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biomechanical performance implicated as selective factors in the evolution of
morphological structures. A feature common to many comparative studies using 3D FE
simulations is small taxonomic sample sizes. The time-consuming nature of FE model
construction is considered a main limiting factor in taxonomic breadth of comparative FE
analyses. Using a composite FE model dataset, I show that the combination of small
taxonomic sample sizes and comparative FE data in analyses of evolutionary associations
of biomechanical performance to feeding ecology generates artificially elevated
correlations. Such biases introduce false positives into interpretations of clade-level trends.
Considering this potential pitfall, recommendations are provided to consider the ways FE
analyses are best used to address both taxon-specific and clade-level evolutionary
questions.
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9 Abstract

10 In the past 15 years, the finite element (FE) method has become a ubiquitous tool in the 

11 repertoire of evolutionary biologists. The method is used to estimate and compare biomechanical 

12 performance implicated as selective factors in the evolution of morphological structures. A 

13 feature common to many comparative studies using 3D FE simulations is small taxonomic 

14 sample sizes. The time-consuming nature of FE model construction is considered a main limiting 

15 factor in taxonomic breadth of comparative FE analyses. Using a composite FE model dataset, I 

16 show that the combination of small taxonomic sample sizes and comparative FE data in analyses 

17 of evolutionary associations of biomechanical performance to feeding ecology generates 

18 artificially elevated correlations. Such biases introduce false positives into interpretations of 

19 clade-level trends. Considering this potential pitfall, recommendations are provided to consider 

20 the ways FE analyses are best used to address both taxon-specific and clade-level evolutionary 

21 questions.  

22

23

PeerJ reviewing PDF | (2020:12:56771:1:0:NEW 16 Feb 2021)

Manuscript to be reviewed



24 Introduction

25 Structure-function relationships underlie many hypotheses about patterns of 

26 morphological disparity in organisms (Lauder 1981; Lauder and Thomason 1995). Among the 

27 major tools in estimating the functional performance of vertebrate structures in particular is the 

28 use of biomechanical simulations to predict traits like bite force, structural stiffness, mechanical 

29 efficiency, etc. (Richmond et al. 2005; Ross 2005). In the past 15 years, the adaptation of finite 

30 element (FE) modeling, an engineering method for solving load-deformation scenarios using 

31 principles of continuum mechanics, to biological questions has been greatly expanded across the 

32 broad spectrum of organismal study systems. An important feature of FE approaches is the 

33 ability to quantitatively test functional morphological hypotheses, contrasting it with largely 

34 qualitative conclusions and inferences in classic comparative and functional anatomical 

35 approaches A search in the ‘Web of Science’ database returned 768 publications between 2005 

36 and 2020 on using FE models in the study of evolution and biology (Fig 1A). Research using FE 

37 analysis of the vertebrate skeleton covers topics such as inferring locomotory and masticatory 

38 performance in the vertebrate fossil record (Rayfield 2007), morphofunctional evolution in entire 

39 clades (Pierce et al. 2008), to evolutionary optimization of functional morphological attributes 

40 (Polly et al. 2016), and others.

41 Studies using the FE method to test hypotheses about vertebrate structure-function fall 

42 into two major categories: 2D and 3D analyses. 2D FE models are typically derived from 

43 photographs of specimens, whereas 3D FE models are typically derived from computed 

44 tomography (CT) or surface scans. The main trade-off between 2D and 3D approaches is model 

45 sample size versus time investment in building each model (Morales-García et al. 2019). 2D 

46 models are quicker to build and allow for larger taxonomic sample sizes, but the extent of model 
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47 simplification restricts its application to structures whose function can be reasonably 

48 approximated in two dimensions. 3D models can provide a fuller characterization of the 

49 morphology at hand but are much more time-consuming to build. As such, most studies using 3D 

50 FE models examine fewer than 10 taxa (Fig. 1B). 

51 Given the steady increase in research studies employing FE methods to address 

52 comparative biomechanical and evolutionary questions, it is critical for both practitioners of FE 

53 analyses and researchers considering using the FE toolkit to test biomechanical hypotheses to be 

54 able to design studies efficiently using this time-intensive method. To highlight the important 

55 issue of sample size in 3D FE studies of structure-function relationships, here I ask the question: 

56 are time-bottlenecked small-sample 3D FE datasets adequate in reproducing performance-

57 ecology correlations observed in broader taxonomic datasets? Given the already rich literature in 

58 using 3D FE analyses in comparative skull biomechanics research, I take a meta-analysis 

59 approach to addressing this question using mainly published studies. 

60 The study system I use to demonstrate the effect of taxonomic sample size on 

61 performance-ecology relationships is the skull. Although the FE method is applicable to any 

62 morphological system whose geometry and biophysical boundary conditions can be digitized and 

63 parameterized, most studies in vertebrates employing FE modeling in a comparative context 

64 have done so to study skull biomechanical performance (Ross 2005). Nevertheless, the effects of 

65 taxonomic sample size are expected to be shared in part by other study systems. Therefore, the 

66 findings from these analyses are expected to be relevant to researchers in comparative biology, 

67 paleobiology, bioengineering, and biomedical engineering fields that use multi-taxon 

68 comparative FE datasets to test structure-function hypotheses.

69

PeerJ reviewing PDF | (2020:12:56771:1:0:NEW 16 Feb 2021)

Manuscript to be reviewed



70 Survey Methodology

71 I tallied the number of taxa included in published FE studies in general (Fig. 1A) and 

72 specifically of the vertebrate skull from 2005 to 2020 for 3D-model based analyses (Fig. 1B). 

73 Total number of peer-reviewed publications using FE methods were extracted from the Web of 

74 Science database (accessed 22 December 2020) using the key words “finite element” + 

75 “evolution” + bio*. 

76 A second survey of the literature was conducted on FE studies that specifically address 

77 vertebrate skull biomechanics in a comparative context by searches in both Web of Science and 

78 Google Scholar (both accessed 15 December 2020) using key words “finite element” + “skull” + 

79 phylo*. The year of publication was constrained to between 2005 and 2020. The total number of 

80 unique species studied in each surveyed publication was counted. The surveyed publications 

81 were further vetted by removing all studies that used 2D FE models (Fig. 1B). Out of the 28 

82 studies obtained from the skull FE survey (Table S1), the FE model construction methodology 

83 used in each survey publication was noted and a composite FE model dataset was constructed 

84 (see next section).

85

86 Meta-analysis Methodology

87 Based on the surveyed publication dataset, I compiled model results from Prybyla et al. 

88 (2018), Perez-Ramos et al. (2020), as well as three additional, new models that complement 

89 those in the two published studies to assemble a dataset of 3D cranial FE output data (here on 

90 referred to as the ‘full dataset’; Table 1). Data from those studies were chosen because together 

91 they represent the largest sample of FE models in the literature constructed using a single 
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92 protocol, thus reducing confounding factors from differences in FE model construction 

93 methodology and software programs used. The full dataset included published data from FE 

94 models of 24 carnivoran species and new data from 3 species (Aonyx capensis, Hydrictis 

95 maculicollis, and Lutra lutra). The new models were built following Perez Ramos et al.’s (2020) 

96 protocol and summarized below. Sixteen extant species FE models out of 21 taxa from Prybyla 

97 et al. (2018) were included; five taxa from that study were excluded (Ursus arctos and U. 

98 maritimus overlapped with the Perez Ramos et al. study, and Leptarctus primus, Thinocyon 

99 velox, and Oodectes herpestoides were excluded because they represent fossil taxa without 

100 ecological trait data). Likewise, 4 of 12 taxa from Perez Ramos et al. (2020) were excluded 

101 because they represented fossil taxa (U. ingressus, U. spelaeus spelaeus, U. spelaeus eremus, U. 

102 spelaeus ladinicus).

103 The FE model building protocol was identical across all 27 models used in this study 

104 except for the elastic moduli values (20 GPa for models from Prybyla et al., 2018, 18 GPa for 

105 models from Perez Ramos et al., 2020 and this study), which were standardized using a 

106 secondary linear regression analysis. Briefly, the FE model and simulation protocol include 

107 capturing the 3D geometry of each skull specimen using CT scanning (data for the new models 

108 constructed were downloaded from scans uploaded to MorphoSource.org by Tseng et al. 2017). 

109 Three-dimensional skull models were constructed from voxels selected using threshold 

110 segmentation to include all cortical bone in Avizo (Thermo Fisher Scientific, Hillsboro, Oregon, 

111 USA) or Dragonfly (Object Research Systems, Montreal, Quebec, Canada) software. All 

112 remnants of turbinate bones in the nasal cavity were removed from the 3D surface mesh in 

113 Geomagic Wrap (3D systems, Rock Hill, South Carolina), where mesh element aspect ratios are 

114 constrained to a maximum of 10, and all non-anatomical holes in the mesh patched. Solid 
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115 meshes were constructed using 4-noded tetrahedral elements in Strand7 (Strand7 Pty. Ltd, 

116 Sydney, Australia). Input muscle forces were simulated using muscle forces estimates derived 

117 from a modified dry skull method (Thomason 1991) for estimating muscle attachment areas of 

118 the temporalis, masseter, and medial pterygoid muscles. Force vectors mimicking muscle 

119 wrapping over the insertion sites were generated using the BoneLoad MatLab script (Grosse et 

120 al. 2007). 

121 New models generated in this study used elastic moduli of 18 GPa as in Perez Ramos et 

122 al. (2020); models from Prybyla et al. (2018) used the slightly higher 20 GPa as their elastic 

123 moduli. As such, moduli correction was necessary to directly compare the outputs of the 

124 simulations from the different studies. I sampled 9 taxa from the Prybyla et al. (2018) dataset and 

125 reanalyzed the models using elastic moduli of 18 GPa. The resulting deviations were then 

126 correlated using linear regression analyses to obtain correction factors for 20 GPa-based data to 

127 their 18 GPa equivalent values (Figure S1; Table S2). The resulting relationships between 18 

128 GPa and 20 GPa data are adequately described by linear relationships (R2 = 0.99 for all output 

129 values sampled, see next paragraph).

130 Data collected from each species model include total model volume (mm3), total input 

131 muscle force (including temporalis, masseter, and medial pterygoid muscle forces, in Newtons), 

132 mechanical efficiency (bite nodal restraint reaction force/total muscle input force) at the canine 

133 and fourth premolar teeth, respectively, and overall skull strain energy (a measure of work done 

134 to deform the skull during simulated bites, in Joules) in canine bite and fourth premolar bite 

135 scenarios, respectively (Table 1). All FE simulations portrayed unilateral bites using 

136 homogeneous and isotropic material property models, solved by linear static analysis. For a more 

137 detailed explanation of the FE modeling workflow see reviews by Ross (2005) and Rayfield 
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138 (2007). For carnivorans and mammals in general, bite force (the magnitude of reaction forces 

139 that can be generated at the tooth-food interface, often measured in Newtons) and the related 

140 measure of mechanical efficiency (ME; the relative amount of bite force generated per unit of 

141 input muscle force, a unit-less ratio) are important biomechanical traits that broadly correlate 

142 with feeding ecology (Wroe et al. 2005). Strain energy (SE), the amount of work done in 

143 deforming a structure (as in deformation of the skull during biting), is thought to be a variable 

144 that represents how ‘energy efficient’ a biological structure is in converting input force towards 

145 output force rather than towards deforming itself (Dumont et al. 2009). The combination of these 

146 two measures of biomechanical performance was previously found to correlate with omnivory  

147 (gradual decrease in SE with increasing ME from the anterior to the posterior toothrow) and 

148 dietary specialization (presence of noticeable drops in SE in specialized tooth positions as ME 

149 increases)(Tseng and Flynn 2015). These observations were subsequently summarized by Perez 

150 Ramos et al. (2020) as relatively SE-invariant increase of ME from anterior to posterior dentition 

151 in generalists versus the SE-varying changes in ME for dietary specialists adapted to using 

152 specific tooth loci for feeding tasks.    

153 For the reasons outlined above, in this study I focus on ME and SE values of the canine 

154 and fourth premolar tooth loci as biomechanical traits that are expected to correlate with dietary 

155 breadth (range of food items and therefore food mechanical properties consumed) and trophic 

156 level (herbivore and carnivores being more specialized than omnivores). In the extracted dataset, 

157 strain energy values were corrected for model volume and input muscle force area differences 

158 according to the equation provided by Dumont et al. (2009). The first model in the alphabetically 

159 arranged dataset, Ailuropoda melanoleuca, was arbitrarily chosen as the standard model to which 

160 all other model strain energy values are adjusted to. The final set of biomechanical 
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161 characteristics calculated for all 27 taxa in the full dataset included ACME (Adjusted Canine 

162 mechanical efficiency), AP4ME (Adjusted fourth premolar mechanical efficiency), ADJCSE 

163 (adjusted strain energy value in canine bite scenario), and ADJP4SE (Adjusted strain energy 

164 value in fourth premolar bite scenario). These data served as the functional performance 

165 variables used to characterize a given taxon (Table 1).

166 The feeding ecological variables used for correlation to the performance variables include 

167 dietary breadth and trophic level. The definition of the levels in each variable and the coding for 

168 each of the taxon included in the dataset are taken from the PanTHERIA database (Jones et al. 

169 2009) (Table 2). Feeding ecological grouping in this study is characterized by the combination of 

170 these two categories.

171 To formalize the qualitative association between performance variables and feeding 

172 ecological categories employed in many published studies, I used hierarchical clustering to group 

173 the taxa. One dendrogram each was calculated for the FE outputs (performance variables) and 

174 dietary ecological traits (dietary breadth and trophic level). The former, continuous multivariate 

175 dataset was clustered using Ward’s distance measure on an Euclidean distance matrix calculated 

176 from the four FE output variables. The latter, categorical bivariate dataset was clustered also 

177 using Ward’s distance measure, but on a Gower’s distance matrix for discrete variables (Gower 

178 1971).

179 A non-parametric Baker’s Gamma correlation coefficient (Baker 1974) was calculated 

180 from the two resulting cluster dendrograms to establish the degree of association between the 

181 performance variable groupings and dietary ecology groupings of the full dataset. Baker’s 

182 Gamma counts the level (designated by k, the number of clusters) on the dendrogram at which a 

183 given pair of taxa is grouped together in both dendrograms, followed by a Spearman (non-
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184 parametric) correlation coefficient calculation. This index relies only on the topology of the 

185 dendrograms, but not their distance or branch lengths. To assess the influence of branch length 

186 information on the resulting correlation measurement, the analysis was repeated using the 

187 cophenetic correlation coefficient instead of Baker’s Gamma (Sokal and Rohlf 1962). The 95% 

188 confidence interval around the calculated correlation coefficient was estimated using bootstrap 

189 resampling by simulating a sample of 1,000 dendrograms each in the performance and dietary 

190 ecology datasets with randomly assigned tip names from the shared 27-taxon name list. Baker’s 

191 Gamma and cophenetic correlation coefficients were calculated for each pair of the 1,000 

192 simulated performance and ecology dendrograms. A 95% confidence interval was then 

193 calculated from those correlation coefficients.

194 Next, a series of correlation coefficients between performance and ecology dendrograms 

195 were calculated in incrementally smaller sub-datasets of the full dataset of 27 taxa. 1,000 

196 bootstrap samples were generated for each of 24 sets of bootstrap samples, from 26 taxa (1 fewer 

197 taxon than full dataset) to 3 taxa (minimum to polarize pairwise comparisons) per dataset. The 

198 bootstrapped datasets were pulled from the full dataset with replacement. Median, quantile 

199 ranges, mean, and 95% confidence intervals of the mean were calculated for bootstrap replicates 

200 at each resampled dataset size. Statistically significant differences were assessed by visually 

201 inspecting the 95% confidence intervals of each subsampled dataset against the 95% confidence 

202 interval of the full dataset estimated from bootstrap as described in the preceding paragraph. 

203 Lack of overlap of 95% confidence intervals indicates a significant difference at the p=0.05 

204 level.

205 In addition to comparing correlation coefficients between taxon groupings generated 

206 from hierarchical clustering of finite element simulation outputs and ecological categorization, 
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207 respectively, the functional and ecological cluster association to phylogenetic grouping was also 

208 assessed within the same analytical framework. A phylogeny with branch lengths based on 

209 molecular data was generated from timetree.org for the 27 taxa included in the FE and ecological 

210 data comparison (Kumar et al. 2017). Branch lengths (in million years) from the phylogeny were 

211 used in cophenetic correlation analyses. The phylogeny was then treated as a dendrogram with 

212 topology and no branch length information and subjected to correlation analysis using Baker’s 

213 Gamma coefficient against the FE and ecological datasets, respectively.

214 It is important to note that the analyses described above make several assumptions about 

215 the nature of the data: (1) that the FE simulation outcomes are known without error, (2) that the 

216 ecological variables examined are representative of feeding ecology, and that (3) the 

217 phylogenetic topology used is accurate and without error. Extensive literature examining the 

218 issues behind each of these assumptions demonstrates the complexity of each of these issues in 

219 comparative analysis (e.g., Strait et al. 2005; Heath et al. 2008; Jones et al. 2009), but for the 

220 sake of the performance-ecology trait comparison focus of this study, those factors were held 

221 constant. Furthermore, in addition to the two biomechanical outputs (ME and SE) analyzed in 

222 this study, FE simulations produce a plethora of numerical data that can be used to characterize 

223 different aspects of structural performance such as stress and strain distributions and magnitudes 

224 (Rayfield 2007; Bright 2014). A similarly broad array of ecological and life history traits are 

225 available for correlation to biomechanical performance, depending on the research question 

226 asked (Jones et al. 2009). Recognizing the diverse possibilities for applying FE analyses to study 

227 comparative biomechanics, analyses presented herein are intended to highlight the understudied 

228 issue of taxonomic sample size in comparative FE analyses using a specific case study of two 

229 skull biomechanical traits and two feeding ecological traits in carnivoran mammals.  
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230 All data used in the analyses described above are available as supplemental files, 

231 including the full R script for running all cluster and bootstrap analyses.

232

233 Results

234 Baker’s Gamma correlation coefficient between FE-based taxon clusters and feeding 

235 ecology-based taxon clusters in the full data set is 0.0498 (bootstrapped 95% CI: 0.0019 to 

236 0.1260), indicating weak to no association between taxon groupings generated by FE traits 

237 versus ecological traits (Fig. 2A). Of the bootstrapped subsamples, datasets with 12 or more taxa 

238 returned correlation coefficients within the range calculated for the full dataset. Datasets with 11 

239 taxa or fewer exhibit increasingly large correlation coefficients as sample size decreased. All 

240 taxonomic sample sizes at n = 25 or smaller contain at least 1 replicate with correlation 

241 coefficient above 0.25, and all taxonomic sample sizes at 13 or fewer contain replicates with 

242 correlation coefficients of 0.75 or more. 

243 Baker’s Gamma correlation coefficient between FE-based clusters and phylogenetic 

244 grouping in the full dataset is 0.0171 (bootstrapped 95% CI: 0.0033 to 0.2451494), indicating 

245 weak to no association between FE traits and phylogenetic structure (Fig. 2B). Resampled 

246 taxonomic datasets with 7 or more taxa returned correlation coefficient values within the range 

247 observed in the full dataset. Datasets with 6 or fewer taxa exhibited increasingly large correlation 

248 coefficients. Resampled datasets with 22 or fewer taxa contained at least one replicate with 

249 correlation coefficient above 0.25; datasets with 10 or fewer taxa contained at least one replicate 

250 with correlation coefficient value above 0.75.
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251 Baker’s Gamma correlation coefficient between feeding ecological clusters and 

252 phylogenetic grouping in the full dataset is 0.0498 (bootstrapped 95% CI: 0.0015 to 0.1037), 

253 indicating weak to no association between ecological groupings and phylogenetic groupings 

254 (Fig. 2C). Resampled datasets with 12 or more taxa returned correlation coefficient values within 

255 the range observed in the full dataset. Datasets with 17 or fewer taxa contain at least one 

256 replicate with correlation coefficient larger than 0.25; datasets with 8 taxa or fewer contain at 

257 least one replicate with correlation coefficient larger than 0.75.   

258 Cophenetic correlation coefficients that consider branch length information from the 

259 dendrograms returned broadly similar results to Baker’s Gamma correlation coefficient analyses 

260 (Fig. 2D-F). The main differences are found in (1) the FE to phylogenetic structure correlation, 

261 which showed that resampled datasets with 13 taxa and above returned correlations not 

262 significantly different from those estimated in the full dataset (compared to 7 taxa and above 

263 using Baker’s Gamma coefficient), and (2) feeding ecological to phylogenetic structure 

264 correlation, which showed that resampled dataset with 10 taxa and above returned correlations 

265 similar to those in the full dataset (compared to 12 taxa and above using Baker’s Gamma 

266 coefficient).

267

268 Discussion

269 The use of small (<10 taxa) comparative FE model datasets in the majority of published 

270 3D FEA studies of vertebrate skulls likely results in overestimates of the feeding ecological 

271 association of simulated biomechanical traits. Relative to a weak or no correlation “full” dataset 

272 of 27 taxa, resampled datasets containing 11 or fewer taxa exhibit significantly elevated 
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273 correlation coefficient estimates for the relationship between FE value and ecological groupings 

274 (Fig. 2). Small taxonomic datasets also exhibit stronger association with phylogenetic groupings 

275 in both ecological and FE-based clusters, albeit to different extents. Ecological groupings up to 

276 ~10-taxon datasets show significantly higher correlation to phylogenetic groupings, and FE-

277 value based groupings show significantly higher correlation to phylogenetic groupings at 

278 between 5 to 12 taxa or fewer (Fig. 2). Therefore, at small taxonomic sample sizes of 3-5 taxa, 

279 there is relatively high association to phylogenetic structure in the FE data groupings compared 

280 to larger taxonomic samples.

281 The elevated correlation coefficients in smaller taxonomic samples are in part driven by 

282 the prevalence of outliers in the bootstrap replicates. The smaller the taxonomic sample, the 

283 higher the quantity of high correlation coefficient replicates. This observation suggests taxon 

284 sampling choice could have a substantial effect on the resulting presence/absence of significant 

285 FE data to ecological grouping correlations. At the low end of the sampling spectrum, all three-

286 sample datasets are expected to return correlation coefficients of 0.5 or higher, with a coefficient 

287 of 1.0 defining the upper quartile. This suggests that the practice of using a small number of taxa 

288 to perform FE simulations to interpret the overall performance-ecology association of a larger 

289 taxonomic clade runs the risk of finding spurious high correlation results when the underlying 

290 full dataset exhibits weak or no correlation. In other words, the high number of outliers and the 

291 elevated mean correlation coefficients at taxonomic sample sizes smaller than ~11-12 taxa 

292 translate to higher incidences of false positives relative to the full dataset. 

293 Despite the inability for small taxonomic datasets to replicate performance-ecology 

294 correlations and phylogenetic structure of larger datasets, these findings do not render small 

295 taxonomic sample FE studies obsolete. However, the results do highlight the importance of 
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296 ‘calibrating’ the research question at hand to the appropriate taxonomic sample to lessen 

297 potential biases from false positives. Results from small taxonomic sample FE studies could 

298 remain useful if the research question is focused on taxon-specific performance-ecology 

299 comparisons, rather than extrapolation to broader clade level correlations. Nevertheless, the 

300 simultaneous elevated correlation in performance-ecology, performance-phylogeny, and 

301 ecology-phylogeny relationships invites caution in interpreting functional correlation when a 

302 phylogenetic one is equally plausible based on available data.

303 To further assess whether the significant correlation of FE and feeding ecological trait 

304 data with phylogenetic structure represents elevated phylogenetic signal at smaller taxonomic 

305 samples, I conducted post-hoc analyses to estimate phylogenetic signal in the FE and feeding 

306 ecology data. I used a multivariate implementation of Blomberg’s K (Adams 2014) to calculate 

307 phylogenetic signal in FE values in the full dataset as well as a similar bootstrap series of smaller 

308 resampled datasets (Fig. 3A). Results indicate that there is a concomitant increase in K with 

309 decreasing taxonomic sample size, as has been previously observed for simulated datasets 

310 (Münkemüller et al. 2012). Increasing K and increasing FE data-feeding ecology correlation with 

311 smaller taxon samples suggest the presence of confounding ecological and phylogenetic factors.   

312 I also estimated phylogenetic signal in the categorical ecological data using the delta 

313 statistic (Borges et al. 2019). In contrast to the elevated phylogenetic signal in FE data at small 

314 taxon sample sizes, no elevations in phylogenetic signal are observed in either diet breadth or 

315 trophic level categorical data (Fig. 3B-C). However, the delta statistic is known to exhibit low 

316 sensitivity in detecting phylogenetic signal at small taxon sample sizes (< 20)(Borges et al. 

317 2019), so it is unclear whether the feeding ecology-phylogenetic structure correlation (Fig. 2C, 

318 2F) is unrelated to phylogenetic signal or whether phylogenetic signal is undetected by current 
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319 methods. Comparative methods have been shown to be affected by high variance and low power 

320 in estimating phylogenetic signal and other parameters at small taxon samples (Boettiger et al. 

321 2012); the elevated FE data, ecology, and phylogeny correlations in the bootstrapped samples of 

322 the current study (Fig. 2) appear to be similarly affected by uncertainties at small taxon sample 

323 sizes.   

324 Although the bootstrap analysis involves random resampling and it is not possible to 

325 pinpoint which specific taxa or phylogenetic factors produce outsized effects on FE-ecology 

326 correlations at small taxonomic sample sizes, some general recommendations for small-sample 

327 comparative FE studies can still be made. The categorical groupings in the ecological trait data 

328 were converted into a continuous distance framework in the cluster analyses via Gower distance 

329 measures (see methods section). The result is a relatively clumped dendrogram with polytomies 

330 representing ecologically ‘identical’ taxa in the context of the input variables (diet breadth and 

331 trophic level). The overall dataset (n = 27) contains multiple samples in each ecological grouping 

332 or clump, providing more evenly represented samples in each group than is possible in smaller 

333 randomized resampled datasets. As such, a recommended sampling strategy for smaller 

334 taxonomic datasets might be to focus on maximizing the even sampling of taxa representing 

335 unique ecological trait combinations and to avoid asymmetric sampling of some ecologically 

336 similar taxa over others. Such a sampling strategy should reduce spurious high-correlation 

337 outcomes when using distance-based comparison methods to study FE-ecology relationships in 

338 smaller datasets.

339 For comparative analyses using FE data to study broader clade-level associations 

340 between biomechanical and ecological traits, the time-consuming nature of constructing 3D FE 

341 models remains a bottleneck to achieve comparable scope to other data sources such as sequence 

PeerJ reviewing PDF | (2020:12:56771:1:0:NEW 16 Feb 2021)

Manuscript to be reviewed



342 or geometric morphometric shape data. Given the sensitivity of the correlation coefficient 

343 between FE values and ecological categories on choice in taxonomic sampling and sample sizes, 

344 I suggest some rethinking in future comparative FE-based biomechanics research design. Rather 

345 than focusing on collection of comparative FE data in increasingly large samples of taxa, I posit 

346 that most comparative biomechanics research using the FE method would be better served with a 

347 theoretical morphology approach (Polly et al. 2016). 

348 The fusion of morphospace analysis (using methods such as morphometric 

349 morphometrics or other multivariate trait data) and FE analysis has already been demonstrated to 

350 be a fruitful approach to test hypotheses about evolutionary optimality and the relative 

351 importance of multiple selective forces in explaining morphological disparity (Stayton 2009; 

352 Tseng 2013; Dumont et al. 2014; Polly et al. 2016). Theoretical morphological models 

353 constructed at extremes and/or regular intervals over a given morphospace reduces the subjective 

354 nature of taxon selection during FE analyses by summarizing the range of morphological 

355 variation that underlies the subsequent FE simulation outcomes, rather than relying on 

356 taxonomic-specific interpretations that may be more sensitive to outlier and sampling effects. In 

357 this morphospace-driven context, the biomechanical performance context of the taxonomic 

358 dataset at hand is only indirectly dependent on the choice of taxon sampling, assuming 

359 morphospace sampling is representative of the morphological disparity in the clade studied. A 

360 shift to comparative FE analyses based on a morphospace framework leverages the comparative 

361 power of the method, especially when the practice of experimental model validation has yet to 

362 become standard practice to permit the evaluation of absolute magnitudes of FE simulation 

363 outcomes (e.g., Strait et al. 2005; Bright and Rayfield 2011). 

364
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365 Conclusion

366 Time as a limiting factor in applications of 3D FE simulations in comparative 

367 biomechanics research has a direct effect on limiting the taxonomic breadth of biomechanics 

368 research using comparative FE analysis. A consequence of this limitation is the presence of 

369 significant biases in performance-ecology correlation coefficients driven by small taxonomic 

370 sample sizes and outliers. Future advances in comparative biomechanics research using FE 

371 modeling may depend on a bifurcation in the application of this method. On the one hand, small 

372 taxonomic sample studies can remain useful for interpreting taxon-specific biomechanical 

373 adaptations, if carefully designed with consideration of phylogenetic structure, ecological trait 

374 representation among taxa, and preferably integrated with model validation. On the other hand, 

375 research efforts in quantifying clade-level form-function associations could be better served 

376 through theoretical morphological approaches of representing morphological disparity, rather 

377 than building increasingly large FE datasets of taxon-specific values that are more vulnerable to 

378 sampling outlier effects even at larger sample sizes. Continued improvements in model 

379 construction efficiency and accuracy are key to solving the time bottleneck issue in using FE 

380 methods in broad comparative studies. Finite element analysis is a once chic biomechanical 

381 modeling method in comparative biology that has come of age, and continued methodological 

382 and application development should help to build its analytical rigor to be on par with any other 

383 comparative methodology.

384
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481 TABLE 1. Biomechanical attributes from finite element simulations used in bootstrap analyses. 

482 ACME, adjusted canine mechanical efficiency; AP4ME, adjusted premolar four mechanical 

483 efficiency; ADJCSE, adjusted canine strain energy (in Joules); ADJP4SE, adjusted premolar four 

484 strain energy (in Joules).

Genus Species ACME AP4ME ADJCSE ADJP4SE Reference

Ailuropoda melanoleuca 0.1688 0.2453 0.5243 0.4685 Perez Ramos et al., 2020

Ailurus fulgens 0.1664 0.2588 0.5762 0.5442 Prybyla et al., 2018

Aonyx capensis 0.2483 0.3566 0.9297 1.1842 This study

Bassariscus astutus 0.1458 0.2380 0.4134 0.4425 Prybyla et al., 2018

Canis lupus 0.1032 0.1834 0.8375 0.7801 Prybyla et al., 2018

Canis mesomelas 0.1507 0.2454 1.1223 0.9307 Prybyla et al., 2018

Crocuta crocuta 0.1759 0.2894 0.4261 0.4750 Prybyla et al., 2018

Gulo gulo 0.2585 0.3552 0.3664 0.3003 Prybyla et al., 2018

Helarctos malayanus 0.1678 0.2253 0.5731 0.4959 Perez Ramos et al., 2020

Herpestes javanicus 0.1186 0.1885 0.6201 0.5672 Prybyla et al., 2018

Hydrictis maculicollis 0.3042 0.5123 1.1761 2.4438 This study

Lutra lutra 0.2000 0.3122 1.1488 1.1752 This study

Lycaon pictus 0.2056 0.3179 1.2854 1.2611 Prybyla et al., 2018

Melursus ursinus 0.1706 0.2412 0.6626 0.6374 Perez Ramos et al., 2020

Mephitis mephitis 0.1032 0.1397 0.8477 0.8436 Prybyla et al., 2018

Panthera pardus 0.0850 0.1430 0.5437 0.4759 Prybyla et al., 2018

Parahyaena brunnea 0.1724 0.3306 0.5206 0.6353 Prybyla et al., 2018

Potos flavus 0.2637 0.3716 1.8570 1.2252 Prybyla et al., 2018

Procyon lotor 0.1162 0.1634 0.8562 0.7668 Prybyla et al., 2018

Spilogale putorius 0.1059 0.1491 0.2593 0.2534 Prybyla et al., 2018

Taxidea taxus 0.3404 0.5395 0.5622 0.4336 Prybyla et al., 2018

Tremarctos ornatus 0.1423 0.1914 0.4451 0.4271 Perez Ramos et al., 2020

Urocyon cinereoargenteus 0.1395 0.2243 1.0640 0.9317 Prybyla et al., 2018

Ursus americanus 0.1422 0.2015 0.5321 0.6297 Perez Ramos et al., 2020

Ursus arctos 0.1647 0.1824 0.5123 0.4940 Perez Ramos et al., 2020

Ursus maritimus 0.1248 0.1868 0.4922 0.5513 Perez Ramos et al., 2020

Ursus thibetanus 0.1429 0.2038 0.5227 0.4759 Perez Ramos et al., 2020

485
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487 TABLE 2. Feeding ecological variable definitions from the PanTHERIA database (Jones et al. 

488 2009).

Ecological 
Variable Definition (from PanTHERIA database) Value Range

Diet Breadth

"Number of dietary categories eaten by each 
species. Categories were defined as 
vertebrate, invertebrate, fruit, 
flowers/nectar/pollen, leaves/branches/bark, 
seeds, grass and roots/tubers."

1 (dietary specialist) to 6 (dietary 
generalist)

Trophic Level

"Trophic level of each species: (1) herbivore 
(not vertebrate and/or invertebrate), (2) 
omnivore (vertebrate and/or invertebrate plus 
any of the other categories) and (3) carnivore 
(vertebrate and/or invertebrate only.

(1) herbivore (2) omnivore (3) carnivore 

489

490
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491 FIGURE CAPTIONS

492 FIGURE 1. Histograms of publications on finite element analysis from 2005-2020. A. Total 

493 number of publications from each year in the Web of Science database (searched 22 December 

494 2020) using the key words “finite element” + “evolution” + bio*. B. Number of taxa included in 

495 each publication on vertebrate skull biomechanics listed in Web of Science (searched 15 

496 December 2020) using key words “finite element” + “skull” + phylo*. 

497 FIGURE 2. Correlation coefficients calculated in bootstrap analyses of subsampled datasets in A. 

498 FE data versus feeding ecology using Baker’s Gamma, B. FE data versus phylogeny using 

499 Baker’s Gamma, C. Feeding ecology versus phylogeny using Baker’s Gamma, D. FE data versus 

500 feeding ecology using cophenetic correlation, E. FE data versus phylogeny using cophenetic 

501 correlation, F. Feeding ecology versus phylogeny using cophenetic correlation. Red solid line 

502 indicates correlated coefficient value in the full dataset, dotted red lines represent 95% 

503 confidence intervals. Blue bars represent 95% confidence intervals of mean correlation 

504 coefficient values at each taxonomic sample size. Boxplots show median values and interquartile 

505 ranges. Asterisks indicate sample size above which subsample and full dataset produce similar 

506 correlation coefficient values on average.

507 Figure 3. Phylogenetic signal in bootstrap analyses of subsampled datasets in A. FE data, B. Diet 

508 breadth data, and C. Trophic level data. Red solid line indicates correlated coefficient value in 

509 the full dataset, dotted red lines represent 95% confidence intervals. Blue bars represent 95% 

510 confidence intervals of mean correlation coefficient values at each taxonomic sample size. 

511 Boxplots show median values and interquartile ranges. 

512
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513 SUPPLEMENTAL DATA FILES

514 TABLE S1. Finite element analysis literature meta-analysis results.

515 TABLE S2. Elastic moduli sensitivity analysis results.

516 TABLE S3. Raw versus moduli standardized results.

517 FIGURE S1. Linear regression models for the relationship between finite element results with 18 

518 and 20 GPa elastic moduli values. A. Mechanical efficiency values, B. Strain energy values.

519 File: Tseng_PeerJ_FEA_R_script_revised.R

520 File: Tseng_PeerJ_FE_Dataset.csv

521 File: Tseng_PeerJ_Eco_Dataset.csv

522 File: Tseng_PeerJ_timetree.nwk

523
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Figure 1
Histograms of publications using FE analysis from 2005-2020

A. Total number of publications from each year in the Web of Science database (searched 22
December 2020) using the key words “finite element” + “evolution” + bio*. B. Number of
taxa included in each publication on vertebrate skull biomechanics listed in Web of Science
(searched 15 December 2020) using key words “finite element” + “skull” + phylo*.

PeerJ reviewing PDF | (2020:12:56771:1:0:NEW 16 Feb 2021)

Manuscript to be reviewed



PeerJ reviewing PDF | (2020:12:56771:1:0:NEW 16 Feb 2021)

Manuscript to be reviewed



Figure 2
Correlation coefficients calculated in bootstrap analyses of subsampled datasets.

A. FE data versus feeding ecology using Baker’s Gamma, B. FE data versus phylogeny using
Baker’s Gamma, C. Feeding ecology versus phylogeny using Baker’s Gamma, D. FE data
versus feeding ecology using cophenetic correlation, E. FE data versus phylogeny using
cophenetic correlation, F. Feeding ecology versus phylogeny using cophenetic correlation.
Red solid line indicates correlated coefficient value in the full dataset, dotted red lines
represent 95% confidence intervals. Blue bars represent 95% confidence intervals of mean
correlation coefficient values at each taxonomic sample size. Boxplots show median values
and interquartile ranges. Asterisks indicate sample size above which subsample and full
dataset produce similar correlation coefficient values on average.
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Figure 3
Phylogenetic signal in bootstrap analyses of subsampled datasets

A. FE data, B. Diet breadth data, and C. Trophic level data. Red solid line indicates correlated
coefficient value in the full dataset, dotted red lines represent 95% confidence intervals. Blue
bars represent 95% confidence intervals of mean correlation coefficient values at each
taxonomic sample size. Boxplots show median values and interquartile ranges.
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Table 1(on next page)

Biomechanical attributes from finite element simulations used in bootstrap analyses

ACME, adjusted canine mechanical efficiency; AP4ME, adjusted premolar four mechanical
efficiency; ADJCSE, adjusted canine strain energy (in Joules); ADJP4SE, adjusted premolar four
strain energy (in Joules).

PeerJ reviewing PDF | (2020:12:56771:1:0:NEW 16 Feb 2021)

Manuscript to be reviewed



Genus Species ACME AP4ME ADJCSE ADJP4SE Reference

Ailuropoda melanoleuca 0.1688 0.2453 0.5243 0.4685 Perez Ramos et al., 2020

Ailurus fulgens 0.1664 0.2588 0.5762 0.5442 Prybyla et al., 2018

Aonyx capensis 0.2483 0.3566 0.9297 1.1842 This study

Bassariscus astutus 0.1458 0.2380 0.4134 0.4425 Prybyla et al., 2018

Canis lupus 0.1032 0.1834 0.8375 0.7801 Prybyla et al., 2018

Canis mesomelas 0.1507 0.2454 1.1223 0.9307 Prybyla et al., 2018

Crocuta crocuta 0.1759 0.2894 0.4261 0.4750 Prybyla et al., 2018

Gulo gulo 0.2585 0.3552 0.3664 0.3003 Prybyla et al., 2018

Helarctos malayanus 0.1678 0.2253 0.5731 0.4959 Perez Ramos et al., 2020

Herpestes javanicus 0.1186 0.1885 0.6201 0.5672 Prybyla et al., 2018

Hydrictis maculicollis 0.3042 0.5123 1.1761 2.4438 This study

Lutra lutra 0.2000 0.3122 1.1488 1.1752 This study

Lycaon pictus 0.2056 0.3179 1.2854 1.2611 Prybyla et al., 2018

Melursus ursinus 0.1706 0.2412 0.6626 0.6374 Perez Ramos et al., 2020

Mephitis mephitis 0.1032 0.1397 0.8477 0.8436 Prybyla et al., 2018

Panthera pardus 0.0850 0.1430 0.5437 0.4759 Prybyla et al., 2018

Parahyaena brunnea 0.1724 0.3306 0.5206 0.6353 Prybyla et al., 2018

Potos flavus 0.2637 0.3716 1.8570 1.2252 Prybyla et al., 2018

Procyon lotor 0.1162 0.1634 0.8562 0.7668 Prybyla et al., 2018

Spilogale putorius 0.1059 0.1491 0.2593 0.2534 Prybyla et al., 2018

Taxidea taxus 0.3404 0.5395 0.5622 0.4336 Prybyla et al., 2018

Tremarctos ornatus 0.1423 0.1914 0.4451 0.4271 Perez Ramos et al., 2020

Urocyon cinereoargenteus 0.1395 0.2243 1.0640 0.9317 Prybyla et al., 2018

Ursus americanus 0.1422 0.2015 0.5321 0.6297 Perez Ramos et al., 2020

Ursus arctos 0.1647 0.1824 0.5123 0.4940 Perez Ramos et al., 2020

Ursus maritimus 0.1248 0.1868 0.4922 0.5513 Perez Ramos et al., 2020

Ursus thibetanus 0.1429 0.2038 0.5227 0.4759 Perez Ramos et al., 2020
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Table 2(on next page)

Feeding ecological variable definitions from the PanTHERIA database (Jones et al. 2009)
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Ecological 
Variable Definition (from PanTHERIA database) Value Range

Diet Breadth

"Number of dietary categories eaten by each 
species. Categories were defined as 
vertebrate, invertebrate, fruit, 
flowers/nectar/pollen, leaves/branches/bark, 
seeds, grass and roots/tubers."

1 (dietary specialist) to 6 (dietary 
generalist)

Trophic Level

"Trophic level of each species: (1) herbivore 
(not vertebrate and/or invertebrate), (2) 
omnivore (vertebrate and/or invertebrate plus 
any of the other categories) and (3) carnivore 
(vertebrate and/or invertebrate only.

(1) herbivore (2) omnivore (3) carnivore 
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