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Injures and molting interference in a trilobite from the
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An injured Shergoldia laevigata Zhu, Hughes & Peng 2007 (Trilobita, Asaphida) was
collected from the Furongian of Guangxi, South China. The wounds occurred in the left
pleural region possessing two marked V-shaped gaps in the thorax. It led to substantial
transversal shortening of the left pleural segments, with barely perceptible traces of
healing. This malformation is interpreted as a sub-lethal attack from unknown predator.
The morphology of the wounds indicated that the predatory structure might have been the
frontal appendage(s) of larger arthropod or arthropod-like organism. There were
overlapped somites located in the front of the wounds, and slightly dislocated thoracic
segments on the left part of the thorax, suggesting that the trilobite had experienced
difficulties during the molting process. Freshly moulted trilobite had dragged forward the
old exuvia causing the irregular arrangement of somites. This unusual trilobite specimen
indicates that the injuries interfered with molting and other living activities.
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14 Abstract

15 An injured Shergoldia laevigata Zhu, Hughes & Peng 2007 (Trilobita, Asaphida) was collected 

16 from the Furongian of Guangxi, South China. The wounds occurred in the left pleural region 

17 possessing two marked V-shaped gaps in the thorax. It led to substantial transversal shortening 

18 of the left pleural segments, with barely perceptible traces of healing. This malformation is 
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19 interpreted as a sub-lethal attack from unknown predator. The morphology of the wounds 

20 indicated that the predatory structure might have been the frontal appendage(s) of larger 

21 arthropod or arthropod-like organism. There were overlapped somites located in the front of the 

22 wounds, and slightly dislocated thoracic segments on the left part of the thorax, suggesting that 

23 the trilobite had experienced difficulties during the molting process. Freshly moulted trilobite 

24 had dragged forward the old exuvia causing the irregular arrangement of somites. This unusual 

25 trilobite specimen indicates that the injuries interfered with molting and other living activities.

26 Introduction

27 Numerous trilobite exoskeleton deformities have been documented, including abnormal 

28 healing, hyperplasia, deformation, and missing or fractured somites. The causes of these 

29 deformities are usually thought to be injuries, developmental disorders and diseases (Owen, 1985; 

30 Babcock, 1993; Pates et al., 2017; Bicknell & Pates, 2020). The evaluation of injury caused by 

31 predator attack is most useful for proving the interactions between predators and trilobites, and 

32 for reconstructing the food chain and ecological structure in deep time (Klompmaker et al., 

33 2019). Furthermore, such predatorial injuries are used to elucidate behavioral information 

34 (Babcock & Robison, 1989; Babcock, 1993; Pates et al., 2017; Bicknell, Paterson & Hopkins, 

35 2019). The wounds caused by predators have mainly been detected on the edges of trilobites, 

36 especially in the thoraces and pygidia, and are generally considered to have been non-lethal 

37 (Babcock, 2003, 2007). Although numerous studies have evaluated injured trilobites (e.g., Owen, 

38 1985; Rudkin, 1985; Babcock, 1993, 2003, 2007; Zhu et al., 2007; Bicknell & Paterson, 2018; 

39 Bicknell & Pates, 2020; Bicknell & Holland, 2020), the predators remain unidentified. The 

40 shapes of the trilobite wounds suggest that some predators may have been radiodonts (Babcock 

41 & Robison, 1989; Babcock, 1993; Nedin, 1999; Bicknell & Pates, 2020; Bicknell & Holland, 
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42 2020). Other predator candidates include cephalopods, echinoderms, fish, and other larger 

43 arthropods (Bruton, 1981; Briggs & Collins, 1988; Babcock, 1993; Fatka, Budil & Grigar, 

44 2015).

45 It is also unclear whether injured trilobites experienced certain interferences with their 

46 activities of living. Although it has been inferred that injuries did interfere with daily activities, 

47 direct fossil records are rare. Herein, I discuss an injured Shergoldia laevigata Zhu, Hughes & 

48 Peng 2007 (Zhu, Hughes & Peng, 2007) from the Cambrian (Furongian) of Jingxi, Guangxi, 

49 South China. The exoskeleton wounds suggest that the predatory structure might have been the 

50 frontal appendages of larger arthropod or arthropod-like organism. In addition, the findings 

51 indicate that these injuries would have caused difficulties during the trilobite molting process, 

52 but did not cause molting failure. 

53 Materials & Methods

54 The described Shergoldia laevigata specimen, housed in the State Key Laboratory of 

55 Biogeology and Environmental Geology, China University of Geoscience (Wuhan), was 

56 discovered from the Cambrian (Furongian)-aged Sandu Formation of Guole Town, Jingxi 

57 County, Guangxi Zhuang Autonomous Region, South China (Fig. 1) (Zhu, Hughes & Peng, 

58 2007). The Sandu Formation is represented by thin-middle bedded calcareous mudstones, 

59 siltstones, and argillaceous banded limestones, which formed most probably in the uppermost 

60 part of the continental slope (Lerosey-Aubril, Zhu & Ortega-Hernández, 2017). The Sandu 

61 Formation is richly fossiliferous, containing abundant, well-preserved articulated trilobites (Han 

62 et al., 2000; Zhu, 2005; Zhu, Hughes & Peng, 2007, 2010), non-trilobite arthropods (Lerosey-

63 Aubril, Ortega-Hernández & Zhu, 2013; Lerosey-Aubril, Zhu & Ortega-Hernández, 2017), 
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64 echinoderms (Han & Chen, 2008; Chen & Han, 2013; Zamora et al., 2017; Zamora, Zhu 

65 & Lefebvre, 2013; Zhu, Zamora & Lefebvre, 2014), brachiopods, graptolites (Zhan et al., 2010), 

66 hyolithids, cnidarians, algae, and some exceptionally preserved soft-bodied fossils (Zhu et al., 

67 2016). 

68 Trilobites from the Sandu Formation have been classified into at least 25 genera so far (Zhu, 

69 2005; Zhu, Hughes & Peng, 2007, 2010); however, only six abnormal specimens have been 

70 found in this formation (five Tamdaspis jingxiensis and one Guangxiaspis guangxiensis) (Zhu, 

71 2005; Zhu et al., 2007; Zong, 2020). The injured Shergoldia laevigata was collected from the 

72 grey-yellow calcareous mudstones. The age of the specimen is limited to the Probinacunaspis 

73 nasalis–Peichiashania hunanensis Zone of the Furongian Jiangshanian (Peng, 2009; Zhu et al., 

74 2016).

75 The fossil in Fig. 2C was whitened with magnesium oxide powder, and all photographs 

76 were captured using a Nikon D5100 camera with a Micro-Nikkor 55 mm F3.5 lens. All figures 

77 were completed in CorelDRAW X7.

78 Results

79 The injured Shergoldia laevigata is preserved as a nearly complete dorsal exoskeleton (30.5 

80 mm long) without librigena; such configuration was considered as an exuvia (Daley & Drage, 

81 2016; Drage, 2019). The posterior of the cranidium overlies the first three thoracic segments, 

82 especially on the left side of the body (Fig. 2). The malformation is present on the left part of 

83 exoskeleton, while the medial and right sections are normal. There are two wounds: one on the 

84 third to fourth thoracic segments, and one on the seventh thoracic segment. The left thoracic 

85 segments are shorter than those on the right side and show limited healing. The left pleural 
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86 segments are only about half as long as the normal segments because of the first wound; the most 

87 seriously damaged part is the contact site of the two thoracic segments, where there is a V-

88 shaped wound. The second wound caused the left pleural part of the seventh thoracic segment to 

89 be half as long as normal, with the wound presenting as an asymmetric V-shape. The lack of 

90 regeneration (e.g., swelling, elongation, or bending of the thoracic tergites) suggests that these 

91 malformations occurred during the most recent post- or inter-molt stage.

92 Discussion

93 Possible origin of the wounds and potential predatory structure

94 Trilobites that are malformed due to predatory attacks have typical V-, U-, or W-shaped 

95 wounds (Owen, 1985; Babcock, 1993; Pratt, 1998; Jago & Haines, 2002; Zamora et al., 2011; 

96 Pates et al., 2017; Bicknell & Paterson, 2018; Bicknell & Pates, 2020), with a few showing in 

97 irregularly shaped wounds (Fatka, Budil & Grigar, 2015), in addition to certain signs of healing 

98 or regeneration (Rudkins, 1979; Pates et al., 2017). In the present specimen, the two wounds 

99 with traces of healing were classified as the result of predator attack. The two wounds have a 

100 similar degree of healing without any regeneration, suggesting that these injuries may have been 

101 incurred at the same time.

102 The most superior Cambrian predators are considered to have been the radiodonts, 

103 especially anomalocaridids and amplectobeluids, as their frontal appendages and oral cone were 

104 extremely effective predatory structures (Whittington & Briggs, 1985; Babcock, 1993; Zamora et 

105 al., 2011). These Cambrian predators preyed on mineralized and non-mineralized trilobites 

106 (Nedin, 1999). Cambrian arthropods or arthropod-like organisms with gnathobases are also 

107 considered possible predators, similar to the modern horseshoe crab (Bicknell et al., 2018a). 

108 Some amplectobeluid genera have been documented with gnathobase-like structures (Cong et 

PeerJ reviewing PDF | (2020:11:55705:0:0:NEW 23 Nov 2020)

Manuscript to be reviewed

eutre
Highlight
sometimes preyed

eutre
Highlight
But see Daley and Bergstrom (2012, Naturwissenschaften) on variation in anomalocaridid oral cones and presence of suction feeding rather than biting in some forms. (Also therein, Hagadorn 2009 and 2010.)

Also, regarding variation in frontal appendages and probable range in diets, see Daley and Budd (2010, Palaeontology). 

Anomalocaridids may not have been the specialized trilobite-crunchers we originally suspected.



109 al., 2017, 2018), suggesting that amplectobeluid radiodonts may have been predators of 

110 Cambrian trilobites (Bicknell & Pates, 2020). In addition, some trilobites and predatory 

111 arthropods with reinforced gnathobasic spines on the protopodal sections of their walking legs 

112 are also considered as potential predators (Bruton, 1981; Conway Morris & Jenkins, 1985; Zacaï, 

113 Vannier & Lerosey-Aubril, 2016; Bicknell et al., 2018a, b; Bicknell & Holland, 2020; Bicknell,  

114 Paterson & Hopkins, 2019).

115 Despite these predatory advantages, Cambrian animals with gnathobases did not cause the 

116 wounds in the Shergoldia laevigata specimen. Ganathobases have a slight size gradation of 

117 spines along the gnathal edge (Stein, 2013), or a saw-toothed pattern with spines of alternating 

118 sizes (Bicknell et al., 2018a). However, the Shergoldia laevigata specimen had two V-shaped 

119 wounds and was missing one or two separate thoracic segments, which rules out the gnathobases 

120 of predators as a cause of injury. These wounds were instead cause by predatory structure similar 

121 to the frontal appendages of radiodonts. It is likely that the exoskeleton of the trilobite was 

122 attacked by a radiodont with variously sized ventral spines of the frontal appendages, which 

123 produced the different types of injuries (Fig. 3A-B). Ventral spines of various sizes have been 

124 discovered on the frontal appendages of some radiodonts, such as Anomalocaris (Wang, Huang 

125 & Hu, 2013). The two wounds may have been caused by the larger ventral spines of the frontal 

126 appendages, while the smaller ventral spines may have not damaged the Shergoldia laevigata. 

127 While the arthropods Aglaspella sanduensis (Lerosey-Aubril, Ortega-Hernández & Zhu, 2013) 

128 and Glypharthrus trispinicaudatus, Mollisonia-like arthropods, unnamed aglaspidid-like 

129 arthropods, and Perspicaris-like bivalve arthropods (Zhu et al., 2016; Lerosey-Aubril, Zhu & 

130 Ortega-Hernández, 2017) were discovered in the Sandu Formation at the same site, none of 

131 these have sufficiently strong frontal appendages. Therefore, the tracking down the predator who 
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132 attacked on studied Shergoldia laevigata specimen is still unsuccessful; it is not excluded that 

133 other, so far unknown arthropods or arthropod-like organisms with strong frontal appendages 

134 occurred in Sandu Formation.  

135 Interference with the molting of trilobite

136 Pervious studies have reported abundant injured trilobites and presented the possible 

137 identity of the predators, including information about their behavior (Babcock, 1993, 2007; Pates 

138 et al., 2017; Bicknell, Paterson & Hopkins, 2019). However, there are few direct fossil records 

139 showing that injury has disturbed the molting of trilobites (Šnajdr, 1985). The trilobite specimen 

140 from Guangxi has an apparent overlap of tergites along with the wounds that are mainly present 

141 in the posterior of the cranidium and the front of the thorax, especially in the left part of the 

142 exoskeleton. The anterior margin of the third thoracic segment with part of the wound was 

143 covered by the second thoracic segment without breaking or being lost (Fig. 2A-D), indicating 

144 that the wound formed before the overlap of the tergites. The first thoracic segment covered most 

145 of the left pleural segment of the second thoracic segment, as well as the anterior margin of the 

146 right pleural segment. Similarly, most of the first thoracic segment was covered by the posterior 

147 area of the fixigena, particularly on its left side. The recuperative terminal of the posterior area of 

148 the fixigena covered the second thoracic segment (Fig. 2E). In addition, the left pleural segments 

149 of the fourth to eighth thoracic segments presented an interlaced arrangement, i.e. the anterior 

150 margin of the fourth thoracic segment extended upon the third thoracic segment, and the seventh 

151 extended upon the sixth (Fig. 2), while there was a typical imbricated arrangement in the right 

152 pleural region. All abnormal arrangements of the segments appeared near the wound, and the 

153 overlapped part of the somites was only located before the most serious wound (on the third to 

154 fourth thoracic segments). Based on the above mentioned descriptions, it is speculated that all of 
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155 the irregular patterns were caused by molting of Shergoldia laevigata. Namely, the new 

156 exoskeleton could not be smoothly separated from the old one due to the unbalanced body with 

157 wounds (Drage, 2019). The trilobite dragged forward the old shell to get rid of the exuvia, which 

158 led to the overlap of somites and the dislocated arrangement of thoracic segments, especially 

159 near the injuries (Fig. 3). Some previous studies have reported cases of failed molting of a 

160 trilobite (McNamara & Rudkin, 1984) and the arthropod Marrella (García-Bellido & Desmond, 

161 2004), in which the new exoskeletons were preserved under the old exuvia. However, none of 

162 the fragments of the new exoskeleton were found under or near the exuvia of Shergoldia 

163 laevigata, which implies that the molting might not have failed. Although the wounds 

164 complicated the molting process, which, however, was successful and the molted trilobite left 

165 away.

166 Conclusions

167 The Shergoldia laevigata specimen has substantially shorter pleural segments of the third to 

168 fourth and seventh thoracic segments, with signs of lightly healing in the wounds incurred during 

169 a sub-lethal predator attack. The degree of healing in both wounds and the distribution of the 

170 wounds show that they were caused simultaneously by the same predatory structure. Based on 

171 the morphology of the wounds, the structure may have been the frontal appendage of larger 

172 arthropod or arthropod-like organism. The conspicuous overlapping of the somites and 

173 dislocated arrangement of the thoracic segments, especially in the left pleural region and near the 

174 wounds, shows that the injured Shergoldia laevigata encountered certain obstacles during the 

175 molting process. The trilobite dragged the old exuvia forward, which lead to the irregular 

176 arrangement of the somites. Such configuration can demonstrate that even provisionally healed 

177 injury can cause certain complication of the molting process in trilobites. 
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Figure 1
(A) Map of fossil locality at Guole Town, Jingxi County, Guangxi, South China; (B)
Stratigraphic sketch showing relative position and age of the Sandu Formation.
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Figure 2
Malformed trilobite Shergoldia laevigata from the Cambrian Furongian of Jingxi, Guangxi
(Specimen No. CUG-GJ-2015-01).

(A) The uncoated specimen; (B) close-up of abnormality in box in figure (A); (C) the specimen
whitened by the magnesium powder; (D) a sketch of the figure (A); (E) the picture after
recovery of the cranidium and the first three thoracic segments, showing the superposed
relationship between the posterior area of the fixigena and thoracic segments.
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Figure 3
Reconstruction of injured of studied Shergoldia laevigata specimen and possible
predatory structure of unknown predator from the Cambrian Furongian of Jingxi,
Guangxi.

(A–B) Predatory frontal appendage with variable-sized ventral spines attacking on Shergoldia

laevigata, and leading to damage in the exoskeleton. (C) Shergoldia laevigata drag forward
the old shell during molting, because of the deformation of the exoskeleton. Such condition
leads to the overlap of somites and dislocated arrangement of thoracic segments.
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