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ABSTRACT
Understanding the effects of organic pasture management on the soil microbiome is
important for sustainable forage production since soilmicrobiome diversity contributes
to improved nutrient cycling, soil structure, plant growth, and environmental resiliency;
however, the soil microbiome response to pasture management is largely unknown.
This study assessed the soil microbial diversity, richness, and community structure
following 10 years of pasture management (organic or non-organic) of the V4 region
of the 16S rRNA using the Illumina MiSeq platform. Soil samples were collected from
0–15 cm in July and August from 2017–2018 and soil nutrient properties (nutrients,
carbon, nitrogen, and pH) quantified and correlated with soil microbial diversity.
Overall, greater soil bacterial species richness (P ≤ 0.05) occurred in organic relative to
non-organic (conventional) systems. Management affected bacterial species richness
(Chao1), with greater richness occurring in organic pasture soils and less richness
occurring in non-organic systems (P ≤ 0.05). Similarly, management affected bacterial
evenness (Simpson’s index), with a more diverse community occurring in organically
managed soils relative to non-organic pastures (P ≤ 0.05). Linear discriminant analysis
effect size analysis showed statistically significant and biologically consistent differences
in bacterial taxa in organic compared with non-organic soils. Therefore, there was a
shift in bacterial community structure in organic relative to non-organic soils (P ≤
0.05). Additionally, soil nutrients (Fe, Mg, Ni, S, Al, K, Cd, and Cu), pH, C, and
N were correlated with one or more dominant bacterial phyla (Gemmatimonadetes,
Planctomycetes, Firmicutes, Chloroflexi, Actinobacteria, and Acidobacteria). Overall,
pasture management affected soil microbial diversity, with greater diversity occurring
in organic than non-organic systems, likely owing to applications of organic poultry
litter in organic systems compared to non-organic management (use of inorganic-
fertilizers and herbicides). Results indicate that when pastures are converted to organic
production systems, soilmicrobial richness anddiversitymay increase, thereby resulting
in enhanced soil microbiome diversity and overall ecosystem services.
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INTRODUCTION
Soils contain highly diverse microorganisms, with 109 to 1010 microorganisms per gram
(Gans, Wolinsky & Dunbar, 2005). Soil bacterial species and diversity are important as they
are major decomposers of soil organic matter and can influence carbon and nitrogen
turnover rates (Hättenschwiler, Tiunov & Scheu, 2005), which provides substrates to
microbes and nutrients to plants. Nitrogen mineralization in the soil also depends on
the abundance and diversity of bacterial taxa (De Ruiter et al., 1993). Higher bacterial
diversity is crucial for the breakdown of organic matter that involves complex processes
such as chitin degradation (Beier & Bertilsson, 2013). Human activity in soils, including
increased use of chemical fertilizers, pesticides, and tillage, has led to a decrease in
global soil biodiversity (Hirsch, 2010). Other negative anthropogenic environmental
impacts include soil degradation, pesticide accumulation, reduced water availability,
and increased greenhouse gas emission, collectively hampering biodiversity (Foley et al.,
2005). Conventional farming systems, crop monocultures, use of chemical fertilizers, and
intensive use of agrochemicals eliminate certain group of microbes and decrease overall
soil microbial diversity (Stagnari et al., 2014).

Organic production practices reduce the use of chemical fertilizers and pesticides and
increase sustainable production practices (Gomiero, Pimentel & Paoletti, 2011). Organic
soil amendments such as manure, may increase soil microbial diversity, richness, and
community structure (Chaudhry et al., 2012; Lupatini et al., 2017). However, there are still
incomplete understandings of the effects of organic production practices on soil biodiversity
(Wu & Sardo, 2010; Tscharntke et al., 2012; Bünemann, Schwenke & Van Zwieten, 2006).
Although, DNA sequencing technologies have made it possible to identify soil bacterial
abundance and diversity (Soliman et al., 2017).

Over one-quarter of the Earth’s total land area is used for livestock grazing (Herrero et
al., 2013). Grazing directly or indirectly impacts soil microbial communities and C and N
availability because livestock feeds on aboveground plants and returns half of the grazed
forage to the soil as feces, changes plant composition, and shifts rhizosphere exudation
(Lovell, Jarvis & Bardgett, 1995; Manzano & Návar, 2000; Le Roux et al., 2008; Yang et al.,
2013; Tardy et al., 2015). Animal manures in pasture increase soil enzyme activity, nutrient
availability, provides food sources for soil microbes, and increases soil bacterial diversity
(Ashworth et al., 2017; Das et al., 2017). A recent study by Yang et al. (2019) found that
animal inputs (poultry litter and cattle manure) increased soil microbial diversity and
richness by altering the soil nutrient status. Earlier studies also demonstrated grazing
pressure impacts soil microbial communities, with positive associations occurring for soil
productivity and microbial α-diversity, and the suppression of bacterial communities in
overgrazed soils (Xun et al., 2018).
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Pasture soils are less managed than row crops and thus have greater potential microbial
stability (Lauber et al., 2009; Ashworth et al., 2017). Limited studies are available on the
impact of organic pasture management on soil microbial communities. Therefore, the
objective is to determine how 10 years of livestock pasture management (organic or
conventional) impacts soil microbial diversity.

MATERIALS AND METHODS
Study management history
The research was conducted at the USDA-ARS Dale Bumpers Small Farms Research Center
in Booneville, Arkansas (35.08◦N, 93.98◦W), where plots with different management,
i.e., organic and non-organic, were established and consistently managed since 2007.
Thirtytwo-hectare plots utilized for sheepweremanaged organically since 2007 and certified
organic in 2012 (Nature’s International Certification Services, Viroqua, WI). Forage type
was predominantly tall fescue (Festuca arundinacea). Non-organic sheep pastures were
utilized by sheep for more than 30 years and were predominantly bermudagrass (Cynodon
dactylon). Both forage types have limitations for sheep production and provide little
pollinator habitat. Before plots were established, sheep grazed at approximately∼10 sheep
ha-1 according to forage availability, which was seasonal and dependent on forage species
present (Eremopyrum triticeum, Lolium perenne and other voluntary forbs and grasses).
Details regarding the soil types of the study area are available in earlier publication from the
research site (Thomas et al., 2008). The site received 101 cm rainfall in 2017 and 129 cm in
2018, with the 30-year (1987–2017) mean annual precipitation of 126 cm (Fig. 1A). Mean
annual temperature in 2017 and 2018 were 19.1 and 14.8 ◦C, with a winter minimum
of 9.5 ◦C and summer maximum of 32.3 ◦C (Fig. 1B). Additionally, daily rainfall and
temperature (NOAA, 2017/2018), for 3 days before sample collection is provided in the
Table 1.

Pasture plot preparation for non-organic forage plots
Two 0.16-ha non-organic plots were used for the non-organic treatment in this study.
Non-organic plots were sprayed with Roundup [N-(phosphonomethyl)glycine)] (41%
glyphosate, 4.67 l ha-1) in June, July, September, and October of 2016 and January
of 2017, and with Outrider [N-[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-2-
(ethylsulfonyl)imidazo[1,2-a]pyridine-3-sulfonamide;{Sulfosulfuron}] (Monsanto, St.
Louis,MO; 0.096 l ha-1) in September 2016 using aContinental Belton cluster nozzle sprayer
(Continental Belton McAlester, SR: A44117, Oklahoma city, OK). Non-organic plots were
tilled (Maschio Gaspardo North America Inc., SC 300, Des Moines, IA), and rolled
using 12’ Big Guy Roller (Grahl Manufacturing, St. Louis, MO) in October 2016. Long-
term (15 years) applications of inorganic nitrogen (ammonium nitrate) were applied to
pastures at recommended rates (https://www.uaex.edu/publications/PDF/FSA-2153.pdf).
The seed-mixes were Buck’s Hangout (Hamilton Native outpost, Elk creek, MO;
http://www.hamiltonnativeoutpost.com/14.5 kg ha-1) used in half of each 0.16 ha plot, and
other Tallgrass Inexpensive or Tallgrass Exposed Clay subsoil mix (Prairie Moon, Winona,
MN; www.prairiemoon.com; 13.44 kg ha-1 and 26.8 kg ha-1, respectively according to
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Figure 1 Temperature and rainfall data from study site. (A) Total monthly precipitation and (B) mean
monthly temperature in Booneville, AR in 2017 and 2018. Total monthly precipitation and temperature
(1987–2017; 30 Year average) were obtained from NOAA (2018).

Full-size DOI: 10.7717/peerj.11184/fig-1
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Table 1 Daily rainfall and temperature for 3 days before the sample collection in 2017 and 2018 in Booneville, AR.

2017 2018

July August July August

2 da 1 d 0 d 2 d 1 d 0 d 2 d 1 d 0 d 2 d 1 d 0 d

Temperature (◦C) 29.7 34.3 35.5 23.7 31.2 34.4 35.9 32.1 37.0 32.6 34.2 34.9
Rainfall (mm) 14.2 0.0 0.0 5.2 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0

Notes.
ad, number of days before sample collection.

commercial nursery recommendations) in the other half of each 0.16 ha plot, planted on
February 7, 2017, and again same time in 2018 (species percentage per seed mixes are
available in the aforementioned websites).

Organic pasture plot preparation
Plots were controlled burned using forestry drip torch after establishing a firebreak around
the plots. A cover crop of oats (Avena sativa) was planted in the winter before spring
planting native seed mixes. One, 0.4 ha organic plot was seeded on February 3, 2017,
with ‘‘Butterfly and Hummingbird’’ Mix from Hamilton Native outpost (Elk Creek, MO;
www.hamiltonnativeoutpost.com/; at 8.5 kg ha-1; species composition and percentage of
each species are available in the above website). The other organic plot was 0.8 ha planted
with Tall Grass Inexpensive (Prairie MoonNursery; 13.4 kg ha-1). The seed was drilled onto
a prepared seed bed using a Brillion planter (Brillion Farm Equipment, Sure Stand Model
SSP-8, Brillion, WI) at a 1.25 cm depth. Soil fertility was adjusted using poultry litter (4.4
Mg ha-1; fresh weight basis) following the University of Arkansas soil test recommendation
(https://www.uaex.edu/publications/PDF/FSA-2153.pdf).

Sheep grazing
Plots were multifunctional for pollinator habitat and sheep forage. Sheep grazed plots
if they became weedy (including Chenopodium album and Ambrosia artemisiifolia), or
stubble height reached 1 m. Grazing of the conventional plots occurred to remove excess
forage and weeds, but not to the detriment of the native plant species. The stocking rate
of each plot was different based on visual assessment of forage availability, which included
plant height, the density of unwanted, and desired plants.

Soil sample collection
Soil samples were collected in July and August of 2017 and repeated again in 2018. Soil
samples were collected from 0–15 cm, and soil probes were sterilized between plots with
70% ethanol. Samples were packed in sterile whirl-pack bags and stored at −20 ◦C until
analysis.

Soil sample collection sites were georeferenced using a Global Positioning System unit.
For the analysis, 32 independent samples were taken (2 per pasture system× 2 sub-samples
per treatment × 2 replications × 2 sample dates per year × 2 years).
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Soil physiochemical analyses
Soil samples were dried at 70 ◦C for 48 h and then ground with mortar and pestle to pass
through a two mm sieve. Mehlich-3 extractable nutrients (i.e., Al, As, B, Ca, Cd, Co, Cr,
Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Ti, and Zn) were determined using 1:10
soil volume: extractant solution volume ratio (Tucker, 1992) and analyzed by inductively
coupled argon-plasma spectrometry using a 7300 IPC-OES DV (Perlin-Elmer, Waltham,
MA). Total C and N were analyzed via dry combustion using a Vario Max CN combustion
analyzer (Elementar Americas Inc., Mt. Laurel, NJ). Soil pH was determined on 1:1 soil:
distilled water suspension using a symphony B30PCI probe (VWR International, Atlanta,
GA).

DNA extraction, PCR amplification, and sequencing
Most of the methods adopted here are previously described in Gurmessa et al. (2021).
Briefly, DNA was extracted from each soil samples using MpBio Fast DNA Spin kit (MpBio
Laboratories, SKU 116560200-CF) following manufacturer’s protocol. DNA thus extracted
was quantified using Quant-ItTM PicoGreen R© (Invitrogen) dsDNA quantitation assay and
stored at −20 ◦C until further analysis. Bacterial community composition and diversity
was determined through classification of 16S rRNA gene by Illumina MiSeq sequencing
platform. The V4 region of prokaryotic 16S rRNA genes were amplified with barcoded
primers 515F and 806R (Caporaso et al., 2011). Libraries for each samples were pooled and
sequenced in parallel, and 291 base-paired end sequence were obtained resulting in total
3,531,936 sequence reads. Raw sequences were processed in Mothur software v.1.40.0,
using a Miseq SOP protocol (Kozich et al., 2013). Sequences that did not match the primers
were eliminated from demultiplexed sequence reads. Sequence reads were clustered into
OTUs (Operational TaxonomicUnits) at 97% similarity threshold. After the quality control
pipeline, 2,906,534 sequence reads remained while remaining were deleted.

Data analysis and statistics
The green genes database was used to classify the OUT at the genus level using the Bayesian
method (Cole et al., 2009), after that relative abundance of all OTUs was summed within
phylum and analyzed for the relative abundance of OTUs at the phylum level. Subsampled
data was used to calculate Chao, Shannon and Inverse Simpson index via Mothur and
compared results using ANOVA in the statistical software R 3.5.1 (R Core Team, 2013)
and JMP R 12 (SAS Institute, 2015). Weighted and unweighted UniFrac distance, and
Bray-Curtis were used to define bacterial beta-diversity. Principal coordinate analysis
based on weighted and unweighted UniFrac with permutational analysis of variance
(PERMANOVA) as statistical methods were carried out to compare bacterial communities
at the phylumOUT level (Clarke & Gorley, 2006;Dhariwal et al., 2017). LinearDiscriminant
Analysis Effect Size measurement was used to identify taxa differences between treatments
with Galaxy (Segata et al., 2011).

Spearman correlation was used to find correlation among soil pH, C, N, C: N ratio,
soil mineral (Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Ti,
Zn) and number of OTU of most dominant bacteria phyla per treatment (organic and
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non-organic system). Management (organic or non-organic) and time of sample collection
(July or August) was used as the fixed effect and year and replications as the random effect.
Principal component analysis was used to determine relationship among variables using R
software. Proportion of variance was done to find variance explained by each PCs. Three
PCs that explained most variance were selected for further analysis. The eigenvectors were
used to show directional orientation (positive or negative) of all variates with respect to
the centroid both in numbers and in figures using PCA biplots.

RESULTS
Bacterial community composition based on treatment, year, and
sampling period
There were differences in soil bacterial communities at the phyla level between sampling
years (2017 and 2018; P ≤ 0.05); however, there were no differences in bacterial
communities between non-organic and organic treatments and sampling period [July
and August (P ≥ 0.05); Table 2]. The following top ten phyla dominated soil bacterial
communities: Proteobacteria (mean relative abundance of all libraries was 33.13% in 2017
vs. 32.63% in 2018), Bacteriodetes (6.43% in 2017 vs. 33.44% in 2018), Acidobacteria
(23.00% in 2017 vs. 6.86% in 2018), Actinobacteria (8.75% in 2017 vs. 7.07% in 2018),
Verrucomicrobia (6.78% in 2017 vs. 8.51% in 2018), Chloroflexi (5.75% in 2017 vs.
3.64% in 2018), Firmicutes (5.95% in 2017 vs. 3.29% in 2018), Planctomycetes (5.90%
in 2017 vs. 1.74% in 2018), Gemmatimonadetes (3.26% in 2017 vs. 0.55% in 2018), and
Saccharibacteria (1.06% in 2017 vs. 2.28% in 2018; Fig. 2A). The top 20 soil bacterial
communities at the OTU level are presented in Fig. 2B.

Bacterial community alpha diversity is influenced by treatment,
sampling years, and sampling period
Alpha diversity was influenced by treatment (organic vs. non-organic), year, and sampling
period, as estimated by three different algorithms (Chao1, Shannon, and Simpson’s index).
Specifically, management affected bacterial species richness (Chao1), with greater richness
found in organic pasture soils and fewer species richness occurring in non-organic soils
(P ≤ 0.05) (Table 3). Species richness also varied by years, with greater richness occurring
in 2017 compared to 2018 (P ≤ 0.05). Richness differences between July and August were
at the margin of statistical significance (P = 0.056). There were richness differences for
treatment × year (P ≤ 0.05). The Simpson’s index was used to calculate the evenness of
soil bacterial community and indicated treatments affected bacterial evenness, with a more
diverse community occurring in organically managed soils, relative to non-organic soils (P
≤ 0.05). Year also influenced bacterial community evenness, with greater evenness found in
2018 compared to 2017 (P ≤ 0.05). However, the sampling period did not result in evenness
differences (P ≥ 0.05). The treatment × year interaction affected bacterial community
evenness (P ≤ 0.05). The Shannon index was used to measure the community diversity,
including both richness and evenness, and there were no treatment or sampling period
differences (P ≥ 0.05). The treatment × year interaction affected bacterial community
diversity (P ≤ 0.05). Figure 3A illustrates the influence of treatment and sampling period
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Table 2 PERMANOVA of bacterial community structure by treatment (organic and non-organic soil),
year (2017 and 2018), and sampling period (July and August). PERMANOVA results illustrate differ-
ences in bacterial community structure by single factors of management (organic and non-organic), sam-
ple collection years (2017 and 2018), and sampling period (July and August), as well as two factors (treat-
ment× year, treatment× sampling period, and year× sampling period), and three factors (treatment×
year× sampling period).

Factor Pseudo-F P-value

Treatment 0.84 0.498
Year 15.26 0.001
Sampling period 0.84 0.491
Treatment× year 9.55 0.001
Treatment× sampling period 1.62 0.293
Year× sampling period 1.99 0.096
Treatment× sampling period× year 0.82 0.465

on soil bacterial richness using Chao1, with Fig. 3B showing bacterial evenness (calculated
by using Simpson index), and Fig. 3C presenting the bacterial community diversity (via
Shannon index).

Bacterial community structure following treatments and sampling
periods
Community structures across treatments and sampling periods were compared to
determine if treatments (non-organic and organic) and sampling periods (July and
August) impacted the bacterial community structure. Bray-Curtis distance matrix was
used to calculate pairwise distances from all samples. Visualization of these distances using
a PCoA revealed an overlap between bacterial communities from treatments and sampling
periods. Significant shifts in community structure from non-organic and organic soils were
observed in PCoA plots based on Bray-curtis (PERMANOVA R= 0.183, P ≤ 0.05; Fig. 4).
Non-organic samples were distinct from organic samples; however, samples collected from
July and August were similar, especially in non-organic systems.

The linear discriminant analysis effect size was used to identify bacterial features
represented between non-organic and organic soils and between July and August. The
log LDA score cutoff was set at 2 (as an absolute value). Both the negative and positive
values for the cutoff can be considered to determine significant features when the score
is lower than 2. LEfSe analysis confirmed two features (OTU38 and OTU44), showing
statistically significant and biologically consistent differences in non-organic soil samples
collected from August. The other two significant features (OTU11 and OTU56) were
found in organic soil samples collected in July (Fig. 5). These identified bacterial species
reflected distinct abundance in soil samples. LEfSe also detected 11 bacterial species showing
statistically significant differences in organic soil samples collected from August. However,
no significant feature can be found in samples collected from non-organic soil in July
(Fig. 5).
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Figure 2 Proportion of soil bacteria in phylum and OTU level by different pasture management sys-
tem and sampling period.Mean relative proportion of soil bacteria in phylum level (A) and in OTU level
(B) by treatment and sampling period from 2017-2018. Treatments include non-organic (Non-Org) soil
and organic (Org) soil. The sampling period includes July and August (Aug). The order of colors is the
same in the legend as the bars.

Full-size DOI: 10.7717/peerj.11184/fig-2
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Table 3 ANOVA of richness, evenness, and diversity in bacterial community structure of treatment,
year and sampling period. ANOVA results illustrating richness, evenness and diversity in bacterial com-
munity structure by single factor of treatment (non-organic and organic), year (2017 and 2018) and sam-
pling period (July and August), as well as two factors (treatment and year).

Parameter Factor F -value P-value

Richness Treatment 6.58 0.0156
Year 10.37 0.0031
Sampling period 3.95 0.0561
Treatment× Year 4.52 0.0425

Evenness Treatment 4.08 0.0525
Year 11.39 0.0021
Sampling period 2.01 0.1664
Treatment× Year 8.14 0.0081

Diversity Treatment 3.78 0.0613
Year 13.77 0.0008
Sampling period 2.01 0.1666
Treatment× Year 13.33 0.0011

Figure 3 Bacterial richness, evenness, and diversity in different pasture management system.Mean
soil bacterial richness, evenness, and diversity [Chao1 (A), Simpson index (B), and Shannon index (C)]
in non-organic and organic pasture management system. Treatments include non-organic (Non-org) and
organic (Org) soils. Soil samples were collected during two sampling periods (July and August).

Full-size DOI: 10.7717/peerj.11184/fig-3

Soil chemical property relationship with bacterial community
structure
The first three PCs were selected (Table 4) for further analysis based on their cumulative
variability accounting for 65.80% of the total variation. Principal component 1 explained
37.42% of overall variance, while PC2 and PC3 contributed an additional 16.12% and
12.26%, respectively. Principal component 1, was most strongly affected by soil N, C, and
S contents, which are correlated in Fig. 6, and in the biplot (Figs. 7A, 7B). All these factors
are positive eigenvectors in PC1 which is shown numerically in Table 5, as well as in Figs.
7A and 7B (as all these vectors were directed toward a positive direction with respect to
the centroid). Principal component 2 was most strongly associated with soil pH, Ca, and
P contents. These factors are negative eigenvectors in PC2, which is shown in Table 5, as
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Figure 4 Principal Coordinated Analysis (PCoA) of Bray–Curtis distances of bacterial community
structures in different pasture management system and sampling period. Principal Coordinated Analy-
sis (PCoA) of Bray–Curtis distances of bacterial community structures in different pasture management.
The factors include non-organic (Non-Org) soil and organic (Org) soil collected during two different
sampling periods (July and August).

Full-size DOI: 10.7717/peerj.11184/fig-4

well as in Figs. 7A and 7C as these vectors were directed toward the negative side. Likewise,
PC3 was closely related to soil Zn content, Gemmatimonadetes, and Acidobacteria, which
are seen in Table 5 and Figs. 7B and 7C.

Soil pH was negatively correlated with Actinobacteria (R2 = −0.61), Acidobacteria
(R2 = −0.50), Chloroflexi (R2 = −0.45), and Planctomycetes (R2 = −0.48). Nitrogen
and C were positively correlated with Gemmatimonadetes (N, R2 = 0.63; C, R2 = 0.67),
Planctomycetes (N, R2 = 0.78; C, R2 = 0.81), Firmicutes (N, R2 = 0.69; C, R2 = 0.71),
Chloroflexi (N, R2= 0.45; C, R2= 0.45), Actinobacteria (N, R2= 0.60; C, R2= 0.57) and
Acidobacteria (N, R2 = 0.68; C, R2 = 0.72). The significant correlation between OTUs
of dominant bacterial phyla and soil minerals is given in Table 6. Likewise, relationship
between soil pH, C, N, C:N ratio, minerals (Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn,
Mo, Na, Ni, P, Pb, S, Se, Ti, Zn) and number of OTU of most dominant bacteria phyla can
be seen in Figs. 5 and 7A–7C.

DISCUSSION
Soil microbial diversity in long-term organic vs non-organic pastures
The study was conducted to assess the microbial diversity, richness and community
structure using 16S rRNA sequencing between soil samples taken from organic and
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Figure 5 Linear Discriminant Analysis Effect Size (LefSe) analysis showing OTU abundance for differ-
ent pasture management system and time period. Linear Discriminant Analysis Effect Size (LefSe) anal-
ysis showing OTU abundance for different groups in non-organic soils collected from August and organic
soils collected from July and August. No significant feature was observed in samples collected from non-
organic soils in July.

Full-size DOI: 10.7717/peerj.11184/fig-5

Table 4 Standard deviation, proportion of variance and cumulative proportion of each principal com-
ponent. Standard deviation is the deviation of principal components. Proportion of variance explained
how much variance is explained by each of the principal components with respect of the whole (the sum).

PC1 PC2 PC3

Standard deviation 3.566 2.341 2.041
Proportion of variance 0.374 0.161 0.122
Cumulative proportion 0.374 0.535 0.658

non-organic pasture systems. Long-term organic or non-organic pasture management
affected soil microbial diversity, richness, and community structure. Soil bacterial species
richness (Chao1) was greater in organic in comparison to non-organic pastures. Likewise,
greater bacterial evenness (Simson’s index) occurred in organic relative to non-organic

Acharya et al. (2021), PeerJ, DOI 10.7717/peerj.11184 12/25

https://peerj.com
https://doi.org/10.7717/peerj.11184/fig-5
http://dx.doi.org/10.7717/peerj.11184


Figure 6 Spearman correlation coefficient of soil variables (pH, N, C andminerals) and number of
operational taxonomic unit (OTU) of major bacteria phyla. Blue color represents positive correlation,
white color shows no correlation and pink color shows negative correlation.

Full-size DOI: 10.7717/peerj.11184/fig-6

pasture, and finally, greater microbial diversity was found in organic than non-organic
pastures. Recent publications also suggests that organic management supports greater
microbiome assemblages than non-organic systems (Chen et al., 2020). The greater
microbial diversity in organically managed soil in the current study is consistent with
other studies (Hartmann et al., 2015; Mäder et al., 2002). Higher diversity of microbial
communities in organically managed pastures is likely related to the restricted use of
chemical fertilizers and pesticides and with applications of poultry litter, which provides
essential macronutrients for microbial growth and function (Sun, Deng & Raun, 2004;
Chaudhry et al., 2012; Ashworth et al., 2017; Yang et al., 2019).

Increases in microbial diversity cause a more heterogeneous distribution of bacterial
species, leading to healthier plant-soil associations and ecosystems benefits for improved
sustainability (Brussaard, De Ruiter & Brown, 2007; Crowder et al., 2010). In non-organic
pastures, herbicides and chemical fertilizers are regularly applied, causing long-term stress
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Figure 7 Biplot of soil components (pH, C, N C: N andminerals) and bacteria phyla. In (A) the hor-
izontal axis shows the projection on to the principal component 1 (PC1) and the vertical axis of PC2. In
(B) and (C), vertical axis shows projection on to PC3 while horizontal axis shows projection on to the PC3
and PC2 respectively.

Full-size DOI: 10.7717/peerj.11184/fig-7

to microbial populations leading to less diverse microorganisms, in part, because these
chemicals potentially inhibit or eliminate certain groups of bacteria and select few bacterial
phyla that could thrive in non-organic management systems (El Fantroussi et al., 1999;
Stagnari et al., 2014).

In the current study, organic pastures were grazed by certified organic sheep (Nature’s
International Certification Services) and non-organic pastures by non-organic sheep.
Pastures were regularly soil tested and continuously applied with animal manure
(organic pastures) or synthetic fertilizers (in non-organic pastures), thus soil nutrients
were never limited. A high nutritent availability could have dominated the presence
of copiotrophic bacteria such as Proteobacteria, Firmicutes, Gemmatimonadetes, and
Bacteroidetes (Ryckeboer et al., 2003; Fierer, Bradford & Jackson, 2007; Fierer et al., 2012;
Zhang et al., 2017), accounting for more than 60% of the total bacteria phyla. Similarly,
other oligotrophic microorganisms, such as actinobacteria and acidobacteria (Fierer,
Bradford & Jackson, 2007) were also presented but in a relatively lower percentage. All of
the bacterial communities were dominated by a few major phyla including: Proteobacteria,
Bacteriodetes, Acidobacteria, Actinobacteria, Verrucomicrobia, Chloroflexi, Firmicutes,
Planctomycetes, Gemmatimonadetes, and Saccharibacteria. The relative abundance of the
most dominant bacterial taxa in this study is similar to that reported elsewhere (Davinic et
al., 2012; Lupatini et al., 2017). Although, soil samples were taken to compare differences
in bacterial taxa between organic and non-organic pastures with different management
systems, it is important to recognize that most dominant bacteria taxa were largely the same
in both treatments and months, with some differences only in their relative abundance.

It is generally thought that grazing affects bacterial species mainly through fecal and
urine deposition (Ritz et al., 2004), by altering plant composition (Wang et al., 2001), and
shifting rhizosphere exudation (Guitian & Bardgett, 2000). Several studies have reported
the influence of plant species on soil bacterial communities (Smalla et al., 2001; Schmidt
et al., 2019). Also, soil microbial communities are shaped not only by plant species, but

Acharya et al. (2021), PeerJ, DOI 10.7717/peerj.11184 14/25

https://peerj.com
https://doi.org/10.7717/peerj.11184/fig-7
http://dx.doi.org/10.7717/peerj.11184


Table 5 Eigenvectors of principal component (PC) representing a linear combination of the original
variable for soil bacterial phylum and soil properties collected 0–15 cm in 2017 and 2018.

PC1 PC2 PC3

pH −0.173 −0.300 0.015
N 0.265 −0.009 0.051
C 0.267 −0.066 0.035
C:N ratio 0.113 −0.231 −0.057
Al 0.181 0.249 −0.001
As −0.059 −0.034 0.083
B 0.179 0.105 0.264
Ca 0.005 −0.360 0.068
Cd 0.112 −0.274 −0.132
Co 0.185 0.108 0.262
Cr −0.133 −0.147 −0.200
Cu 0.212 −0.178 0.201
Fe 0.120 −0.267 −0.224
K 0.243 0.068 0.132
Mg 0.256 0.129 0.083
Mn 0.024 −0.180 −0.031
Mo 0.026 0.029 0.212
Na 0.057 0.080 0.131
Ni 0.224 0.061 −0.082
P 0.109 −0.349 0.051
Pb 0.171 −0.268 0.142
S 0.266 −0.026 −0.006
Se 0.161 −0.062 0.078
Ti −0.055 0.079 −0.317
Zn 0.167 −0.044 0.330
Gemmatimonadetes 0.202 −0.047 −0.264
Planctomycetes 0.232 −0.030 −0.178
Firmicutes 0.205 −0.079 −0.142
Chloroflexi 0.167 0.099 −0.218
Verrucomicrobia −0.034 −0.022 0.132
Actinobacteria 0.191 0.154 −0.159
Acidobacteria 0.222 0.011 −0.271
Bacteroidetes −0.139 −0.036 0.259
Proteobacteria −0.015 −0.033 0.079

also by soil amendment (Schmidt et al., 2019), therefore, this study focused on organic or
non-organic soil amendment on livestock pastures.

Relationship between soil pH, C, N, soil C: N ratio and soil minerals
on most dominant bacteria phyla
Although bacteria varied temporally and spatially, overall bacterial diversity was largely
predicted by soil pH (Lauber et al., 2009). The effect of pH on bacterial community was
evident at the phyla level where there was a high relative abundance of Gemmatimonadetes,
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Table 6 Pearson correlation between soil bacteria (Gemmatimonadetes, Planctomycetes, Firmicutes, Chloroflexi, Actinobacteria, and Aci-
dobacteria) and soil nutrient concentration (Fe, Mg, Ni, S, Al, K, Cd, Cu) collected 2017 and 2018 to a 0–15 cm depth.

Bacterial phyla Soil minerals

Gemmatimonadetes Fe, R2= 0.66 Mg, R2
= 0.51 Ni, R2

= 0.58 S, R2
= 0.72

Planctomycetes Al, R2
= 0.51 Fe, R2

= 0.60 K, R2
= 0.52 Mg, R2

= 0.65 Ni, R2
= 0.65 S, R2

= 0.81
Firmicutes Cd, R2

= 0.51 Cu, R2
= 0.56 K, R2

= 0.53 Mg, R2
= 0.56 S, R2

= 0.73
Chloroflexi K, R2

= 0.53 Mg, R2
= 0.54

Actinobacteria Al, R2
= 0.56 K, R2

= 0.58 Mg, R2
= 0.67 S, R2

= 0.58
Acidobacteria Al, R2

= 0.52 Fe, R2
= 0.56 K, R2

= 0.52 Mg, R2
= 0.63 Ni, R2

= 0.66 S, R2
= 0.75

Planctomycetes, Actinobacteria, Acidobacteria, and Chloroflexi, changing in a consistent
manner across the soil pH gradient as depicted both by Spearman correlation as well as PCA
biplots. Though some bacterial taxa are correlated with soil pH, pH may not be considered
the universal predictor of microbial diversity. The effect of pH on bacterial community
structure and diversity in the current study has been supported by various studies where
different sequencing methods were used (Blagodatskaya & Anderson, 1998; Bååth &
Anderson, 2003; Cookson et al., 2007). Specifically, relative abundance of Acidobateria,
Actinobacteria, Planctomycetes, and Chloroflexi were correlated with soil pH, similar to
that in the current study (Sait, Davis & Janssen, 2006; Eichorst, Breznak & Schmidt, 2007).
It is notable that soil pH and bacterial community structure were correlated; however, it is
hard to identify specific mechanisms that cause these relationships. There are two general
explanations that may explain why soil pH was the predictor of bacterial community
composition. First, most bacterial taxa have intracellular pH close to neutral (Madigan
& Martinko, 2005) and are unable to survive if soil pH falls outside the narrow range of
tolerance, i.e., pH of 6.5–7.5). Lower soil pH or acidification inhibits bacterial enzyme
activity and overall cell mechanics (Beales, 2004), but some microorganisms can survive in
acidic environments (Beales, 2004). Second, pH acts as an integrating factor for several soil
variables, e.g., soil organic C, N, P, ion sorption, and salinity, and poultry litter applications
are known to increase pH due to its liming effect (Brady & Weil, 1999).

Soil microbial communities affect C andN turnover with complex interactions involving
vegetation types and various soil properties (Bailey, Smith & Bolton Jr, 2002; Deng et al.,
2016). Therefore, soil microbial community abundance and diversity have significant
correlations with soil total N and C (Liu et al., 2012). In the current study, a strong
positive correlation with bacteria phyla (Gemmatimonadetes, Planctomycetes, Firmicutes,
Chloroflexi, Actinobacteria, and Acidobacteria) andN and Cwas observed (both Spearman
correlation and PCA biplots). This is important to understand the relationship of soil
microbes and for sequestration and stability of N and C in grassland soils.

Close contact of soil minerals and soil microorganisms is essential for biogeochemical
cycling and transformation of plant nutrients, and by acquiring necessary enzyme
cofactors through minerals (Jansson, 1987; Bennett et al., 2001; Semrau, DiSpirito & Yoon,
2010; Ahmed & Holmström, 2014; Jones & Bennett, 2014). Yet, very limited studies have
found a relationship between soil microorganisms and minerals. In the current study,
some relationships between dominant soil microbiomes and minerals were observed.
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Correlations existed between some soil minerals and dominant bacterial taxa. However,
other factors such as pH could have masked the effect, and thus, a future controlled study
may be needed to confirm this relationship.

Effect of moisture on soil bacteria
Precipitation drives bacterial abundance (Clarholm & Rosswall, 1980); therefore, rainfall
data for three days before the sample collection are presented (Table 1). In the current
study, Firmicutes and Actinobacteria (both gram-positive bacteria) were able to maintain
their relative percentages even in a comparatively drier 2018 compared to 2017. It is because
gram-positive cell wall structure allows these microorganisms to withstand dry conditions
(Schimel, Balser & Wallenstein, 2007; Lennon et al., 2012; Moreno-Espíndola et al., 2018).
Other factors, such as the presence of soil organic C and bacteria’s ability to produce
biofilm, also help increase or decrease the abundance of gram-negative bacteria (Malik et
al., 2018;Moreno-Espíndola et al., 2018).

Soil microorganisms depend on organic C for their growth. Plants provide C to
rhizosphere microorganisms in the form of exudates, secretions, lysates, and dead cells
(Singh et al., 2004). However, during drought, the quantity and quality of C available to
soil microbes negatively impact gram-negative bacteria as these are more tightly connected
to freshly assimilated plant C (Denef et al., 2009). Drastic decreases of Acidobacteria,
Planctomycetes, and Gemmanimonadetes in 2018 could be due to their gram-negative
bacterial structure, making them vulnerable to dry soil (Denef et al., 2009). However, some
gram-negative bacteria increased, which could be due to biofilms. Though gram-negative
by structure, Proteobacteria, Chloroflexi, and Saccharibacteria were able to maintain
similar percentages during 2018 compared with 2017, likely due to their ability to produce
biofilms, thus helping them to withstand drought (Or, Phutane & Dechesne, 2007).

CONCLUSIONS
The current studywas performed to assess soilmicrobial diversity, richness, and community
structure in organic and non-organic livestock pastures using 16S rRNA sequencing. Most
of the dominant bacterial taxa were similar in both management systems with some
differences in their relative abundance; however, greater soil microbial diversity was
observed in organic livestock pastures. More heterogeneous distribution of bacterial
species leads to healthier associations at the soil-plant-animal nexus and ultimately
improves sustainable agriculture production. Though pH was correlated with the most
dominant bacterial phyla, soil properties such as C and N were more strongly correlated.
Additionally, we observed a correlation between several soil minerals (Fe, Mg, Ni, S, Al,
K, Cd, and Cu) and bacterial phyla (Gemmatimonadetes, Planctomycetes, Firmicutes,
Chloroflexi, Actinobacteria, and Acidobacteria). Limited studies are available that outline
the relationship between soil minerals and bacterial phyla. However, soil minerals are
essential for enzymatic reactions, biochemical cycling, production of chelating agents, and
catalyzing reactions. Overall, greater soil microbial diversity in the organic system, suggests
organically produced poultry litter, less herbicide and antibiotic use (during poultry and
sheep production) resulted in greater soil microbial diversity than the conventional sheep
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system. Further studies are needed to ascertain driving soil factors for microbial abundance
to optimize soil function in the largest land-use category in the US, or grasslands.

Abbreviations

C Carbon
N Nitrogen
Al Aluminum
As Arsenic
B Boron
Ca Calcium
Cd Cadmium
Co Cobalt
Cr Chromium
Cu Copper
Fe Iron
K Potassium
Mg Magnesium
Mn Manganese
Mo Molybdenum
Na Sodium
Ni Nickel
P Phosphorus
Pb lead
S Sulfur
Se Selenium
Ti Titanium
Zn Zinc
DNA Deoxyribonucleic acid
RNA Ribosomal ribonucleic acid
OUT Operational taxonomic unit
ANOVA Analysis of variance
PERMANOVA Permutational multivariate analysis of variance
PCoA Principle coordinate analysis
LDA Linear discriminant analysis
LEfSe Linear discriminant analysis effect size
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