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ABSTRACT
Background. Stress fractures are injuries caused by repetitive loading during activities
such as running. The application of advanced analytical methods such as machine
learning to data from multiple wearable sensors has allowed for predictions of
biomechanical variables associated with running-related injuries like stress fractures.
However, it is unclear if data from a single wearable sensor can accurately estimate
variables that characterize external loading during running such as peak vertical
ground reaction force (vGRF), vertical impulse, and ground contact time. Predicting
these biomechanical variables with a single wearable sensor could allow researchers,
clinicians, and coaches to longitudinally monitor biomechanical running-related injury
risk factors without expensive force-measuring equipment.
Purpose. We quantified the accuracy of applying quantile regression forest (QRF) and
linear regression (LR) models to sacral-mounted accelerometer data to predict peak
vGRF, vertical impulse, and ground contact time across a range of running speeds.
Methods. Thirty-seven collegiate cross country runners (24 females, 13 males) ran on
a force-measuring treadmill at 3.8–5.4 m/s while wearing an accelerometer clipped
posteriorly to the waistband of their running shorts. We cross-validated QRF and LR
models by training them on acceleration data, running speed, step frequency, and body
mass as predictor variables. Trained models were then used to predict peak vGRF,
vertical impulse, and contact time. We compared predicted values to those calculated
from a force-measuring treadmill on a subset of data (n= 9) withheld during model
training. We quantified prediction accuracy by calculating the root mean square error
(RMSE) and mean absolute percentage error (MAPE).
Results. The QRF model predicted peak vGRF with a RMSE of 0.150 body weights
(BW) and MAPE of 4.27 ± 2.85%, predicted vertical impulse with a RMSE of 0.004
BW*s and MAPE of 0.80 ± 0.91%, and predicted contact time with a RMSE of 0.011
s and MAPE of 4.68 ± 3.00%. The LR model predicted peak vGRF with a RMSE of
0.139 BW and MAPE of 4.04 ± 2.57%, predicted vertical impulse with a RMSE of
0.002 BW*s and MAPE of 0.50 ± 0.42%, and predicted contact time with a RMSE of
0.008 s and MAPE of 3.50 ± 2.27%. There were no statistically significant differences
between QRF and LR model prediction MAPE for peak vGRF (p= 0.549) or vertical
impulse (p= 0.073), but the LRmodel’s MAPE for contact time was significantly lower
than the QRF model’s MAPE (p= 0.0497).

How to cite this article Alcantara RS, Day EM, Hahn ME, Grabowski AM. 2021. Sacral acceleration can predict whole-body kinetics and
stride kinematics across running speeds. PeerJ 9:e11199 http://doi.org/10.7717/peerj.11199

https://peerj.com
mailto:ryan.alcantara@colorado.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.11199
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.11199


Conclusions. Our findings indicate that the QRF and LRmodels can accurately predict
peak vGRF, vertical impulse, and contact time (MAPE < 5%) from a single sacral-
mounted accelerometer across a range of running speeds. These findings may be
beneficial for researchers, clinicians, or coaches seeking to monitor running-related
injury risk factors without force-measuring equipment.

Subjects Kinesiology, Data Mining and Machine Learning
Keywords Inertial measurement unit, Stress fracture, Ground reaction force, Injury, Machine
learning, Biomechanics

INTRODUCTION
Stress fractures are a common running-related injury associated with the mechanical
fatigue of bones in the pelvis, legs, and feet (Bennell et al., 1999) and affect 8–27% of
runners worldwide (Brukner & Bennell, 1997; Brunet et al., 1990). Mechanical fatigue of
bone tissue refers to the accumulation of damage and gradual decrease in strength resulting
from repetitive loading (Edwards, 2018). Mechanical failure (stress fracture) will occur if
repetitive loading continues without sufficient time for bone remodeling, and can require
several months of decreased physical activity to fully recover (Matheson et al., 1987; Rizzone
et al., 2017). Increases in bone loading peak magnitude and duration (total amount of time
a bone is loaded) result in a decreased number of loading cycles until mechanical failure
and influence the risk of stress fracture development (Edwards, 2018; Loundagin, Schmidt
& Edwards, 2018). Although bone loading magnitude and duration have been measured in
vivo, the invasiveness of this measurement limits the ability to monitor bone loading over
weeks or months of running (Milgrom et al., 2007).

Instead of measuring bone loading directly, previous studies have estimated bone strains
with finite element models (Edwards et al., 2009) and used external ground reaction forces
to develop surrogate measures of internal bone loading (Kiernan et al., 2018; Matijevich et
al., 2019). Although the vertical ground reaction force (vGRF) does not directly quantify
the total force applied to the bones of the leg during running, research suggests that peak
tibial bone loading (a combination of external reaction forces and internal muscle forces)
occurs during midstance when the vGRF is greatest (Sasimontonkul, Bay & Pavol, 2007;
Scott & Winter, 1990). Additionally, there is a moderate correlation between peak axial
tibial compressive force (calculated as the sum of the 3-D GRF projected on the tibia and
ankle torque divided by the Achilles tendon moment arm) and peak vGRF during running
across a range of speeds and on uphill/downhill slopes (Matijevich et al., 2019). During
running, peak vGRF is representative of the magnitude of external bone loading during
stance phase and contact time is representative of external bone loading duration (Scott &
Winter, 1990). Vertical impulse (integral of the vGRFwith respect to contact time) considers
both loading magnitude and duration and is representative of the total external loading
with respect to time. For example, knee joint impulse has been investigated as a measure
of total joint loading during running (Miller et al., 2014). However, peak vGRF, vertical
impulse, and contact time are typically quantified using expensive and immobile force
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plates or force-measuring treadmills. Wearable devices provide a method for monitoring
external loading variables longitudinally outside of a laboratory (Paquette et al., 2020),
but the ability to simultaneously predict peak vGRF, vertical impulse, and contact time
during running using a single wearable device and the accuracy of these predictions is not
known. Predicting these biomechanical variables with a single wearable device could allow
researchers, clinicians, and coaches to monitor external loading variables associated with
bone loading magnitude and duration without the need of force-measuring equipment.

Inertial measurement units (IMUs) are wearable devices that contain an accelerometer,
gyroscope, and magnetometer. These wearable devices can measure biomechanical
variables in a variety of environments and have been used to measure limb segment
accelerations during trail running (Giandolini et al., 2016), temporal variables (e.g., stride
length, stride frequency) during marathons (Reenalda et al., 2016), and limb segment
kinematics during an outdoor obstacle course (Vitali et al., 2019). Additionally, IMUs
can be used to longitudinally monitor biomechanical variables that have been associated
with running-related injuries. For example, IMUs have been used to measure peak tibial
acceleration over the course of a marathon (Ruder et al., 2019) or estimate peak vGRF over
several months of running (Kiernan et al., 2018); thus IMUs can be used to directly measure
biomechanical variables (e.g., limb segment acceleration) and estimate biomechanical
variables (e.g., whole-body kinetics). Although IMUs have been used to monitor runners
and identify variables associated with prospective injuries (Davis, Bowser & Mullineaux,
2016), using IMUs to accurately estimate whole-body kinetic variables depends on sensor
position (Tan et al., 2019), signal filtering (Day et al., 2021), number of sensors used
(Karatsidis et al., 2016), and features included in predictive models (Neugebauer, Hawkins
& Beckett, 2012).

Placing an IMU near the center of mass may allow for accurate estimations of the
vGRF during running via acceleration data because the vGRF is the product of body mass
and the vertical acceleration of the center of mass (accounting for gravity), assuming air
resistance is neglected (Cavagna, Komarek & Mazzoleni, 1971). This estimate could then be
used to calculate discrete variables such as peak vGRF, vertical impulse, and contact time.
Such a physics-based approach would only require the use of one accelerometer. Using
pelvis accelerations in this manner to estimate peak vGRF during treadmill running
revealed moderate correlations with measures from gold standard force-measuring
equipment across speeds (3.8–5.4m/s; r = 0.64;Day et al., 2021) andmoderate correlations
when predicting the vGRF waveform during the stance phase of overground running
(r = 0.50 ± 0.30; Gurchiek et al., 2017). Additionally, pelvis accelerations have been
found to consistently overestimate (by ∼2.5 times) peak resultant COM acceleration
(calculated by dividing the 3-D ground reaction force by body mass and subtracting
gravitational acceleration) in runners across a range of speeds (2–5 m/s) (Nedergaard et al.,
2017). However, applying more advanced analysis methods may provide more accurate
predictions of whole-body kinetics and stride kinematics during running with a single
sacral-mounted accelerometer.

Advanced data analysis techniques like machine learning have been used to estimate
biomechanical variables based on IMU measurements during running (Derie et al., 2020;
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Johnson et al., 2021; Pogson et al., 2020; Wouda et al., 2018). However, training complex
machine learning algorithms to predict vGRF data from wearable devices can result
in limited model interpretability (the degree to which one can understand the cause of a
machine learning model’s decision) (Miller, 2019). Similarly, the number of IMUs required
to estimate a given biomechanical variable affects the financial cost of data collection and
usability for coaches or clinicians interested in simultaneously collecting data on multiple
individuals. One benefit of using IMUs instead of a force-measuring treadmill to measure
whole-body kinetics and stride kinematics is the reduced financial cost of using IMUs
(<$1000 vs. $100,000), but the financial benefit diminishes if multiple IMUs are needed to
estimate biomechanical variables. Minimizing the number of IMUs required to estimate
vGRF characteristics while balancing model interpretability and accuracy would ultimately
improve the applicability of IMU-based research for researchers, clinicians, coaches, and
athletes.

Supervised machine learning models like linear regressions and random forests have
been used to model complex relationships between biomechanical measures and clinical
outcomes (Backes et al., 2020; Halilaj et al., 2018). Linear regression (LR) models are
often used to predict biomechanical outcomes because regression coefficients allow for
interpretable predictions but LRmodels are generally limited to linear relationships between
independent and dependent variables (Chambers, 1992). Conversely, quantile regression
forests (QRF) are a type of ensemble random forest machine learning algorithm that can
model linear or non-linear relationships between independent and dependent variables.
However, a limitation of QRF algorithms is that they lack traditional regression coefficients
that are present in LR models (Breiman, 2001;Meinshausen, 2006). Thus, QRF models can
be more difficult to interpret despite potentially improved prediction accuracy (Marchese
Robinson et al., 2017). Reporting the accuracy of multiple models applied to a dataset may
illustrate this interpretability-accuracy tradeoff and present options that prioritize either
interpretability or accuracy. Developing predictive models of biomechanical variables such
as peak vGRF, vertical impulse, and contact time may improve the ability to quantify
running-related injury risk by allowing coaches, clinicians, and researchers to use wearable
devices to longitudinally monitor characteristics of loading outside of a laboratory setting.

The purpose of this study was to apply a QRF and LR model to data from a sacral-
mounted accelerometer and determine the accuracy for predicting peak vGRF, vertical
impulse, and ground contact time during running. Specifically, we used cross validation
to train QRF and LR models to predict these biomechanical variables and compared them
to gold standard measurements from a force-measuring treadmill. We hypothesized that
the QRF model would have a lower mean absolute percent error (MAPE) than the LR
model when predicting peak vGRF, vertical impulse, and contact time due to the model’s
complexity and ability to account for potential non-linear changes across running speeds
(Marchese Robinson et al., 2017; Nilsson & Thorstensson, 1989).
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MATERIALS & METHODS
Participants
Thirty-seven National Collegiate Athletic Association (NCAA) Division I Cross Country
runners (24 Female, 13Male, 55.8 ± 9.7 kg, 170 ± 8 cm, 20 ± 2 years) from the University
of Colorado Boulder and University of Oregon participated in this study. Participants were
actively training and reported no musculoskeletal injuries at the time of data collection.
The protocol was approved by the University of Colorado Boulder (protocol #: 17-0392)
and University of Oregon (protocol #: 05162017.019) Institutional Review Boards and all
participants provided written informed consent prior to data collection.

Experimental design
Each participant ran on a level force-measuring treadmill (1000Hz; Treadmetrix, Park City,
UT or Bertec, Columbus, OH) for a series of consecutive 30-sec trials following a 5-minute
self-paced warm up. Male participants ran at 3.8, 4.1, and 5.4 m/s while female participants
ran at 3.8 and 4.9 m/s. We selected these speeds because they represent typical training run
and race speeds for NCAA Division I Cross Country runners while maintaining a common
speed between male and female participants. During all conditions, participants wore an
accelerometer (500 Hz, 3 -axis ±16 g; IMeasureU, Centennial, CO) clipped posteriorly
to the waistband of their running shorts near the sacrum as described in prior research
(Fig. S1; Day et al., 2021). The accelerometer was positioned near the sacrum as vertical
displacement of the sacrum is strongly correlated (r = 0.95) with vertical displacement of
the center of mass during running (Napier et al., 2020).

Data processing
Acceleration and vGRF data were collected during the final 10 s of each condition using
separate data collection software and required temporal synchronization prior to data
analysis. First, we down-sampled the vGRF data to match the sampling frequency of the
accelerometer data (500 Hz). Then, we synchronized acceleration and vGRF data by having
participants perform a countermovement jumpon the stationary force-measuring treadmill
at the beginning and end of the data collection session while simultaneously measuring
acceleration and force. For each jump, we temporally aligned the estimated vGRF signal
calculated from the acceleration data to the vGRF measured by the treadmill based on the
cross correlation of their frequency content using a customMATLAB (Mathworks, Natick,
MA) script based on the work by Savorani, Tomasi & Engelsen (2013).

After time-synchronizing the data, we used a custom MATLAB (Mathworks, Natick,
MA) script to filter and process the vGRF data measured by the instrumented treadmill and
acceleration data measured by the accelerometer (Alcantara, 2019). We filtered vGRF data
using a zero-lag 4th order low pass Butterworth filter with a 30 Hz cut-off. All stance phases
during the final 10 s of each condition (approximately 30 steps) were used to calculate
the mean peak vGRF, vertical impulse, contact time, and step frequency (number of
initial ground contacts per second), discrete variables that were compared to each model’s
predictions. Ground contact time was defined as the duration when the participant’s vGRF
exceeded a threshold of 5% body weight (BW) (Day & Hahn, 2019).
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The vertical acceleration data relative to the accelerometer’s local coordinate system
were used for this analysis. We filtered acceleration data using a zero-lag 8th order low pass
Butterworth filter with a 10 Hz cut-off, which isolates the frequency content corresponding
to the vertical oscillation of the pelvis during running and the transient impact peak during
early stance phase (Day et al., 2021). Ground contact time for accelerometer data was
defined as the duration when the participant’s sacral acceleration exceeded a threshold
of 0 m/s2 because the center of mass acceleration crosses 0 m/s2 at the start and end of
the stance phase during running (Brabandere et al., 2018; Cavagna & Legramandi, 2015;
Gaudino et al., 2013). We multiplied sacral acceleration by participant body mass to obtain
an estimate of vGRF over the entire stance phase and normalized it to BW. Using this
acceleration-based estimate of vGRF, we calculated peak vGRF, vertical impulse, and
contact time for each condition. These discrete variables were used as inputs for the QRF
and LR models.

Data analysis
We compared the predictive accuracy of QRF and LR models using a train/test method.
We chose to compare these models because LR models are generally interpretable due to
the presence of regression coefficients but can be inaccurate when modeling nonlinear
relationships and conversely, QRF models lack coefficients but can model nonlinear
relationships. We partitioned the dataset into two subsets, with 28 runners (76% of
enrolled participants: 9 Male, 19 Female; 65 total samples) used to train all models and
9 runners (24% of enrolled participants; 4 Male, 5 Female; 22 total samples) reserved to
test model accuracy. Similar distributions of male and female runners were maintained
in both subsets while ensuring that a runner’s data were not present in both subsets.
This precaution was taken to provide conservative measures of model accuracy as model
predictions were based on data from runners who were unknown to the model during
training.

A QRF and LR model were constructed for predicting peak vGRF, vertical impulse, and
contact time. In addition to the discrete variables calculated from the acceleration-based
estimate, we included the runner’s body mass, step frequency, and running speed as
predictor variables in both models, as these variables have been associated with changes in
running biomechanics (Nagahara et al., 2018; Nilsson & Thorstensson, 1989). QRF models
are a type of ensemble regression tree machine learning algorithm that can be used to
predict a continuous numerical output instead of a classification label (Breiman, 2001;
Meinshausen, 2006) and prior research suggests ensemble regression tree algorithms can
be used to estimate vGRF characteristics using data from wearable devices (Derie et al.,
2020). We used k-fold cross validation (5 folds) to train the models on the 76% subset and
optimize the QRF parameters, minimizing for root mean squared error (RMSE) between
model predictions and observed values. The QRFmodel predictions represent an ensemble
of 500 regression tree predictions (Meinshausen, 2006). Then we used the trained models
to make predictions based on the testing subset and quantified the error between model
predictions and observed values from the force-measuring treadmill. RMSE, MAPE, and
correlation coefficient (r) were calculated across the entire testing subset (22 predictions)
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Table 1 Mean± SD peak vertical ground reaction force (vGRF), vertical impulse, and contact time cal-
culated from the ground reaction forces measured by the treadmill for all participants.

Speed
[m/s]

Peak vGRF
[BW]

Vertical Impulse
[BW*s]

Contact Time
[s]

Females (n= 24) 3.8 2.79± 0.19 0.34± 0.02 0.201± 0.012
4.8 2.94± 0.21 0.32± 0.02 0.175± 0.011

Males (n= 13) 3.8 2.94± 0.20 0.35± 0.01 0.204± 0.009
4.1 3.00± 0.21 0.35± 0.01 0.196± 0.008
5.4 3.14± 0.24 0.32± 0.01 0.168± 0.007

and reported as prediction accuracy metrics. Paired t-tests (two-tailed, α= 0.05) were used
to compare MAPE between models. Data analysis was performed in R (version 3.6.3) using
custom scripts and packages (Arnold et al., 2019; Kuhn, 2020; Meinshausen, 2006; R Core
Team, 2020;Wickham, 2009;Wickham & RStudio, 2020). For the LR models, the statistical
significance level was set at α= 0.05 to determine coefficients that significantly contributed
to model predictions during training.

RESULTS
Across all participants and conditions, mean ± SD peak vGRF, vertical impulse, and
contact time calculated from the force-measuring treadmill data were 2.94 ± 0.23 BW,
0.33 ± 0.02 BW*s, and 0.189 ± 0.017 s, respectively (Table 1). Mean ± SD QRF model
predictions of peak vGRF, vertical impulse, and contact time were 2.95± 0.18 BW, 0.33±
0.02 BW*s, and 0.188 ± 0.017 s, respectively (Table 2). Mean ± SD LR model predictions
of peak vGRF, vertical impulse, and contact time were 2.93± 0.18 BW, 0.33± 0.02 BW*s,
and 0.189 ± 0.015 s, respectively (Table 2).

Cross validation of the QRF model revealed that the optimal number of variables
randomly sampled as candidates for each split in each regression tree was 2 when predicting
peak vGRF and 3 when predicting vertical impulse or contact time. When applying the
QRF model to the testing subset, model predictions of peak vGRF had a RMSE of 0.150
BW andMAPE± SD of 4.27± 2.85%, predictions of vertical impulse had a RMSE of 0.004
BW*s and MAPE of 0.80 ± 0.91%, and predictions of contact time had a RMSE of 0.011 s
and MAPE of 4.68 ± 3.00% (Fig. 1).

Cross validation of the LR model revealed that running speed, acceleration-based
estimations, and step frequency contributed significantly to model predictions of peak
vGRF (p = 0.000, p = 0.000, and p = 0.006 respectively; Table 3). Step frequency was the
only predictor variable that significantly contributed to predictions of vertical impulse (p
= 0.000; Table 3). Lastly, running speed, acceleration-based estimations, and body mass
contributed significantly to predictions of contact time (p = 0.000, p = 0.019, and p =
0.000 respectively; Table 3). When applying the LR model to the testing subset, we found
that model predictions of peak vGRF had a RMSE of 0.139 BW and MAPE of 4.04 ±
2.57%, predictions of vertical impulse had a RMSE of 0.002 BW*s and MAPE of 0.50 ±
0.42%, and predictions of contact time had a RMSE of 0.008 s and MAPE of 3.50± 2.27%
(Fig. 1).
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Table 2 Discrete variables calculated from the force-measuring treadmill data and predicted by the
Quantile Regression Forest (QRF) or Linear Regression (LR) models for the testing subset of data.
Mean± SD peak vertical ground reaction force (vGRF), vertical impulse, and contact time for the nine
participants in the testing subset of data.

Peak vGRF [BW] Speed [m/s] Observed QRF Prediction LR Prediction

Females 3.8 2.66± 0.18 2.78± 0.13 2.75± 0.05
(n= 5) 4.8 2.86± 0.15 2.88± 0.09 2.86± 0.05
Males 3.8 2.98± 0.08 2.98± 0.20 2.94± 0.13
(n= 4) 4.1 3.07± 0.10 3.02± 0.16 3.00± 0.15

5.4 3.30± 0.20 3.14± 0.10 3.18± 0.16
Vertical Impulse [BW*s]
Females 3.8 0.33± 0.02 0.33± 0.02 0.33± 0.02
(n= 5) 4.8 0.31± 0.02 0.31± 0.01 0.31± 0.02
Males 3.8 0.35± 0.01 0.35± 0.01 0.35± 0.01
(n= 4) 4.1 0.35± 0.01 0.35± 0.01 0.35± 0.01

5.4 0.33± 0.01 0.33± 0.01 0.33± 0.01
Contact Time [s]
Females 3.8 0.204± 0.014 0.198± 0.004 0.198± 0.008
(n= 5) 4.8 0.177± 0.012 0.167± 0.005 0.174± 0.008
Males 3.8 0.204± 0.009 0.203± 0.006 0.204± 0.005
(n= 4) 4.1 0.195± 0.007 0.201± 0.005 0.198± 0.005

5.4 0.165± 0.007 0.173± 0.010 0.172± 0.002

There were no statistically significant differences between the QRF and LRmodel MAPE
when predicting peak vGRF (p = 0.549), or vertical impulse (p = 0.073). However, the LR
model predicted contact time with significantly less error based on MAPE (p = 0. 0497),
compared to the QRF model.

DISCUSSION
We developed QRF and LR models and quantified their accuracy when predicting peak
vGRF, vertical impulse, and contact time from a sacral mounted IMU on data withheld
during model training. We found that QRF predictions had a MAPE of 0.80–4.68%
and the LR predictions had a MAPE of 0.50–4.04% for these biomechanical variables.
Both models had the lowest MAPE when predicting vertical impulse, which may be due
to the inclusion of step frequency in our models. For example, step frequency strongly
contributed to the LR model prediction of vertical impulse (B=−0.10; p = 0.000; Table
3). This finding corroborates prior research that observed a strong negative correlation (r
= −0.871 to −0.968 ) between step frequency and vertical impulse during overground
sprinting (Nagahara et al., 2018). The QRF and LR models theoretically provide two levels
of model accuracy and interpretability when predicting biomechanical variables with an
accelerometer, but our data did not entirely support our hypothesis as both model types
performed similarly when predicting peak vGRF and vertical impulse. Average differences
in MAPE between the QRF and LR model predictions of peak vGRF and vertical impulse
were ≤ 0.30% but when predicting contact time, the LR model had a significantly lower
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Figure 1 Quantile regression forest (QRF) and Linear regression (LR) model predictions.Model pre-
dictions (horizontal axes; QRF: circles, LR: diamonds) of peak vertical ground reaction force (vGRF),
vertical impulse, and contact time are compared to the observed values (vertical axes) from the force-
measuring treadmill. Dashed lines represent the line of identity, each point represents the value for a given
condition-participant combination, and colors represent different participants in the testing subset (n =
9). Male participants completed three conditions and female participants completed two conditions. QRF
model predictions are based on the predictions of 500 regression trees, with the distribution of tree predic-
tions represented by the ridge plots.

Full-size DOI: 10.7717/peerj.11199/fig-1
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Table 3 Linear regression (LR) coefficients following cross validation on the training subset.

Peak vGRF [BW] y = 2.23+ 0.15*Speed+ 0.33* Accel-based Est.−0.34*Step Freq.
B SE t p

Intercept 2.23 0.46 4.87 0.000
Speed [m/s] 0.15 0.03 4.42 0.000
Acceleration-based Estimate [BW] 0.33 0.05 6.54 0.000
Step Frequency [Hz] −0.34 0.12 −2.84 0.006
Body Mass [kg] 0.001 0.003 0.50 0.621
Vertical Impulse [BW*s] y = 0.69− 0.10*Step Freq.

B SE t p
Intercept 0.69 0.02 31.13 0.000
Speed [m/s] −0.002 0.001 −1.73 0.089
Acceleration-based Estimate [BW*s] −0.05 0.03 −1.79 0.079
Step Frequency [Hz] −0.10 0.004 −25.95 0.000
Body Mass [kg] 0.00003 0.00009 0.32 0.752
Contact Time [s] y = 0.230− 0.019*Speed+ 0.151*Accel-based Est.+ 0.0007*Body Mass

B SE t p
Intercept 0.230 0.033 6.88 0.000
Speed [m/s] −0.019 0.002 −8.62 0.000
Acceleration-based Estimate [s] 0.151 0.063 2.42 0.019
Step Frequency [Hz] −0.011 0.007 −1.51 0.135
Body Mass [kg] 0.0007 0.0002 4.05 0.000

Notes.
Unstandardized coefficients (B), coefficient standard errors (SE), t values (t ), and p values (p) are listed for independent variables used to predict peak vertical ground reaction
force (vGRF), vertical impulse, and contact time, where Accel-based Est. is the Acceleration-based estimate and Freq. is Frequency. Equations with statistically significant predic-
tor variables are included. Bold p values indicate p< 0.05.

MAPE (3.50 ± 2.27%) than the QRF model (4.68 ± 3.00%; p = 0.0497). Additionally, the
LR model predictions were more strongly correlated with the observed values from the
treadmill data compared to the QRF model predictions (Fig. 1). These findings suggest
that the LR model may more accurately describe the relationship between the predictor
variables and contact time across the range of speeds tested (3.8–5.4 m/s; Table 2).

Prior research that has predicted biomechanical variables using wearable devices has
utilized multiple IMUs or machine learning algorithms like artificial neural networks,
which can be difficult to interpret despite low prediction errors (Johnson et al., 2021;
Pogson et al., 2020; Wouda et al., 2018). This may ultimately limit the applicability of these
prior findings because of the financial cost of using multiple IMUs or the computational
requirements of applying the model. In the present study, we implemented a physics-based
methodology of measuring acceleration at the sacrum from a single accelerometer clipped
to a runner’s waistband. Our predictive models also required the runner’s body mass,
speed, and step frequency, which can be measured using a scale, treadmill or GPS watch,
and a stopwatch, respectively. We predicted biomechanical variables with a MAPE <5% by
using a single accelerometer, which reduces the financial cost of measuring biomechanical
variables yet maintains prediction accuracy comparable to that achieved using multiple
wearable devices, kinematic data from 3-D motion capture, and artificial neural networks.
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For example, Wouda et al. (2018) predicted peak vGRF during running using three IMUs
and an artificial neural network with an average RMSE of 0.38 BW and Komaris et al.
(2019) achieved a mean error ∼0.10 BW when predicting peak vGRF using 3-D motion
capture data and an artificial neural network. In contrast, our LR model predictions based
on a single accelerometer achieved an RMSE of 0.139 BW for peak vGRF. Additionally, the
RMSE of LR model predictions was smaller than the standard deviation of the peak vGRF,
vertical impulse, and contact time values measured by the force-measuring treadmill (Table
1). We provided regression coefficients for the LR model (Table 3), which can be used
to predict peak vGRF, vertical impulse, and contact time when provided with a runner’s
speed, sacral acceleration, step frequency, and body mass. The LR model coefficients may
be useful for coaches or clinicians interested in monitoring peak vGRF, vertical impulse,
or contact time in runners over the course of a season or during injury rehabilitation
without needing to apply a complex machine learning algorithm or use a force-measuring
treadmill.

We predicted variables that characterize the magnitude and duration of external
loading using wearable device data, and these data could be used to predict more complex
surrogates of internal bone loading or identify stress fracture risk in runners via more
accurate estimations of variables that affect cumulative external loading. For example,
prior research has proposed surrogates of internal bone loading, such as peak axial tibial
compression, that have a weak-moderate correlation with vertical impulse (r = -0.46 ±
0.40) and peak vGRF (r = 0.72 ± 0.42) across a range of speeds and slopes (Matijevich
et al., 2019). We have shown that these external loading variables can be predicted with
wearable devices. It may be possible to map wearable device data to peak axial tibial
compression during running using similar techniques. However, it is unknown if peak
axial tibial compression can be used to prospectively identify stress fracture risk despite the
association between a bone’s load and risk of mechanical failure. If bone loading metrics
can be identified as biomechanical risk factors, data collected by wearable devices could
improve our understanding of stress fracture development in long distance runners as
these data could be collected over the course of a run, competitive season, or several years
in the environment experienced by runners daily and not only within a laboratory (Backes
et al., 2020; Edwards, 2018; Ryan et al., 2020). Biomechanical risk factors could then be
considered alongside other metrics such as bone mineral density or nutritional deficiencies
when determining an individual’s stress fracture risk (Wright et al., 2015).

There are potential limitations of the present study that may limit the generalizability of
our findings. There may be a tendency for the QRF and LR models to overestimate lower
peak vGRF and contact times and underestimate higher peak vGRF and contact times
(Figs. 1E and 1F). Variations in peak vGRF and contact time within a participant were
due in part to changes in speed, so these biomechanical predictions may not generalize
outside of the range of speeds tested (3.8–5.4 m/s). QRF model predictions may have
benefitted from additional predictor variables as ensemble forests algorithms can be used
to make predictions from hundreds or thousands of predictor variables (Breiman, 2001).
However, we intentionally limited the number of predictor variables to increase model
interpretability, likely at the cost of prediction accuracy. We collected data from level
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running and the prediction accuracy of the models may be affected by changes in slope,
as uphill and downhill running affects kinematics and kinetics (Vernillo et al., 2020). The
method we used to attach the accelerometer to the body may have introduced error in the
acceleration data (Gurchiek et al., 2017). Specifically, the application of Newton’s second
law of motion assumes acceleration is measured at the center of mass and not the sacrum.
Additionally, we did not rotate the acceleration signal to be vertical in the global coordinate
system, but instead used the vertical axis in the local coordinate system of the accelerometer,
which may have rotated with changes in waistband position or pelvic orientation during
running and influenced prediction accuracy (Tan et al., 2019). However, our decision to
attach the accelerometer to the runner’s waistband and not rotate the vertical acceleration
signal were in an effort to maintain the generalizability of results. Thus, our methodology
presents conservative measures of model accuracy as using the global vertical acceleration
from a device adhered directly to the skin would have likely improved signal quality.
However, we observed predictions within 5% of peak vGRF, vertical impulse, and contact
time calculated from gold standard force-measuring treadmill data across a range of
speeds. The entirety of our participant population consisted of NCAA Division I Cross
Country runners who may not be representative of the general recreational running
population. Differences in running biomechanics have been observed when comparing
runners of different skill levels or weekly running mileage (Boyer, Silvernail & Hamill,
2014; Cavanagh, Pollock & Landa, 1977; García-Pinillos et al., 2019; Mo et al., 2020) and
these differences may affect model prediction accuracy when applied to other running
subpopulations. However, by testing the QRF and LR models on data withheld during
model training, we provided a measure of model accuracy when applied to the data of
runners who were unknown to the models.

CONCLUSIONS
We investigated the ability of quantile regression forest (QRF) and linear regression (LR)
models to predict peak vertical ground reaction force, vertical impulse, and ground contact
time in NCAA Division I Cross Country runners using sacral acceleration across a range
of running speeds (3.8–5.4 m/s). Both models predicted these biomechanical variables on
data withheld during model training with a mean absolute percent error (MAPE) <5%.
Our data indicate that a sacral-mounted accelerometer can be used to predict peak vGRF
(RMSE: ≤ 0.150 BW), vertical impulse (RMSE: ≤ 0.003 BW*s), and contact time (RMSE:
≤ 0.011 s) during running. We also provide LR model coefficients (Table 3), used to
predict peak vGRF, vertical impulse, and contact time from sacral-mounted accelerometer
data. Accurate longitudinal monitoring of these biomechanical variables may aid in the
quantification of stress fracture risk in runners.
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