC proteins were determined using the ExPASy website (https:
//web.expasy.org) (Artimo et al., 2012). Conserved motifs were identified using MEME
(http://meme-suite.org/) (Bailey et al., 2009), with the following parameters: maximum
number of motifs= 15; search model= zero or one occurrence per sequence; motif length
= 6–50 amino acids; and default settings for all other parameters. Information on the
structure of all identified NAC genes was obtained from the GFF file, and the exon–intron
map of NAC genes was constructed using the Gene Structure Display Server (GSDS)
website (http://gsds.cbi.pku.edu.cn/) (Hu et al., 2015). Phylogenetic trees, motifs, and gene
structure maps were drawn using the TBtools software (Chen et al., 2020).

Chromosomal distribution cis-element and evolutionary analysis of
BjuNAC genes
Information on the chromosomal location of BjuNAC genes was obtained from the GFF file
using a Perl script (Supplemental 1) and then compiled manually. The chromosomal map
of BjuNAC genes was drawn using the Mapchart software (Voorrips, 2002). MCSCANX
(Wang et al., 2012) was used to analyze the collinearity and duplication events of BjuNAC
genes. The synonymous substitution ratio (Ka/Ks) value of segmental and tandem
duplication genes was used as the protocol sample Ka/Ks calculator in TBtools. PlantCARE
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (Lescot et al., 2002) was
used to perform cis-element analysis of the upstream regions (−1,500 bp) of BjuNAC
genes.

RNA extraction and qRT-PCR analysis
The expression pattern of BjuNAC genes in young leaves was studied under high and
low temperatures. Seeds were sown in meteorite: soil (2:1) mix, incubated at 25 ◦C under
12-h light/12-h dark photoperiod in a growth chamber. After 5 weeks of seed culture,
seedlings with the same growth conditions were placed at high temperature (39 ◦C) and
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low temperature (5 ◦C) and cultivated for 0, 6, 12, 24, and 48 h; whole seedlings were used
as the samples. After harvest, all samples were immediately frozen in liquid nitrogen and
stored at −70 ◦C until needed for RNA isolation.

Total RNA was isolated from whole seedlings of B. juncea var. tumida using the Plant
MiniBESTRNA Extraction Kit (TaKaRa Biotechnology, Dalian, China), and cDNA was
synthesized using the PrimeScriptTM RT Kit and gDNA Eraser (TaKaRa Biotechnology,
Dalian, China). Then, quantitative real-time PCR (qRT-PCR) analysis was performed on
the Bio-Rad iQ5 Real-Time PCR Detection System using the TBGreen R© PremixEx Taq
II Kit (Tli RNaseH Plus) RR820A (TaKaRa, Japan) and 14 pairs of gene-specific primers
(Table S1), under the following thermocycling conditions: 95 ◦C for 30 s; 40 cycles at 95
◦C for 5 s and 55 ◦C for 30 s; and 72 ◦C for 30 s. The BjuActin gene (BjuB012485) was
used as an internal reference. Three biological replicates were performed for each gene,
with each replicate containing three technical repeats. To analyze the expression change
under different stress, the 2−11Ct method was applied (Livak & Schmittgen, 2001; Rao et
al., 2013).

RESULTS
Genome-wide identification of BjuNAC genes
The HMM model file (PF02365) of NAC was downloaded from the Pfam database. A
total of 336 BjuNAC genes were identified in the genome sequence data of B. juncea
var. tumida using the HMMER 3.0 software. The redundant and non-NAM domain-
containing genes were removed by domain identification using the SMART and NCBI
websites, and 300 BjuNAC genes were extracted for further analysis. According to their
chromosomal locations, 278 of 300 BjuNAC genes were named as BjuNAC 001–278,
whereas the remaining 22 genes belonging to the scaffold or contig data were named as
BjuNAC 279–300. Proteins encoded by BjuNAC genes varied in length from 164 amino
acids (aa; BjuNAC037) to 1,432 aa (BjuNAC236) (Table S2), and their isoelectric point
ranged from 4.19 (BjuNAC012) to 10.03 (BjuNAC058), with an average value of 6.50. The
molecular weight (MW) of BjuNAC proteins ranged from 18.74 kDa (BjuNAC037) to 161
kDa (BjuNAC236), with an average molecular weight of 38.45 kDa. Among the NAC TFs
studied, only 3 NAC proteins haveMW>100 kDa and 36 NAC proteins are between 50 and
100 kDa. The MW of most NAC proteins is 20–50 kDa. The physiological and biochemical
properties of all BjuNAC proteins are listed in Table S2.

Phylogenetic analysis of BjuNAC proteins
We constructed a phylogenetic tree using the NJ method, with 1,000 bootstrap replications.
On the basis of the classification of NAC proteins in other species (Ooka et al., 2003), all
300 BjuNAC proteins were divided into 18 subfamilies (Fig. S1). The results showed that
BjuNAC proteins are as diverse as AtNAC and rice proteins, and 300 BjuNACs were
unevenly distributed in 18 subgroups. In our analysis, no Brassica NAC members from the
subgroups ONAC001 and OsNAC3 were identified. The largest branch (NAC 2) contained
45 NAC proteins, whereas the smallest branch (TIP) contained only one NAC protein.
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Figure 1 Chromosomal distribution of BjuNAC genes on the genetic map. Graphical representation
of locations for putative BjuNAC genes on each chromosome. The tandem duplicated genes were colored
with red backgrounds. A01∼A10, B01∼B08 shows the chromosome numbers. Other 22 BjuNAC genes in-
formation belongs to scaffold or contig data were shown in Table S2.

Full-size DOI: 10.7717/peerj.11212/fig-1

Each subgroup contained different numbers of proteins, probably due to different genomic
events during the evolution of B. juncea var. tumida and other species.

Analysis of chromosomal distribution and duplication of BjuNAC genes
Out of 300 BjuNAC genes identified in this study, 278 were mapped to 18 chromosomes
(A01–A10 and B01–B08). The highest number of BjuNAC genes (26) was mapped to
chromosome A03; this was followed by 24, 22, 22, and 20 genes on chromosomes A02,
B03, B07, and A10, respectively, and only 3 genes on chromosomeA08 (Fig. 1). Distribution
of BjuNAC genes on the chromosome is similar to NAC genes of Brassica rapa (BrNAC).
It contains more NAC genes on chromosome A03 and A10, most of which are at the
telomeric ends or near the centromere (Liu et al., 2014).

Collinearity analysis revealed that the mapped 220 BjuNAC genes formed 288
collinear pairs, including 14 tandem repeat pairs (Fig. S2). Additionally, 14 collinear
pairs belonged to tandemly duplicated genes, including BjuNAC14/15, BjuNAC22/23,
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BjuNAC46/47, BjuNAC62/63, BjuNAC86/87, BjuNAC113/114, BjuNAC129/130,
BjuNAC132/133, BjuNAC139/140, BjuNAC183/184, BjuNAC186/187/188 (three
tandem repeats), BjuNAC192/193, BjuNAC195/196, and BjuNAC280/282 (on the
Contig11_2007833_2318034).

Exon–intron gene structure and conserved motif analysis
To investigate the function of BjuNAC genes, we determined their exon–intron structure
using the GSDS (Fig. S3). We also constructed a phylogenetic tree of all BjuNAC genes
(Fig. S3A). The results showed that most of the BjuNAC genes (289 out of 300) contained
introns, whereas the remaining 11 genes were intronless. Approximately half of the BjuNAC
genes (159 of 300) contained two introns. BjuNAC186 and BjuNAC236 contained 18
introns, the highest number of introns among all BjuNAC genes (Fig. S3C).

To further analyze the structural diversity of BjuNAC proteins, conserved motifs were
searched using the MEME program (Fig. S4). The distribution of motifs is shown in
(Fig. S3B). Generally, NAC genes clustered within the same subgroup shared a similar
motif composition (Fig. S5). Most of the NAC proteins included motif1 (representing
subdomain A), motif4 (representing subdomain B), motif5 and motif3 (corresponding
to subdomain C), motif2 and motif6 (corresponding to subdomain D), and motif7
(represented subdomain E). However, some of the conserved motifs were partially lost in
proteins belonging to certain subgroups. For example, there were three BjuNAC proteins
lost motif7 and three of them also lost motif 2, motif 3, motif 5 and motif6 in group VI.
Half of the BjuNAC proteins in group IV; contained only motif1 and motif4. In group VII
and VIII, almost all of BjuNAC proteins contained motif 8, especially in group VII, only
BjuNAC276 lost motif 1 and motif 12 (Fig. S3B).

Cis-acting element analysis
Cis-acting elements usually located within 1,500 bp sequence upstream of the transcription
start site play a key role in regulating gene expression. Studies have shown that the
expression of many genes depends on the presence or absence of specific cis-acting
elements. To predict the function of BjuNAC genes, we analyzed the upstream regulatory
sequence (−1,500 to +1 bp) of BjuNAC genes using PlantCARE. The results showed
that the upstream sequences of most of the 300 BjuNAC genes contained cis-acting
elements (Fig. S6) that respond to light, including the 3-AF1 binding site, AAAC-motif,
ACA-motif, ACE, AT1-motif ATC-motif, ATCT-motif, Box 4, chs-CMA1a, GA-motif,
GATA-motif, G-Box, and GT1-motif. Additionally, 77% of the BjuNAC genes contained
anaerobic induction-responsive element and abscisic acid-responsive element (ABRE),
70% contained methyl jasmonate-responsive element (CGTCA-motif/TGACG-motif),
39% contained auxin-responsive element (TGA-box), 34% contained drought stress
response element (MBS) and salicylic acid-responsive elements (TCA-element), 35%
contained defense and stress response element (TC-rich repeats), and 36% contained
low-temperature response element (LTR). The upstream sequences of only 22% and 11%
of the BjuNAC genes contained circadian control regulatory elements (circadian) and seed
development-specific elements (RY-element), respectively. A total of 110 genes have one
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Figure 2 Expression levels of BjuNACs under cold and hot treatment by qRT PCR. The number rep-
resented the treatment times (hours). The colour scales represent relative expression data. Note: *** p <
0.001; ** p< 0.01; * p< 0.05.

Full-size DOI: 10.7717/peerj.11212/fig-2

or more LTR cis-elements involved in low-temperature responsiveness. Four abiotic stress
response elements, including ABRE, DRE, LTR, and TC-rich repeats, lay the foundation
for further research on the potential regulatory mechanism of NAC genes in response to
abiotic stress.

Gene expression analysis under temperature stress
To further study the response of BjuNAC genes to abiotic stress, 14 BjuNAC genes enriched
in the ‘‘temperature stress response’’ Gene Ontology term were selected for expression
analysis under cold and heat stress treatments by qRT-PCR. Heat maps showing the
expression of these 14 genes under the two stresses are shown in Fig. 2, the expression
results are listed in Table S5. Most of the genes were up-regulated under the heat treatment,
whereas some genes were induced by low-temperature stress. BjuNAC006, BjuNAC083,
BjuNAC170 and BjuNAC223 were highly up-regulated under low-temperature conditions.
Under the cold stress, most of the genes were up-regulated at 24 or 48 h, but some genes
showed down-regulation after 48 h of cold treatment, for example, BjuNAC295 was
down-regulated under both cold and heat treatments.

DISCUSSION
Tumorous stem mustard is an economically important food crop; however, its yield
is affected by many abiotic stresses (Cai et al., 2019; Li et al., 2019). As one of the largest
transcription factor families in plant species, theNAC family plays an important role in plant
growth, development, and biotic and abiotic stress responses (Seo & Park, 2010;Nakashima
et al., 2012). NAC transcription factors have been characterized at the genome level inmany
plant species (Ling et al., 2017; Ahmad et al., 2018; Zhang et al., 2018b; Liu et al., 2019). In
this study, we conducted a comprehensive analysis of BjuNAC genes and the encoded
transcription factors, including analysis of the gene structure, evolutionary relationships,
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conserved motifs, chromosomal distribution, duplication events, and expression patterns
under high and low temperatures.

A total of 300 NAC genes were identified in the B. juncea var. tumida genome, which
is far greater than the number of NAC genes identified in other plant species. This maybe
because the B. juncea var. tumida has a larger genome, which is an allotetraploid (AABB),
resulting from the hybridization between diploid ancestors of B. rapa (AA) and B. nigra
(BB), followed by spontaneous chromosome doubling (He et al., 2020). Therefore, the
number of NAC genes in B. juncea var. tumida doubled. The number of NAC proteins
in mustard tubers is more than that in Brassica rapa (204 members) (Liu et al., 2014) but
less than that in NAC proteins in Brassica napus (410 members) (Mohanta et al., 2020),
which indicates that the number of NAC proteins is positively correlated to the size of the
Brassica genome. NAC family members were identified in Brassica juncea var. tumida (300
members) and Brassica nigra (212 members) (Table S3), using the HMMsearch method.
Phylogenetic tree of NAC transcription factors in Brassica juncea var. tumida, Brassica
nigra, Brassica rapa, Arabidopsis and rice, and all the NAC members were divided into
18 subfamilies. In the distribution of each subfamily, the number of Brassica nigra and
Brassica rapa NACmembers in subgroups was the same, but it was more in Brassica juncea
than that of diploid. The copy number change of NAC family in Brassica juncea is not a
simple doubling of the two diploids, but the loss or increase of genes between different
subfamilies compared with the number of NAC in Brassica nigra and Brassica rapa. The
isoelectric point of BjuNAC proteins varied from 4.19 to 10.03, with an average value of
6.50, which is consistent with most NAC TFs in Brassica napus that are acidic proteins.
More than 68.3% of the BjuNAC proteins (205 out of 300) were acidic in nature, which
may contribute to the acidic subcellular environment. Different NAC protein subgroups
have different number of amino acids, protein MW, and isoelectric points. The versatility
of NAC function may be the primary reason for the wide MW ranges of NAC proteins.
Phylogenetic analysis revealed that all BjuNAC genes were divided into 18 subgroups. NAC
proteins are involved in a variety of plant growth and developmental processes, such as seed
germination, cell division, secondary cell wall biosynthesis, organ boundary and meristem
formation, lateral root development, flowering, senescence, and iron balance regulation.
Phylogenetic analysis can be used to predict gene function, which is very important for
further analysis of gene function. NAM subgroups are involved in the formation of organ
borders and meristem formation of plant, whereas ATAF1 subgroups are related to plant
senescence and leaf curling. The overexpression of OsNAC1 significantly enhanced drought
resistance of transgenic rice in the field without phenotypic changes or yield reduction
under severe drought stress conditions during the growth period (Hu et al., 2006). Although
the expression level of OsNAC7 in rice is extremely low or negligible in leaves, embryos,
and callus, high expression levels are detected in stems and young panicles (Kikuchi et al.,
2000). Expression of OsNAC022 was induced by drought, high salinity, and abscisic acid
(Hong et al., 2016). Salicylic acid and abscisic acid had no significant effect on TaNAC08
gene expression (Xia et al., 2010). The TIP subfamily contains BjuNAC074, whose protein
sequence is homologous toArabidopsis thalianaTIPmRNA,whereinAtTIP gene is resistant
to virus invasion in Arabidopsis thaliana (Donze et al., 2014). That implies NAC protein is
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involved in the response to virus infection during plant vegetative development. AtNAP
gene in the subfamily of NAC transcription factors is related to leaf senescence, and
overexpression of the AtNAP gene causes premature senescence in Arabidopsis thaliana.
According to the results of phylogenetic analysis, the AtNAC3, ATAF, and NAP subgroup
proteins share a close relationship, and most of the published stress-related NAC family
members are included in these three subgroups. Arabidopsis contains three proteins
belonging to the AtNAC3 subgroup (ANAC019, ANAC055, and ANAC072/RD26) and
four proteins belonging to the ATAF subgroup (ATAF1/ANAC002, ATAF2/ANAC081,
ANAC032, and ANAC102), all of which are NAC proteins. NAC proteins participate in the
response to various abiotic and biotic stresses. In rice, the ANAC063 subgroup contained
the highest number of NAC proteins, whereas the OsNAC8 subgroup was the smallest,
with only three BjuNAC genes in B. juncea var. tumida is higher than that in other species,
indicating that BjuNAC genes are more important for plant growth and development
under various abiotic and biotic stresses.

Whole genome duplication has played an important role during plant genome evolution
process, and segmental duplication is primarily responsible for the expansion of the NAC
gene family. Collinearity analysis showed that 223 BjuNAC genes resulted from duplication,
including 1 singleton, 27 dispersed, 9 proximal, 248 segmental, and 15 tandemduplications.
These genes formed a total of 288 duplicate gene pairs, 50% of which originated from
segmental duplication, indicating that segmental duplication represents the main mode of
expansion of the BjuNAC gene family. At the same time, we found that 15 gene pairs were
tandem repeats. Additionally, non-synonymous to synonymous substitution ratio (Ka/Ks)
of segmental and tandem duplications was <1, indicating that the BjuNAC genes may have
undergone purifying selection.

We also analyzed the exon–intron structure of all BjuNAC genes and conserved motifs
in the encoded proteins. Molecular characterization of BjuNAC genes revealed the motif
composition of the NAC transcription factor and is dispersed in a subgroup of gene
structures that are not used. The BjuNAC genes clustered within the same subgroup
generally shared a similar motif composition. The number of introns in BjuNAC genes
varied from 0 to 18; only 11 BjuNAC genes were intronless, and approximately 50% of
all BjuNAC genes contained two introns. These molecular features of BjuNAC genes are
similar to the NAC genes of other plant species. Variation in the structure of BjuNAC
genes indicates that the evolution of environmental stress response in these genes occurred
through the acquisition or loss of introns.

We compared the NAC protein sequences of Brassica rapa, Brassica nigra and Brassica
juncea respectively by the blast. Through the similarity of greater than 90%, we assumed
that the two genes have homology. Finally, 151 BniNACs and 181 BraNACs were filtered.
According to the analysis of chromosome distribution, genes deriving from chromosomes
of Brassica nigra and Brassica rapa might have caused differences in the distribution of
NACs in Brassica juncea var. tumida due to chromosomal rearrangements and structural
variations within evolution. Among them, on chromosomes B1, B2 and B7 of Brassica
nigra, there were 32, 20, 24 genes homologous to BjuNAC genes. On chromosome of
Brassica rapa, 35 genes on chromosome A03 were homologous to BjuNACs, followed by
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28 genes on chromosome A02, and the least only 2 genes (Table S4) on A08. BniNACs
chromosome distribution was shown in Fig. S7.

B. juncea var. tumida is sown from September to early October; however, late sowing
significantly affects its effective tumorous stem yield. A temperature range of 15–20 ◦C
is optimal for the germination of B. juncea var. tumida seeds. At the germination and
seedling stages, changes in environmental conditions greatly influence the crop yield;
sometimes only 3–5 days of difference on sowing date can cause 30% of the yield reduction
of tumorous stem mustard (Liu, 2014). The region of Chongqing in southwest China
experiences extreme weather in September and October, which has a greater impact on
the germination of mustard seeds and the growth of seedlings. In Chongqing Fuling area,
temperatures as high as 35 ◦C and 30 ◦C lasted for >5 days in September 2018 and 2019
and for 13 days in September 2019, respectively. Continuously high temperature decreases
not only the seed germination rate but also the survival rate of seedlings.

The growth phase of mustard seedlings is from mid-October to late November. After
60 days of the growing season, mustard seedlings enter the stem expansion stage, which
generally lasts from early December to mid-February (approximately 100 days) and is the
most important growth phase of mustard plants. The optimal temperature for the stem
expansion stage is 8 ◦C–15 ◦C, and the number of leaves is 25–45. At temperature <4 ◦C,
the stem expansion of the mustard tuber is suppressed, which may lead to growth arrest.
At −4 ◦C, frost damage is lethal for the mustard tuber (Li, Dai & Zhan, 2015). Long-term
exposure to low temperature induces the plants to transition from vegetative growth to
reproductive growth, resulting in bolting and consequently reduced yield. In 2008, the
overall output of tumorous stem mustard was reduced by 30% because of excessive snow
and ice (Jian, 2019).

The results of qRT-PCR showed that the expression levels of BjuNAC006, BjuNAC073,
BjuNAC083, BjuNAC223, BjuNAC241, and BjuNAC170 increased significantly over time,
regardless of the heat or cold stress, indicating that these genes may be involved in response
to temperature stimuli. BjuNAC073 and BjuNAC006 are homologous to BnaNAC103 and
BnaNAC55, respectively. BnaNAC103 (Niu et al., 2014) and BnaNAC55 (Niu et al., 2016)
respond to multiple signals, including heat, cold, salicylic acid, and a fungal pathogen,
Sclerotinia sclerotiorum. Simultaneously, they play a role in activating the promoter activity
of five genes encodingROS-scavenging enzymes ormediating defense responses. Expression
of BjuNAC083 is consistent with NAC gene expression (similar sequence with Bra029201)
under heat and cold stress in Brassica rapa (Liu et al., 2014). BjuNAC006 (sequence similar
to ANAC055) and BjuNAC083 (sequence similar to ANAC019) transcription factors bind
specifically to 5′-CATGTG-3′ motif and respond to water shortage at high temperatures
(Tran et al., 2004). The expression level of BjuNAC178 reached a peak at 6 h, then declined
under cold stress and gradually increased under heat stress, which indicated the role of
BjuNAC178 in temperature stress response. The expression level of BjuNAC240 reached
a peak at 24 h, but did not vary much under cold stress. BLAST (basic local alignment
search tool) comparison showed that BjuNAC240 is homologous to BnaNAC60, positively
modulating programmed cell death and age-triggered leaf senescence (Yan et al., 2020).
The expression of BjuNAC112 and BjuNAC184 was the highest at 24 h under heat stress,
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but did not change significantly under cold stress, indicating that these genes may be
involved in the high temperature stress response. The expression level of two BjuNAC
genes (BjuNAC074 and BjuNAC295) was down-regulated under low temperature, and they
may respond to cold stress. Nonetheless, the specific biological functions of BjuNAC genes
need to be verified experimentally.

CONCLUSIONS
In this study, we identified 300 NAC genes in B. juncea var. tumida and characterized their
gene structure, chromosomal distribution, phylogenetic relationship, conserved motifs,
and expression pattern in response to abiotic stress. BjuNAC genes showed differential
expression patterns under high- and low-temperature stresses. Overall, our findings provide
a strong basis for further investigation of the biological functions of BjuNAC genes. This
information could be used to increase the yield of B. juncea var. tumida, thus increasing its
food value and economic importance.
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