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Brain Computer-Interfaces (BCI) technology plays a tremendous role in rehabilitation
devices and the control of external devices for stroke patients. This is particularly due to
their inability to control such devices from their inherent physical limitations after such an
attack. More often than not, the control of such devices exploits electroencephalogram
(EEG) signals. Nonetheless, it is worth noting that the extraction of the features and the
classification of the signals is non-trivial for a successful BCI system. The use of Transfer
Learning (TL) has been demonstrated to be a powerful tool in the extraction of essential
features. However, the employment of such a method towards BCI applications,
particularly with regards to EEG signals are somewhat limited. The present study aims to
evaluate the efficiency of different TL models in extracting features for the classification of
winking signals. The extracted features are classified by means of fine-tuned Random
Forest (RF) classifier. The raw EEG signals are transformed into a scalogram image via
Continuous Wavelet Transform (CWT) before it was fed into the TL models, namely
InceptionV3, Inception ResNetV2, Xception and MobileNet. The dataset was divided into
training, validation, and test datasets via a stratified ratio of 60:20:20. The
hyperparameters of the RF models was optimised through the grid search approach in
which the five-fold cross-validation technique was adopted. It was demonstrated from the
study that the best TL model identified is the Inception ResNetV2 as it was able to yield a
classification accuracy of 100% on the training dataset, through the utilisation of the
optimised RF model. Moreover, similar classification accuracy was observed on both the
validation and test datasets. Therefore, it could be established from the study that a
comparable classification efficacy is attainable via the Inception ResNetV2 with optimised
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RF pipeline. The implementation of the proposed method to a BCI system will potentially
facilitate post-stroke patients to lead a better quality of life.
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25 Abstract

26 Brain Computer-Interfaces (BCI) technology plays a tremendous role in rehabilitation devices 

27 and the control of external devices for stroke patients. This is particularly due to their inability to 

28 control such devices from their inherent physical limitations after such an attack. More often 

29 than not, the control of such devices exploits electroencephalogram (EEG) signals. Nonetheless, 

30 it is worth noting that the extraction of the features and the classification of the signals is non-

31 trivial for a successful BCI system. The use of Transfer Learning (TL) has been demonstrated to 

32 be a powerful tool in the extraction of essential features. However, the employment of such a 

33 method towards BCI applications, particularly with regards to EEG signals are somewhat 

34 limited. The present study aims to evaluate the efficiency of different TL models in extracting 

35 features for the classification of winking signals. The extracted features are classified by means 

36 of fine-tuned Random Forest (RF) classifier. The raw EEG signals are transformed into a 

37 scalogram image via Continuous Wavelet Transform (CWT) before it was fed into the TL 

38 models, namely InceptionV3, Inception ResNetV2, Xception and MobileNet. The dataset was 

39 divided into training, validation, and test datasets via a stratified ratio of 60:20:20. The 
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40 hyperparameters of the RF models was optimised through the grid search approach in which the 

41 five-fold cross-validation technique was adopted. It was demonstrated from the study that the 

42 best TL model identified is the Inception ResNetV2 as it was able to yield a classification 

43 accuracy of  100% on the training dataset, through the utilisation of the optimised RF model. 

44 Moreover, similar classification accuracy was observed on both the validation and test datasets. 

45 Therefore, it could be established from the study that a comparable classification efficacy is 

46 attainable via the Inception ResNetV2 with optimised RF pipeline. The implementation of the 

47 proposed method to a BCI system will potentially facilitate post-stroke patients to lead a better 

48 quality of life. 

49

50 Keywords EEG, Winking, Continuous Wavelet Transform, Transfer Learning, Random Forest 

51

52 Introduction

53 Stroke is a type of neurological diseases which is the third leading cause of death and the top ten 

54 cause of mortality in Malaysia. The Global Burden of Disease estimated that stroke could be the 

55 second leading cause of mortality in 2040 (Ganasegeran et al., 2019). Patients who are suffering 

56 from stroke are often left with long term impairments (Murray & Harrison, 2004). Almost all of 

57 the affected patients have various degree of neurological disorder, that is not limited to the 

58 weakening of limbs or speech impairments (Lawrence et al., 2001; Schweizer & MacDonald, 

59 2014). 

60

61 The consequences of the impairments of the limbs are the restriction of the ability to 

62 perform rudimentary activities of daily living (ADL) (Norris, Allotey & Barrett, 2012). 

63 However, rehabilitation plays a vital role in the recovering process, which helps the patients to 

64 regain their ability to be independent. In the last decade, Brain-Computer Interface (BCI) has 

65 paved its way as one of the leading technologies for rehabilitation. A BCI system essentially 

66 provides communication between the human brain signal and external devices. It facilitates the 

67 physically silent but mentally sound post-stroke patients ((Vaughan, 2003; Shih, Krusienski & 

68 Wolpaw, 2012; Lin & Hsieh, 2016). Categorically, a successful BCI primarily requires two main 

69 requirements viz. a set of electroencephalogram (EEG) features and an efficient machine-

70 learning algorithm to classify the extracted features. 

71

72 Related Works 

73 Over the last decade, active research has been carried out on the different feature extraction and 

74 classification techniques for EEG signals (Wang et al., 2015; Salgado Patrón & Barrera, 2016; 

75 Schwarz et al., 2018; Chronopoulou, Baziotis & Potamianos, 2019; Rodrigues, Jutten & 

76 Congedo, 2019). A pre-trained convolution neural networks (CNN) (also known as Transfer 

77 Learning) was investigated to improve the BCI-system usability of a  driving system which 

78 utilises EEG signals (Shalash, 2019). Online datasets were utilised in the research which was 

79 collected in a controlled lab environment through Neuro-scan data acquisition equipment with 30 
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80 effective channels and two reference electrodes. The collected EEG signals were converted into 

81 spectrogram images through the Short Time Fourier Transform (STFT) algorithm. The converted 

82 images were implemented into Alexnet TL model, which was trained via Adam optimiser with 

83 an initial rate of 0.0001. The datasets were divided into two separate datasets which are training 

84 and testing datasets with the ratio of 70:30. The results obtained showed that T3 and FP1 

85 channels could yield reasonably high classification accuracy (CA) of 91% and 90%, respectively. 

86 It is evident from the study that TL facilitates the feature extraction process. 

87

88 The detection of eye blinking from EEG signals was investigated by (Domrös et al., 

89 2013). The intentional eye-blink EEG signals were collected through Bio-Radio device in a 

90 Biomedical Department Laboratory at the Holy Spirit University. In the research, time-domain 

91 features, i.e., maximum amplitude, minimum amplitude and the kurtosis were extracted. The 

92 extracted features were then fed into the Gaussian Radial Basis Function (GRBF) model to 

93 classify the eye blink-EEG based signals accordingly. This pipeline was compared with other 

94 models, namely, Multilayer Perceptron (MLP), Feed Forward Back Propagation, MLP-Cascade 

95 Forward Back Propagation (CFBP) and RBF Binary Classifier. The result showed that GRBF 

96 classifier performed well based on the extracted time-domain features. 

97

98 Rashid et al. studied in the classification of wink based EEG signals. The features of the 

99 EEG signals were extracted through the Fast Fourier Transform (FFT) and sample range 

100 methods (Rashid et al., 2020). The FFT algorithm was utilised to transform the EEG signals into 

101 frequency domain features. The extracted features were implemented into a number of different 

102 classical machine learning classifiers, namely Linear Discriminant Analysis (LDA), Support 

103 Vector Machine (SVM), and k-Nearest Neighbor (kNN). The results showed that LDA 

104 performed better than the other two classifiers with a CA of 83.3% and 80% for train and test 

105 dataset, respectively through the FFT features. Conversely, based on the sample range features, 

106 an identical CA was obtained through both SVM and kNN models, i.e., 98.9% and 96.7% for the 

107 test and train dataset, accordingly. The LDA recorded a lower CA in contrast to the aforesaid 

108 classifiers based on the sample range features; nonetheless, the CA was significantly higher 

109 compared to the FFT feature extraction technique. 

110

111 Therefore, the present study focuses on the implementation of a myriad of pre-trained 

112 CNN algorithm (Transfer Learning models) to extract the features of the wink-based EEG 

113 signals. A conventional machine learning model, namely Random Forest, is implemented along 

114 with the Transfer Learning models to classify the extracted features. It is worth noting that such a 

115 pipeline has yet been investigated with regards to wink-based EEG signals. The performance of 

116 the different Transfer Learning models in feature extraction that will be classified through an 

117 optimised RF classifier shall be appraised. It is anticipated that the suggested pipeline could be 

118 implemented into a BCI assistive-technology and promote a better quality of life for post-stroke 

119 patients. 
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120

121

122 Methodology 

123 The classification of EEG signals consists of four main steps, which are signal collection, pre-

124 processing, feature extraction and classification. This research aims to classify wink-based EEG 

125 signals through Transfer Learning models and fine-tuned RF classifier. A five-channel Emotiv 

126 Insight EEG device was used to collect the wink-based EEG signals (Heunis, 2016). The position 

127 of the channels is placed according to the International 10-20 system, and the channels are placed 

128 at node AF3, AF4, T7, T8 and Pz. 

129

130 The wink-based EEG signals were collected from five healthy subjects aged between 22 

131 till 29 years old. The five subjects consist of three males and two females. The subjects that were 

132 chosen was ascertained not to have any medical problem and have normal vision. Moreover, it is 

133 worth noting that the subjects did not have any history of neurological diseases. A written 

134 informed consent form was recieved from the subjects participated in the present study. The 

135 subjects were told to relax and sit on an ergonomic chair in a circumscribed room which is 

136 located at Faculty of Electrical Engineering Technology, University Malaysia Pahang. These 

137 steps were taken to avoid external signals to be recorded. The ethical approval for this study was 

138 obtained through an institutional research ethics committee provided by Universiti Kebangsaan 

139 Malaysia (FF-2013-327). 

140

141 The subjects were instructed through slide show displayed on LCD. The experiment 

142 paradigm shown in Fig. 1 were used to collect the required signals. The collection starts with the 

143 first five seconds of a resting-state, followed by winking action for the next five second. This 

144 step is continued to obtain six samples of winking signals. Left and Right winking action were 

145 run separately, and both of them were recorded for 60 seconds (one minute).

146

147 Figure 1: The experiment Paradigm for EEG signal acquisition

148

149 Continuous Wavelet Transform (CWT)

150 Continuous Wavelet Transform (CWT) is the representation of the time-frequency domain of a 

151 set of signals collected. CWT is one of the most effective methods used in medical fields which 

152 consists of non-stationary signals such as EEG, electromyography (EMG) or electrocardiogram 

153 (ECG) amongst others. The resolution represented through CWT algorithm has been reported to 

154 advantageous due to the utilisation of the small scale of high frequencies and large scale of low 

155 frequencies (Türk & Özerdem, 2019). Moreover, it has also been reported to provide a better 

156 representation of the arrangement of the frequency domain features as compared to Fourier 

157 Transforms. The mother wavelet that was utilised in this research is the Morlet Wavelet. Morlet 

158 wavelet is the multiplication of the complex exponential and Gaussian window. Morlet wavelet 

159 method is widely used in the medical field, which consists of non-stationary signals (Qassim et 
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160 al., 2012). The Morlet algorithm gives an instinctive link between frequency and time domain to 

161 distinguish the signals acquired via Fourier Transform. 

162

163 Feature Extraction: Transfer Learning (TL)

164 TL models are widely used in computer vision field primarily owing to its ease in CNN model 

165 development, especially omitting the notion of building the model from scratch (as pre-trained 

166 models are used) and hence reduces the model development time (Amanpour & Erfanian, 2013; 

167 Chronopoulou, Baziotis & Potamianos, 2019). The use of TL models is also advantageous in the 

168 bioinformatic related domains as data is often scarce, and it has been demonstrated in the 

169 literature that TL models are able to work with limited dataset. Table 1 illustrates the TL models 

170 and the parameters that were implemented in the present study. It is worth mentioning that the 

171 TL models used in the study are used only for feature extraction where only the convolutional 

172 layers are exploited. In contrast to a full pre-trained CNN model, the fully connected layers 

173 (dense layers) are replaced with a traditional machine learning classifier in the study, which in 

174 this case, the Random Forest classifier is employed.

175

176 Table 1: List of TL models and its respective parameters implemented in this research

177

178

179 Classifier: Random Forest (RF) 

180 Random Forest (RF), also known as Random Decision Forests, is a supervised machine learning 

181 algorithm that evolved through the ensemble of multiple Decision Tree classifiers. It is also 

182 known as one of the many bagging-type ensemble classifiers. The combination of a few decision 

183 trees to mitigates the notion between the variance and bias, which in turn reduces the possibility 

184 of overfitting to transpire. It is worth noting that the RF classifier has been widely used in many 

185 different medical oriented types of research (Cherrat, Alaoui & Bouzahir, 2020; Tabares-Soto et 

186 al., 2020). The RF hyperparameters evaluated in this study are the number of trees 

187 (n_estimators), depth of the trees (max_depth), and the measurement of the splitting quality 

188 (criterion). The hyperparameters of the RF models were tuned via the grid search algorithm 

189 through the five-fold cross-validation technique. Table 2 lists the hyperparameter values of RF 

190 classifiers appraised. A total of 98 RF models were investigated in this research for four different 

191 transfer learning models (conclusively, a total of 392 TL pipelines were evaluated) towards its 

192 efficacy in classifying the wink-based EEG signals. Figure 2 depicts the complete pipeline 

193 developed in this study. The developed pipelines (different TL models with its associated 

194 optimised RF models) was analysed and evaluated using a Python IDE, specifically Spyder 3.7.

195

196

197 Table 2: Hyperparameter of the RF models evaluated 

198

199 Figure 2: The complete TL pipeline
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200

201

202  

203 . 

204

205 Performance Evaluation 

206 The confusion matrix is one of the most straightforward and simplest measures used to determine 

207 model consistency and correctness (Sokolova & Lapalme, 2009; Flach, 2019). The classification 

208 models employed in this study are assessed by means of classification accuracy (CA), precision, 

209 recall, and f1-score. The accuracy is simply the ratio between the number of accurately predicted 

210 observations and the total number of observations. The precision measures the percentage of 

211 correct positive forecasts over the cumulative number of positive forecasts. The recall (often 

212 known as sensitivity) is the number of true positive predictions divided by the sum of true 

213 positives as well as the false negatives (Vijay Anand & Shantha Selvakumari, 2019).  The f1-

214 score discloses the balance between the recall and the precision values.

215

216 Experimental Results and Discussion 

217 The wink-based EEG signals were extracted through the single-channel Emotiv device at the 

218 sampling rate of 128Hz. The digital signals were then converted into scalogram via CWT. The 

219 images were divided into three groups of datasets which are training, validation and test datasets 

220 through a stratified ratio of 60:20:20. The stratification ensures that the datasets are equally 

221 divided amongst the evaluated classes. The images were then fed into the TL models and 

222 classified through optimised RF models. Figure 3 and Figure 4 depicts the raw and scalogram 

223 transformed images of the wink classes. 

224

225 Figure 3: Plot of raw EEG signal (A) Left-Wink (B) Right-wink and (C) no-wink  

226

227 Figure 4: Scalogram of (A) Left Wink (B) Right Wink (C) No Wink

228

229 Figure 5: Classification Accuracy of TL pipelines

230

231 Figure 5 depicts that Inception ResNetV2 TL pipeline demonstrated the best CA amongst 

232 other evaluated pipelines on all train, validate and test datasets. A similar performance is 

233 illustrated by the Inception V3, and MobileNet TL pipelines, in which both achieved a CA of 

234 100% on the training dataset, whilst for the validation and test datasets, a CA of 94% was 

235 observed. Conversely, the Xception TL pipeline performed better than the aforementioned two 

236 pipelines as it yielded a CA of 100% on the test dataset. Therefore, it is evident that the Inception 

237 ResNetV2 transfer learning model coupled with an optimised RF classifier is able to yield 

238 exceptional classification on the different wink-based EEG signals evaluated. The optimised RF 

239 hyperparameters that augur well with the Inception ResNetV2 transfer learning model are 10, 20 
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240 and Gini impurity for the number of trees, depth of trees and criterion (a measure of split 

241 quality), respectively. Table 3 tabulates the performance measure of the testing dataset based on 

242 the Inception ResNetV2 pipeline. Figure 6 illustrates the confusion matrix of the validation 

243 dataset in which 0, 1 and 2 represent the left, right and no wink classes. 

244

245

246 Table 3: Performance Matrix of Inception ResNetV2

247

248 Figure 6: Confusion Matrix of Validation Dataset of Inception ResNetV2

249

250 The efficacy of pre-trained CNN models have been demonstrated in the literature, for 

251 instance, Kant et al. implemented a CWT algorithm to classify motor imagery signals by means 

252 of transfer learning models (Kant et al., 2020). The digital EEG signals were converted into two-

253 dimensional scalogram images that were fed into different pre-trained CNN models such as 

254 AlexNet, VGG16 and VGG19 to recognise the motor imagery signals of the Left- and Right-

255 hand movements. It was shown from the study that the employment of such a technique could 

256 achieve a CA of 97.06%. In a different study, CWT transformation has been utilised along with a 

257 pre-trained CNN model, SqueezeNet to classify sleep stage based on EEG signals (Jadhav et al., 

258 2020). It was demonstrated that the pipeline could yield exceptional CA. It is apparent that 

259 through the conversion of signals via CWT could provide meaningful features to be extracted 

260 through the transfer learning approach, which was also demonstrated through the present study. 

261 It is also worth noting that with regards to the classification of wink-based EEG signals, the 

262 present study has shown that exceptional classification was achieved via the proposed approach 

263 and was shown to be better than that of results reported by Rashid et al. (Rashid et al., 2020).

264

265

266 Conclusion

267 It could be shown from the present investigation that the employment of Transfer Learning is a 

268 rather promising approach in improving the performance of EEG classification for BCI 

269 applications. Different stages of winking were converted into a spectrogram image through 

270 CWT. It has been demonstrated through the study that the Inception ResNetV2 could extract 

271 significant features for the wink-based EEG signals as compared to the other TL models. In 

272 addition, it is also worth noting that the role of hyperparameter tuning could not be simply 

273 overlooked as it could further improve the performance of the evaluated classifier, herein, the RF 

274 for the present investigation. Future works shall evaluate the performance of other forms of 

275 classifiers and its combination with the evaluated TL models on such classification.

276
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Figure 1
The experiment Paradigm for EEG signal acquisition
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Figure 2
The complete TL pipeline
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Figure 3
Plot of raw EEG signal (A) Left-Wink (B) Right-wink and (C) no-wink
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Figure 4
Scalogram of (A) Left Wink (B) Right Wink (C) No Wink
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Figure 5
Classification Accuracy of TL pipelines
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Figure 6
Confusion Matrix of Validation Dataset of Inception ResNetV2
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Table 1(on next page)

List of TL models and its respective parameters implemented in this research
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1 Table 1:

2  List of TL models and its respective parameters implemented in this research

3

No. Transfer Learning Models Flatten Size Input Image Size 

1 Inception V3 8*8*2048 299*299

2 Inception ResNetV2 8*8*1536 299*299

3 Xception  10*10*2048 299*299

4 MobileNet 7*7*1024 224*224

4

5
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Table 2(on next page)

Hyperparameter of the RF models evaluated
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1 Table 2:

2  Hyperparameter of the RF models evaluated

3  

No. Hyperparameters Hyperparameter values

1 Number of Trees 10, 20, 30, 40, 50, 60, 70

2 Depth of Trees 10, 20, 30, 40, 50, 60, 70

3 Criterion Gini and Entropy

4
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Performance matrix of Inception ResNetV2
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1 Table 3: 

2 Performance Matrix of Inception ResNetV2

3

Class
Represented 

Class
Precision Recall F1-score CA

Left Winking 0 1.00 1.00 1.00

Right Winking 1 1.00 1.00 1.00

No Winking 2 1.00 1.00 1.00

1.00

4

5
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