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An injured Shergoldia laevigata Zhu, Hughes & Peng 2007 (Trilobita, Asaphida) was
collected from the Furongian of Guangxi, South China. The injuries occurred in the left
thoracic pleurae possessing two marked V-shaped gaps. It led to substantial transverse
shortening of the left pleural segments, with barely perceptible traces of healing. This
malformation is interpreted as a sub-lethal attack from an unknown predator . The
morphology of the injuries and the spatial and temporal distribution of predators indicated
that the predatory structure might have been the ganathobase or ganathobase-like
structure of a larger arthropod. There were overlapped somites located in the front of the
injuries, and slightly dislocated thoracic segments on the left part of the thorax, suggesting
that the trilobite had experienced difficulties during the molting process. The freshly
molted trilobite had dragged forward the old exuvia causing the irregular arrangement of
somites. This unusual trilobite specimen indicates that the injuries interfered with molting.
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14 Abstract

15 An injured Shergoldia laevigata Zhu, Hughes & Peng 2007 (Trilobita, Asaphida) was collected 

16 from the Furongian of Guangxi, South China. The injuries occurred in the left thoracic pleurae 

17 possessing two marked V-shaped gaps. It led to substantial transverse shortening of the left 

18 pleural segments, with barely perceptible traces of healing. This malformation is interpreted as a 

19 sub-lethal attack from an unknown predator. The morphology of the injuries and the 

20 spatial and temporal distribution of predators indicated that the predatory structure might have 

21 been the ganathobase or ganathobase-like structure of a larger arthropod. There were overlapped 

22 somites located in the front of the injuries, and slightly dislocated thoracic segments on the left 
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23 part of the thorax, suggesting that the trilobite had experienced difficulties during the molting 

24 process. The freshly molted trilobite had dragged forward the old exuvia causing the irregular 

25 arrangement of somites. This unusual trilobite specimen indicates that the injuries interfered with 

26 molting.

27 Introduction

28 Numerous trilobite exoskeleton deformities have been documented, including abnormal 

29 healing, hyperplasia, deformation, and missing or fractured somites. The causes of these 

30 deformities are usually thought to be injuries, developmental disorders, and diseases (Owen, 

31 1985; Babcock, 1993; Pates et al., 2017; Bicknell & Pates, 2020). The evaluation of injuries 

32 caused by predator attack is useful for presenting the interactions between predators and 

33 trilobites, and for reconstructing the food web and ecological structure in deep time 

34 (Klompmaker et al., 2019). Furthermore, such predatorial injuries are used to uncover behavioral 

35 information (Babcock & Robison, 1989; Babcock, 1993; Pates et al., 2017; Bicknell, Paterson & 

36 Hopkins, 2019). The injuries caused by predators have mainly been detected on the edges of 

37 trilobites, especially in the thoraces and pygidia, and are generally considered to have been non-

38 lethal (Babcock, 2003, 2007), while cephalic attacks are more often fatal (Pates & Bicknell, 

39 2019). Although numerous studies have evaluated injured trilobites (e.g., Owen, 1985; Rudkin, 

40 1985; Babcock, 1993, 2003, 2007; Zhu et al., 2007; Schoenemann, Clarkson & Høyberget, 2017; 

41 Bicknell & Paterson, 2018; Bicknell & Pates, 2020; Bicknell & Holland, 2020; Zong, 2020), 

42 most predators remain unidentified, except some carnivores with trilobite fragments in their guts 

43 or coprolites (Vannier & Chen, 2005; Vannier, 2012; Zacaï, Vannier & Lerosey-Aubril, 2016; 

44 Bicknell & Paterson, 2018; Kimmig & Pratt, 2018). The shapes of the Cambrian trilobite injuries 

45 suggest that some predators may have been radiodonts (Babcock & Robison, 1989; Babcock, 
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46 1993; Nedin, 1999). Other predator candidates include cephalopods, echinoderms, fish, and other 

47 larger arthropods (Bruton, 1981; Briggs & Collins, 1988; Babcock, 1993; Fatka, Budil & Grigar, 

48 2015; Jago, García-Bellido & Gehling, 2016; Bicknell & Paterson, 2018; Bicknell et al., 2018a; 

49 Zhai et al., 2019).

50 Moreover, although it has been inferred that injuries did interfere with daily activities of 

51 trilobites, direct fossil records are rare (Šnajdr, 1985). Herein, I discuss an injured Shergoldia 

52 laevigata Zhu, Hughes & Peng 2007 from the Cambrian (Furongian) of Jingxi, Guangxi, South 

53 China. The exoskeletal injuries suggest that the predatory structure might have been the 

54 gnathobase or gnathobase-like structure of a larger arthropod. In addition, the findings indicate 

55 that these injuries would have caused difficulties for trilobite during molting, but did not cause 

56 molting failure. 

57 Materials & Methods

58 The described Shergoldia laevigata specimen, housed in the State Key Laboratory of 

59 Biogeology and Environmental Geology, China University of Geoscience (Wuhan), was 

60 discovered from the Cambrian (Furongian)-aged Sandu Formation of Guole Town, Jingxi 

61 County, Guangxi Zhuang Autonomous Region, South China (Fig. 1) (Zhu, Hughes & Peng, 

62 2007). The Sandu Formation is represented by calcareous mudstones, siltstones, and argillaceous 

63 banded limestones, which formed most probably in the uppermost part of the continental slope 

64 (Lerosey-Aubril, Zhu & Ortega-Hernández, 2017). The Sandu Formation is richly fossiliferous, 

65 containing abundant, well-preserved articulated trilobites (Han et al., 2000; Zhu, 2005; Zhu, 

66 Hughes & Peng, 2007, 2010), non-trilobite arthropods (Lerosey-Aubril, Ortega-Hernández 

67 & Zhu, 2013; Lerosey-Aubril, Zhu & Ortega-Hernández, 2017), echinoderms (Han & Chen, 

68 2008; Chen & Han, 2013; Zamora et al., 2017; Zamora, Zhu & Lefebvre, 2013; Zhu, Zamora 
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69 & Lefebvre, 2014), brachiopods, graptolites (Zhan et al., 2010), hyolithids, cnidarians, algae, and 

70 some exceptionally preserved soft-bodied fossils (Zhu et al., 2016). 

71 Trilobites from the Sandu Formation have been classified into at least 25 genera (Zhu, 2005; 

72 Zhu, Hughes & Peng, 2007, 2010); however, only six abnormal specimens have been 

73 documented from this formation (five Tamdaspis jingxiensis Zhu et al., 2007 and one 

74 Guangxiaspis guangxiensis Zhou in Zhou et al, 1977) (Zhu, 2005; Zhu et al., 2007; Zong, 2020). 

75 The injured Shergoldia laevigata was collected from the grey-yellow calcareous mudstones. The 

76 specimen is from the Probinacunaspis nasalis–Peichiashania hunanensis Zone of the Furongian, 

77 Jiangshanian (Peng, 2009; Zhu et al., 2016).

78 The fossil in Fig. 2C was whitened with magnesium oxide powder, and all photographs 

79 were captured using a Nikon D5100 camera with a Micro-Nikkor 55 mm F3.5 lens. 

80 Results

81 The injured Shergoldia laevigata is preserved as a nearly complete dorsal exoskeleton (30.5 

82 mm long) without librigena, suggesting an exuvia (Daley & Drage, 2016; Drage, 2019). The 

83 posterior of the cranidium overlies the first two thoracic segments, this is most pronounced on 

84 the left side (Fig. 2). In addition, the first thoracic segment covered most of the left pleural 

85 segment of the second thoracic segment, as well as the anterior margin of the right pleural 

86 segment. Similarly, most of the first thoracic segment was covered by the posterior area of the 

87 fixigena, particularly on its left side. Moreover, the left pleural segments of the fourth to eighth 

88 thoracic segments presented an interlaced arrangement, i.e. the anterior margin of the fourth 

89 thoracic segment extended upon the third thoracic segment, and the seventh extended upon the 

90 sixth (Fig. 2), while there was a typical imbricated arrangement in the right pleural region.
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91 The malformation is on the left part of the exoskeleton, while the medial (axial) and right 

92 sections are undamaged. The left thoracic segments are shorter than those on the right side and 

93 show limited healing. There are two injuries: one on the third to fourth thoracic segments, and 

94 one on the seventh thoracic segment. Two pleural segments are truncated by 3.3 mm because of 

95 the first injury; the most seriously damaged part is the contact site of the two thoracic segments, 

96 where there is a V-shaped injury. The second injury truncates the left pleural section of the 

97 seventh thoracic segment by 3.5 mm, with the injury presenting as an asymmetric V-shape.

98 Discussion

99 Possible origin of the injuries and potential predatory structure

100 Trilobites that are malformed due to predatory attacks have typically V-, U-, or W-shaped 

101 injuries (Owen, 1985; Babcock, 1993; Pratt, 1998; Jago & Haines, 2002; Zamora et al., 2011; 

102 Pates et al., 2017; Bicknell & Paterson, 2018; Bicknell & Pates, 2020), with a few showing in 

103 irregularly shaped injuries (Fatka, Budil & Grigar, 2015). Furthermore, there is occasionally 

104 signs of healing or regeneration (Rudkin, 1979; Mcnamara & Tuura, 2011; Pates et al., 2017). In 

105 the present specimen, the injuries have traces of healing and are therefore considered evidence of 

106 a predatory attack. The two injuries have a similar degree of healing without any regeneration, 

107 suggesting that these injuries may have been incurred in the same inter-molt stage.

108 In the past, the most suspicious Cambrian predators are considered to have been the 

109 radiodonts, especially anomalocaridids and amplectobeluids, as their frontal appendages and oral 

110 cone were extremely effective predatory structures (Whittington & Briggs, 1985; Babcock, 1993; 

111 Zamora et al., 2011). Cambrian arthropods or arthropod-like organisms with gnathobases are 

112 also considered possible predators, similar to the modern horseshoe crab (Bicknell et al., 2018a, 

113 2021). Some amplectobeluid genera have been documented with gnathobase-like structures 
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114 (Cong et al., 2017, 2018), suggesting that amplectobeluid radiodonts may have been predators of 

115 Cambrian trilobites (Bicknell & Pates, 2020). In addition, some trilobites and predatory 

116 arthropods with reinforced gnathobasic spines on the protopodal sections of their walking legs 

117 are also considered as potential predators (Bruton, 1981; Conway Morris & Jenkins, 1985; Zacaï, 

118 Vannier & Lerosey-Aubril, 2016; Bicknell et al., 2018a, b; Bicknell,  Paterson & Hopkins, 2019; 

119 Bicknell & Holland, 2020).

120 However, so far, the youngest amplectobeluid and anomalocaridid are from the Drumian 

121 and Guzhangian, respectively (Lerosey-Aubril et al., 2014, 2020). Most Furongian and 

122 Ordovician radiodonts belong to the family Hurdiidae, which do not have endites of alternating 

123 size, and all members of this family are considered to be sediment sifters or suspension feeders 

124 (Daley, Budd & Caron, 2013; Daley et al., 2013; Lerosey-Aubril & Pates, 2018; Van Roy, Daley 

125 & Briggs, 2015; Pates et al., 2020). Moreover, no radiodonts were discovered in the Sandu 

126 Formation. So, the radiodonts unlikely cause the injuries in the Shergoldia laevigata specimen. 

127 Gnathobases have a slight size gradation of spines along the gnathal edge (Stein, 2013), or a saw-

128 toothed pattern with spines of alternating sizes (Bicknell et al., 2018a). These spines may caused 

129 smaller injuries, that is missing one or two separate thoracic segments, on the edges of trilobites. 

130 The arthropods Aglaspella sanduensis (Lerosey-Aubril, Ortega-Hernández & Zhu, 2013) and 

131 Glypharthrus trispinicaudatus, Mollisonia-like arthropods, unnamed aglaspidid-like arthropods, 

132 Perspicaris-like bivalve arthropods (Zhu et al., 2016; Lerosey-Aubril, Zhu & Ortega-Hernández, 

133 2017), and some larger trilobites (Zhu, 2005) were discovered in the Sandu Formation at the 

134 same site. Therefore, the predator who attacked the studied Shergoldia laevigata specimen 

135 maybe one of these arthropods.  

136 Interference with the molting of trilobite
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137 Previous studies have reported abundant injured trilobites and presented the possible 

138 identity of the predators, including information about their behavior (Babcock, 1993, 2007; Pates 

139 et al., 2017; Bicknell & Paterson, 2018; Bicknell, Paterson & Hopkins, 2019; Pates & Bicknell, 

140 2019). However, there are few direct fossil records showing that injury has disturbed the molting 

141 of trilobites (Šnajdr, 1985). The studied specimen has an apparent overlap of somites along with 

142 the injuries that are mainly present in the posterior of the cranidium and the front of the thorax, 

143 especially in the left part of the exoskeleton. The anterior margin of the injuried third thoracic 

144 segment was covered by the unbroken second thoracic segment (Fig. 2A-D), indicating that the 

145 injury formed before the overlap of the somites. Bottom currents can also caused the overlap and 

146 even disruption of trilobite somites, the Sandu Formation formed in a relatively calm 

147 environment (Lerosey-Aubril, Zhu & Ortega-Hernández, 2017), although there are overlapping 

148 segments on the exuvia and carcass of Shergoldia laevigata in the same horizon, their thoracic 

149 segments still maintain imbricated arrangement (Zhu, Hughes & Peng, 2007). There is also 

150 overlap of thoracic segments on the exuvia of uninjured trilobites (Daley & Drage, 2016), but it 

151 is difficult to determine whether it was caused by molting or other abiotic factors. In contrast to 

152 the above two cases, in addition to the overlap of somites in the studied specimen, the left 

153 thoracic segments are presented an interlaced arrangement rather than imbricated (Fig. 2), which 

154 seems not to be caused by bottom currents and is rather likely caused by the active behavior of 

155 trilobite. Moreover, all abnormal arrangements of the segments appeared near the injury, and the 

156 overlapped part of the somites was only located before the most serious injury (on the third to 

157 fourth thoracic segments). It is speculated that all of the irregular patterns were caused by post-

158 injury molting of Shergoldia laevigata. Namely, the new exoskeleton could not be smoothly 

159 separated from the old one due to the unbalanced body with injuries (Drage, 2019; Drage et al., 
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160 2019). The trilobite dragged forward the old shell to get rid of the exuvia, which led to the 

161 overlap of somites and the dislocated arrangement of thoracic segments, especially near the 

162 injuries (Fig. 3). Some previous studies have reported cases of failed molting of a trilobite 

163 (McNamara & Rudkin, 1984) and other ecdysozoans (García-Bellido & Desmond, 2004; Drage 

164 & Daley, 2016; Yang et al., 2019), in which the new exoskeletons were preserved under the old 

165 exuvia. However, none of the fragments of the new exoskeleton were found under or near the 

166 exuvia of Shergoldia laevigata, which implies that the molting might not have failed. Although 

167 the injuries complicated the molting process, it was successful and the molted trilobite moved 

168 away.

169 Conclusions

170 The Shergoldia laevigata specimen has substantially shorter pleural segments of the third to 

171 fourth and seventh thoracic segments, with signs of lightly healing in the injuries incurred during 

172 a sub-lethal predator attack. The degree of healing in both injuries and the distribution of the 

173 injuries show that they may have been caused in the same inter-molt stage. Based on the 

174 morphology of the injuries and the spatial and temporal distribution of predators, the predatory 

175 structure may have been the gnathobase or gnathobase-like structure of a larger arthropod. The 

176 conspicuous overlapping of the somites and dislocated arrangement of the thoracic segments, 

177 especially in the left pleural region and near the injuries, shows that the injured Shergoldia 

178 laevigata encountered certain obstacles during the molting process. The trilobite dragged the old 

179 exuvia forward, which lead to the irregular arrangement of the somites. Such configuration can 

180 demonstrate that even provisionally healed injury can cause certain complication of the molting 

181 process in trilobites. 
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Figure 1
(A) Map of fossil locality at Guole Town, Jingxi County, Guangxi, South China; (B)
Stratigraphic sketch showing relative position and age of the Sandu Formation.
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Figure 2
Malformed trilobite Shergoldia laevigata from the Cambrian Furongian of Jingxi, Guangxi
(Specimen No. CUG-GJ-2015-01).

(A) Uncoated specimen; (B) close-up of abnormality in box in figure (A); (C) specimen
whitened by the magnesium powder; (D) sketch of the figure (A); (E) picture after recovery of
the cranidium and the first three thoracic segments, showing the superposed relationship
between the posterior area of the fixigena and thoracic segments.
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Figure 3
Reconstruction of injured of studied Shergoldia laevigata specimen from the Cambrian
Furongian of Jingxi, Guangxi.

(A–B) Predator attack on Shergoldia laevigata, and leading to damage in the exoskeleton. (C)
Shergoldia laevigata drag forward the old shell during molting, because of the deformation of
the exoskeleton. Such condition leads to the overlap of somites and dislocated arrangement
of thoracic segments.
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