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Understanding seasonal variation in the distribution and movement patterns of migratory
species is essential to their monitoring and conservation. While there are many species of
migratory bats little is known about their seasonal movements in North America. This is
important because the bat fatalities from wind energy turbines are significant and may
fluctuate seasonally. Here we describe accurate seasonally resolved distributions for the
three species that are most impacted by wind farms (Lasiurus borealis [eastern red bat], L.
cinereus [hoary bat], and Lasionycteris noctivagans [silver-haired bat]) that were used to
infer migratory pathways. To accomplish this, we used 2880 occurrence points collected
from the Global Biodiversity Information Facility over five decades in North America to
model species distributions on a seasonal basis and used an ensemble approach for
modeling distributions. The results suggest that all three species exhibit variation in
distributions from north to south depending on season, with each species showing
potential migratory pathways during the fall migration that follow linear features. Finally,
we describe proposed migratory pathways for these three species that can be used to
identify stop-over sites, assessing small-scale migration, and highlight areas that should be
prioritized to reduce the effects of wind farm mortality.
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9 Abstract

10 Understanding seasonal variation in the distribution and movement patterns of migratory species 

11 is essential to their monitoring and conservation. While there are many species of migratory bats 

12 little is known about their seasonal movements in North America. This is important because the 

13 bat fatalities from wind energy turbines are significant and may fluctuate seasonally. Here we 

14 describe accurate seasonally resolved distributions for the three species that are most impacted 

15 by wind farms (Lasiurus borealis [eastern red bat], L. cinereus [hoary bat], and Lasionycteris 

16 noctivagans [silver-haired bat]) that were used to infer migratory pathways. To accomplish this, 

17 we used 2880 occurrence points collected from the Global Biodiversity Information Facility over 

18 five decades in North America to model species distributions on a seasonal basis and used an 

19 ensemble approach for modeling distributions. The results suggest that all three species exhibit 

20 variation in distributions from north to south depending on season, with each species showing 

21 potential migratory pathways during the fall migration that follow linear features.  Finally, we 

22 describe proposed migratory pathways for these three species that can be used to identify stop-

23 over sites, assessing small-scale migration, and highlight areas that should be prioritized to 

24 reduce the effects of wind farm mortality.

25
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29 Introduction

30 Conservation and management of migratory animals requires knowledge about their seasonal 

31 movements across space and time (Webster et al. 2002). In a wide variety of taxa, species 

32 migrate when resources vary seasonally (Shaw & Couzin 2013) or temperature variation results 

33 in thermal stress (Fleming & Eby 2003). Due to small body sizes it is difficult to track long 

34 distance movements of many taxa such as species of bats, birds, and insects reducing our 

35 understanding of their migratory behavior. While some progress has been made using light-level 

36 geolocators (Åkesson et al. 2012) and various biomarkers (e.g. Hobson & Wassner 2018), these 

37 methods have limitations such as requiring recapture and low precision, respectively and as a 

38 result are limited in their impact. This is particularly true for bats, small-bodied nocturnal 

39 mammals capable of true flight.

40 Although only 12 of 500 Vespertilionid bats undertake long-distance migration, 

41 understanding their migration is vital to the conservation of these species (Fleming & Eby 2003; 

42 Simmons & Cirranello 2020; Welbergen et al. 2020). By understanding migration of these 

43 species we can better inform the pressures an individual will face during migration or at home 

44 ranges during non-migratory time periods. However, we currently know little about the long-

45 distance migration of bats in North America; for most species all that is known is approximate 

46 direction (North/South), time of year, a few environmental variables, and some rough estimates 

47 of distances travelled (Fleming & Eby 2003; Pettit & O’Keefe 2019). While the information is 

48 lacking for North America, more is known from Europe and other regions. Previous studies in 

49 bats have shown repeated and partial migration (Lehnert et al. 2018), and that bats showed site 

50 fidelity at stop-over sites during migration (Giavi et al. 2014). In addition, others have suggested 

51 the tracking of linear features for bat migration (e.g. Voigt et al. 2016; Ahlén et al. 2009), 
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52 although others have challenged this aspect of migration (Krauel et al. 2018). Human activities 

53 have the potential to disrupt bat migration via mechanisms such as interfering with magnetic 

54 navigation (Voigt et al. 2017), increasing light pollution (Lacoeuilhe et al. 2014), developing 

55 wind farms along migration corridors (Hayes, Cryan, & Wunder 2015), or reducing stop-over 

56 sites and food availability through deforestation and habitat destruction. To mitigate these 

57 effects, a better understanding of migration in bats is needed.

58 Latitudinal migratory bats are particularly vulnerable to these effects as compared to 

59 other species of bats because they roost in trees which provide less protection from seasonal 

60 changes through increased exposure to the elements, likely influencing the tendency of certain 

61 species to migrate longer distances (>1,000 km) between summer and winter habitats (Hayes, 

62 Cryan, & Wunder 2015). A few of these species such as Lasiurus borealis (Eastern Red bat), L. 

63 cinereus (Hoary bat), and Lasionycteris noctivagans (Silver-haired bat) have been a focus of 

64 understanding these behaviors in North America due to their high mortality at wind farms, with 

65 some estimates predicting a 90% species population decline within 50 years due to wind farm 

66 interactions (Frick et al. 2017). In terms of impact, bats are the most common animal found dead 

67 beneath wind turbines in North America (Kunz et al. 2007) with the majority (~80%) of bats 

68 consisting of just the three species of latitudinal migratory bats listed above (Arnett & Baerwald 

69 2013). Most of the fatalities for these species occur during a period of time coinciding with 

70 autumn migration (Kunz et al. 2007), but data concretely linking the act of migration and 

71 mortality is lacking. Overall, a more precise delineation of possible migratory corridors and how 

72 these influence wind farm interactions could help to minimize impacts of wind facilities on these 

73 species.
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74 One reason for why long-distance migratory pathways of migratory bats are poorly 

75 known is the lack of data on spatial locations through time, particularly in comparison to better-

76 studied migratory species such as birds. In particular, observational data on birds can come from 

77 a variety of Citizen Science initiatives such as the Breeding Bird and Christmas Bird Surveys 

78 and eBird (National Audubon Society 2010; Sullivan et al. 2009) whereas no such sources of 

79 information are available for bats. The difference in data quantity is large. For example, a 

80 common migratory bird, the yellow warbler (Setophaga petechia) has 2.39 million occurrences 

81 the Global Biodiversity Information Facility (GBIF; checked 11 Dec 2019) whereas the entire 

82 family of Vespertilionidae bats consisting of >400 species have only 1.49 million occurrences 

83 recorded. This is largely due to the nocturnal behavior of bats which makes them more difficult 

84 to observe and identify, and difficulty associated with capturing them. While efforts are 

85 happening to change this trend, it has not caught up to the scale of more commonly known taxa. 

86 All of this has led to a lack of broad scale data on bat migration.

87 One approach to better understand seasonal distributions and identify migratory corridors 

88 is to generate seasonally explicit species distribution models (SDMs; Fink et al. 2010, Hayes, 

89 Cryan, & Wunder 2015; Smeraldo et al. 2018) and use these to infer movement patterns. This 

90 approach has been successful in other migratory species, such as birds (e.g. Reynolds et al. 

91 2017). While other studies have attempted to explore this approach with these species (see 

92 Findley & Jones 1964; Cryan 2003; Hayes, Cryan, & Wunder 2015), with the advent of the 

93 Worldclim 2.0 database there are now more data sets available that will allow better seasonal 

94 resolution than has been previously possible. As a result, monthly models can be generated that 

95 provide information more explicit seasonal variation to be visualized, while allowing them to be 

96 combined to allow for migration modeling during various seasons or times or year. In addition, 
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97 the use of monthly models allows for possible variation and adapting the models as we learn 

98 more about the timing of bat migration in North America.

99 Our objective was to identify possible migratory corridors utilized by migratory bat 

100 species (L. borealis, L. cinereus, and L. noctivagans) by modelling their monthly distributions 

101 using SDMs. The models generated in this study shed light on the seasonal dynamics for these 

102 three species, and highlight areas of interest for further study of migratory corridors that could be 

103 used to investigate stop-over sites, small scale migration, and be used as a starting point for 

104 designing methods to mitigate wind farm mortality.

105 Methods

106 Occurrence data from GBIF

107 Figure 1 shows an overview of the steps involved in data collection and analysis; more detailed 

108 methods are described on Supplemental Material. To begin, all available occurrence data were 

109 downloaded for L. borealis, L. cinereus, and L. noctivagans through the GBIF data portal 

110 (http://www.gbif.org) on 11 March 2019 using only ‘Preserved Specimens’, ‘Human 

111 Observations’, and ‘Material Sample’ keywords for data from the past 50 years 

112 (https://doi.org/10.15468/dl.dpiwzi, https://doi.org/10.15468/dl.irfol0, and 

113 https://doi.org/10.15468/dl.viiyt5, respectively). This 50-year period was selected as it allows for 

114 more confidence in the call of a species and its locality. Older records are more likely to be 

115 unreliable and it’s possible that species are now extirpated from regions they once occupied. All 

116 downloaded records were then screened using several filters (described below) as recommended 

117 by others (Feeley & Silman 2011; Carstens et al. 2018). Once data sets were filtered using these 

118 criteria, we corrected for over sampling within a 1o region following guidelines given by 
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119 Hijmans and Elith (2017). In brief, we created a grid of 1o resolution and subsampled our 

120 occurrence data to one occurrence per grid cell. This was done to reduce the possibility of 

121 sampling bias in our data. 

122 Predictor environmental variables

123 WorldClim version 2 monthly climatic data were used at 2.5-minute resolution (Fick & Hijmans 

124 2017) for our species distribution models and included the following variables: precipitation, 

125 solar radiation, average temperature, maximum temperature, minimum temperature, vapor 

126 pressure, and wind speed (downloaded on 03 June 2019 from worldclim.org). Additionally, 

127 elevation maps (Tachikawa et al. 2011; 11 March 2019), and the human influence index 

128 (CIESIN, 2005; 11 March 2019) for North America were also downloaded as Jung and Threlfall 

129 (2016) showed a negative response to urbanization in the Americas in insectivorous bats in the 

130 family Vespertilionidae. Human influence was determined by combining population density, 

131 human land use and infrastructure, and human access (WCS, 2005). Following Hayes et al. 

132 (2015), we also included MODIS Normalized Difference Vegetative Index (Didan et al. 2015) 

133 and Global Tree Coverage 2010 (Hansen et al. 2013) as metrics of seasonality and leaf growth, 

134 which could impact prey abundance, and be a metric of available roost sites in trees, downloaded 

135 on 04 June 2019 and 05 June 2019, respectively. Prior to final selection of predictor variables, 

136 correlations between each possible pair of predictor variables was determined and one variable 

137 from each pair that was strongly correlated with the other was removed (r > 0.8; Mateo et al. 

138 2013). Any removal of a variable was determined based on biological relevance and previous 

139 uses in literature.

140 Species distribution modeling
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141 Species distribution models were generated for each species using five different methods: four 

142 specific model algorithms and an ensemble approach (see below). Specific algorithms included: 

143 generalized linear model (GLM), BIOCLIM model (BC), random forest (RF), and maximum 

144 entropy (MaxEnt; Phillips, Dudik, & Schapire 2017). These four approaches, while good 

145 predictors in their own right, can be made more effective through an ensemble method. This 

146 approach accounts for the problems of each model and can allow for better performing models 

147 (Araújo & New, 2006; Marmion et al. 2009) and is becoming more common (Razgour et al. 

148 2016). Due to this and preliminary results, we used the ensemble models for all analyses. 

149 All SDM analyses were carried out in R using the packages “randomForest” (Liaw & 

150 Wiener 2018), “raster” (Hijmans et al., 2019), “rgeos” (Bivand et al. 2019), “maptools” (Bivand 

151 et al. 2019), “dismo” (Hijmans et al.  2017), “sp” (Pebesma, Bivand, & Pebesm, 2012), 

152 “ecospat” (Di Cola et al. 2016), and “rJava” (Urbanek 2019). We created 1000 pseudo absence 

153 points for each month from random points in the background layers and partitioned the model 

154 into testing (80%) and training data (20%) using the “kfold” function. 

155 Each model was then assessed using: 1) Area under the ROC (receiver operating 

156 characteristic) curve (AUC) and 2) True Skill Statistic (TSS). These values were then used to 

157 weigh each layer and were then combined into a single comprehensive SDM. Following 

158 generation of our ensemble models, they were assessed using the same AUC and TSS metrics as 

159 outlined above and data points used for all other models for comparison to determine which 

160 model to use for further analysis. These layers were used to predict migratory pathways.

161 The importance of individual variables was assessed using different methods for each 

162 model. For RF we used the ‘importance’ function in the “randomForest” R package to measure 

163 the importance of a variable in a given model. With MaxEnt, variable importance was assessed 
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164 using ‘var.importance’ function in “ENMeval” to determine the importance of each variable 

165 (Muscarella et al., 2014). For the GLM model, we used the ‘varImp’ function present in “caret” 

166 (Kuhn et al., 2020).

167 Migratory pathways

168 To identify migratory pathways using SDMs we used three complementary methods: circuit 

169 theory (McRae & Beier 2007; Shah & McRae 2008), 95th percentile suitability (Poor et al. 2012), 

170 and least cost path analyses (LCP; Howey 2011). Since each of these methods have advantages 

171 and disadvantages, results from these three methods were compared to generate a consensus 

172 delineation of possible corridors (Bond et al. 2017; Marrotte & Bowman 2017). While some 

173 authors have argued for selecting the single best hypothesized approach (Marrotte & Bowman 

174 2017), as we do not know if these species follow linear features as has been observed in some 

175 species (Ahlén et al. 2009) or exhibit more erratic movements, we could not confidently select a 

176 single approach. 

177 For circuit theory, the protocol of Burke et al. (2019) was followed. In brief, we 

178 aggregated our winter month occurrences (December – February) into a single dataset and did 

179 the same for summer months (June-July), using Hayes et al., (2015) to determine the appropriate 

180 months for each season. As SDMs can be interpreted as conductance maps, we used an average 

181 of both spring and fall months (March, April, May; and August, September, October, 

182 respectively) to assess potential corridors between winter and summer occurrences. These time 

183 periods are based on previously published distributions of occurrences (Cryan 2003), previous 

184 SDM modeling (Hayes, Cryan, & Wunder 2015), wind farm fatality data (Arnett et al. 2008), 

185 radio telemetry (Walters et al. 2006), and acoustic data (Muthersbaugh et al. 2019). Using 

186 Circuitscape (Shah & McRae 2008), we set our start (“source”) and end (“ground”) points based 
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187 on the hypothesized direction of migration. To identify patterns of spring migration, we set our 

188 start as winter occurrences and end as summer points, with the Spring SDMs as the conductance 

189 raster; and summer as start and winter as end with Fall SDMs as the fall migration conductance 

190 raster; this was repeated for each species.

191 To use least cost path analysis to predict migratory pathways we used the R function 

192 ‘shortestPath’ implemented in ‘gdistance’ (Van Etten 2017). The analysis was done iteratively 

193 between all points previously designated as “Winter” and “Summer” points for Circuitscape, and 

194 Spring/Fall conductance surfaces for cost determination.  As single pathways are not informative 

195 for species-wide migratory pathways, we combined each least cost path to create a density of 

196 pathways. A high density of overlapping paths was used to identify a migratory pathway. 

197 Additionally, while we are unable to infer if a proposed path is true, we used Moran’s I (Moran 

198 1950) and Geary’s C (Geary 1954) to quantify if these proposed pathways are positively 

199 clustered, as would be expected in a migratory corridor. We also quantified the distance traveled 

200 compared to straight-line distance to determine if the proposed pathways would be biologically 

201 relevant (i.e. if not following straight line, other factors influence where bats migrate through).

202 Next, binary rasters identifying potential migratory pathways using the 95th percentile 

203 approach was generated to identify areas where bats are more likely to be concentrated compared 

204 to background (Poor et al. 2012). This was to identify areas where bats suitability is higher and 

205 therefore a potential migratory pathway. Finally, overlaps between Circuitscape, least cost path, 

206 and 95th percentile approaches were identified to highlight locations where they agreed and those 

207 were assessed to be potential migratory pathways.

208 To ensure we are tracking migration and not simply sampling bias, a comparison between 

209 the results for migratory pathways above and those from two non-long-distance migratory 
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210 species (Myotis lucifugus and Eptesicus fuscus) following the same methods above was carried 

211 out. If the pathways are similar to those from these two species it is possible that we are tracking 

212 the ability to capture bats during the winter instead of actual movement. On the other hand, if 

213 pathways are different, then it is more likely that we are identifying true pathways. Occurrence 

214 data for these additional species were collected from GBIF on 31 January 2020 

215 (https://doi.org/10.15468/dl.fphagx) and filtered the same way as previous species, followed by 

216 SDM generation and pathway analysis following the same steps and procedures used for the 

217 three migratory species.

218 Results

219 GBIF Occurrence Data

220 A total of 20,697 occurrences were downloaded from the GBIF database: 8,362 for L. borealis, 

221 7,649 for L. cinereus, and 4,686 for L. noctivagans. After filtering, there were 10,743 data points 

222 remaining: 4,380 for L. borealis, 3,736 for L. cinereus, and 2,627 for L. noctivagans. Finally, 

223 after accounting for sampling bias there were 1,129 data points for L. borealis, 917 for L. 

224 cinereus, and 834 for L. noctivagans. For each month numbers of data points ranged between 21 

225 and 205 (Table 1). All months were above the minimum of 13 observations suggested by van 

226 Proosdij et al. (2016) (based on simulated data) as necessary for SDM analyses for wide ranging 

227 species. Further, only December for two species had occurrences below a higher secondary the 

228 minimum threshold of 25 data points (per van Proosdij et al. 2016). SDM analyses were 

229 conducted with each subset of data using each of the 5 modeling approaches: GLM, BC, RF, 

230 MaxEnt, and ensemble, for a total of 60 model runs for each species. While we acknowledge the 

231 presence of other datasets (see NABat [https://www.nabatmonitoring.org/] and/or American 

232 Wind/Wildlife Institute [https://awwi.org/]), we found that we had sufficient data available via 
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233 GBIF for all months given that  we had over 25 occurrences for 11 months, and the only month 

234 below this threshold is also deficient in other datasets. Further these other datasets are not 

235 comprehensive across North American for all months and/or are not readily available to the 

236 public.

237 Predictor variables

238 Following removal of variables that were highly correlated (r>0.8), eight variables were retained: 

239 elevation, forest coverage, NDVI, precipitation, solar radiation, average temperature, vapor 

240 pressure and wind speed. The variables that were removed were minimum and maximum 

241 temperature which were highly correlated with average temperature (r=0.98 and 0.99, 

242 respectively). Average temperature was selected due to the ability of bats to regulate their body 

243 temperature and energy expenditure through torpor (Baloun & Guglielmo 2019). While relative 

244 importance of variables fluctuated between the four original models implemented (GLM, 

245 MaxEnt, RF, and BC), in general, average temperature, solar radiation, and vapor pressure were 

246 the most important variables (Table 2; specific weights Table S1). In contrast, NDVI, percent 

247 forest, wind, and precipitation were consistently the least important variables.

248 Species distribution models

249 AUC scores range from 0.50 to 0.99, while TSS values range from 0.44 to 0.95 across all 5 types 

250 of models. When evaluated by both AUC and TSS, the consistently best performing species 

251 distribution model was the TSS weighted ensemble model (Figure S1), with this model having a 

252 minimum AUC of 0.94 and TSS of 0.78 (Table S2), indicating a high predictive performance 

253 (e.g. Smeraldo et al., 2018).  With the exception of the model for L. borealis for July, our TSS 

254 weighted ensemble model was always determined to be the best model by both AUC and TSS. 
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255 As a result of the ensemble models consistently high performance, it was used for all subsequent 

256 analyses. We now describe the results for each of the three species. 

257 While we did not explicitly explore the seasonal variations present in each species 

258 generated SDM’s, they are presented in Figure 2 (each species detailed in Figure S2-4). In short, 

259 based on wind turbine mortality and previous studies, we observe expected trends (e.g. Baerwald 

260 & Barclay 2011; Johnson et al. 2011; Hayes, Cryan, & Wunder 2015). For L. borealis and L. 

261 cinereus we observe concentration of habitat suitability in the southern portions of their range 

262 during winter months with a northward movement during the summer into early fall. This is 

263 followed by a contraction again to the south. On the other hand, L. noctivagans does not exhibit 

264 this same pattern as it has suitable habitat further north during the winter, and while expanding 

265 northward it doesn’t appear to do so to the same extend of the other two species.

266 Potential migratory pathways

267 Using three methods (Circuitscape, LCP, and 95th percentile), we find potential migratory 

268 pathways for each species that vary between the Spring and Fall seasons (Figure 3; Circuitscape 

269 maps are shown in Figure S5). In terms of spring migration patterns, L. borealis shows highest 

270 density of LCP along the Eastern coast of the US and near the Mississippi River suggesting an 

271 avoidance of the Appalachian Mountains and using coasts and rivers as guidance during 

272 migration (Figure 3). This pattern is also present in the 95th percentile maps. For L. cinereus, 

273 higher LCP densities occur along Western Mexico into the Southern US, after which the higher 

274 probability pathways lie on either side of the Rocky Mountains pattern and along the Atlantic 

275 coast suggesting a lack of resolved pathway during this time period (Figure 3). This is also 

276 supported by the 95th percentile map showing higher suitability scores being present in both 

277 these regions before the paths would extend further north. Finally, L. noctivagans shows two 
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278 different patterns: LCP maps suggest movement from South to North in the Western US along 

279 the Pacific coast and along the western edge of the Rocky Mountains (Figure 3). In the Eastern 

280 U.S. there appears to be more of an East/West movement during which individuals would split 

281 off to move North or South, likely indicating a partial or incomplete migration in this species. 

282 For each of these species we see significant positive clustering in our pathways when using both 

283 Moran’s I and Geary’s C (Table 3). We can also observe that these potential pathways are 

284 significantly longer than straight distance by hundreds of kilometers meaning these pathways 

285 would be biologically important.

286 In terms of fall patterns, L. borealis shows two apparent migration paths: one along the 

287 East coast, and the other near the Mississippi River and into the Southern plains (Figure 3). 

288 These paths are supported by the 95th percentile map, which shows suitable habitat in these areas 

289 at the same time of year. These two paths again indicate a potential following of coastline and 

290 rivers as guides during migration.  L. cinereus shows evidence for multiple pathways (Figure 3). 

291 Two possible pathways are present along the coasts of the Atlantic and Pacific, again indicating a 

292 possible following of coastlines during migration. While the Pacific is the clearer pathway of the 

293 two there is still a high density of lines along the Atlantic, which could be a minor pathway for 

294 those individuals navigating around the Appalachian Mountains. In addition, a pathway appears 

295 in our LCP map and is supported by the 95th percentile map along the Mississippi River. There is 

296 also evidence for movement through the Great Plains between the Rocky Mountains and the 

297 interior highlands near Missouri and Arkansas. Finally, L. noctivagans shows similar patterns for 

298 Fall as those observed during Spring migration periods (Figure 3). We see a North/South 

299 pathway west of the Rocky Mountains, and east of those, a more east/west pathway is observed, 

300 with movements extending North or South, which again potentially indicates a partial or 
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301 incomplete migration. With fall migration, we also observe positively clustered pathways that are 

302 significantly longer than Euclidean distance (Table 3).

303 The two bats that are not long-distance migrants show less variation in seasonal 

304 distribution as compared to the three migrant species discussed earlier (Figure 3). In particular, 

305 both E. fuscus and M. lucifugus show a consistent East/West distribution pattern that does not 

306 change throughout the year. This supports the idea that changes in distributions likely reflect 

307 migratory behavior. Of interest is that the pathways determined by LCP for E. fuscus are similar 

308 to L. noctivagans, providing additional support that silver-haired bats undergo only a partial 

309 migration, that being some individual migrant while others overwinter in northern portions of the 

310 range. This seems possible as it has been documented silver-haired bats can overwinter at 

311 Northern latitudes (Cryan, 2003).

312 Discussion

313 Other studies have used SDMs and occurrence distributions to model seasonal distributions of 

314 wide-ranging migratory bats (e.g. Hayes, Cryan, & Wunder 2015). This study extends this 

315 general approach by using SDMs to predict migratory corridors. Understanding these migratory 

316 pathways is vital to the conservation of these three species. Below we discuss limitations of our 

317 analyses and then expand on the implications of our results.

318 Analysis limitations

319 Using species occurrence data to generate species distribution models can be impacted by 

320 sampling biases present in the data (Feng et al. 2019). We attempted to minimize these biases by 

321 following guidelines described in Feng et al. (2019). Specifically, we took steps to reduce 

322 oversampling of regions by subsampling our dataset to 1 point per 1o grid cell. Additionally, 
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323 because occurrence records only representing presence points, and not true absences, we 

324 included models that require only presence data or can be adapted for use with presence only 

325 data. Despite these measures, it is possible biases remain in our models and so we stress that our 

326 models represent hypothetical species distributions and migratory pathways for any point in 

327 time. 

328 Migratory Pathways

329 Our analyses identify potential migratory pathways across modelling approaches, although we 

330 observed some differences that likely result from features of the data that are given different 

331 weight by different methods (McClure, Hansen, & Inman 2016). For example, we lacked clear 

332 pathways using Circuitscape. While we attempted to correct this using multiple transformations 

333 of the data (square root, log, natural log, and cube-root transformations), none were able to 

334 adequately correct for this. Regardless, it is still evident in the current maps that the areas of 

335 higher possible movement are also predicted by the LCP and 95th percentile threshold methods, 

336 providing support for those proposed pathways. The lack of clear paths using Circuitscape is a 

337 possible indication of a lack of clear migratory pathways and they may in fact be more dispersed, 

338 while still following the general patterns presented in the other methods. This is supported by the 

339 least cost path analysis, as while the figures present the most common paths, many other paths 

340 were evident. However, while pathways used may not be the same for every individual the other 

341 methods provide the most likely pathways that should be tested further

342 The pathways are summarized in Figure 4 and reflect migratory patterns of many other 

343 species in North America including waterfowl and insects (e.g. Lincoln 1935; Westbrook et al. 

344 2016; Tracy et al. 2019). Of interest is the relation to insect migrations which is consistent with 

345 an idea proposed by Rydell et al. (2010) that bat deaths at wind farms may be related to feeding 
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346 on migratory insects near turbines. Bats may be tracking the migration of insects to determine 

347 their pathways and are feeding on them during migration leading to turbine mortality of bats (but 

348 see Reimer, Baerwald, & Barclay 2018). 

349 Another possibility is the use of linear features, such as rivers and mountain ranges, as 

350 guides during migration (Wang et al. 2007; Ijäs et al. 2017; but see Weller et al. 2016; Krauel, 

351 McGuire & Boyles 2018; Cortes & Gillam, 2020). The proposed pathways observed in our data 

352 support the idea of bats using linear bodies of water as guides during migration, especially for 

353 the two species of Lasiurus. In L. borealis we observe apparent tracking of the Mississippi river 

354 and Atlantic Coast/eastern edge of Appalachian Mountains, while L. cinereus tracks the previous 

355 two mentioned and the Pacific Coast. One proposed rationale for the tracking of water bodies is 

356 that there exists higher abundance of prey to feed upon during migration, allowing for faster 

357 overall travel (Furmankiewicz & Kucharska 2009). 

358 The last possibility for the apparent tracking of linear features is that increased tree cover 

359 also tends to follow these same features (i.e. near river = more trees; as observed in tree cover 

360 maps from Hansen et al. 2013). While this is not universally true, it is possible these species are 

361 using the linear features to guide them, while the proximity to water provide increased foraging 

362 and tree cover provides roosts. Finally,  the last possibility is some varied combination of all the 

363 previous presented hypotheses that should be investigated further. These types of insights have 

364 the ability to inform further study and impact conservation efforts.

365 Conservation for migratory bat species needs to be politically and geographically broad 

366 in order to be effective (Fleming 2019). Conservation plans need to include protecting roost sites 

367 (during all stages of life), stop-over sites, and conserving foraging habitat around these sites 

368 (Fleming 2019). In aid of this goal, our results give direction on where to look for stopover sites 
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369 during migration, provide a starting point to identify areas where protecting habitat for migration 

370 is needed, and gives information as to where to best implement smart-curtailment during fall 

371 migration (Hayes et al. 2019). 

372 Additionally, there has been a recent effort by bat researchers to focus on small-scale 

373 migration of these species (e.g. Baerwald, Patterson, & Barclay 2014). The goal of these types of 

374 studies is to understand the local migration that occurs during long distance migration, with the 

375 hope that these types of data can compel wildlife managers and/or wind energy industry to 

376 implement best practices for the species included in this study, and others. While this has been 

377 challenging, the results presented here again give a hypothesis with which to begin future studies 

378 that focus on small-scale migration. This can inform researchers on where to focus efforts on 

379 implementing these types of questions, and areas where it would likely have the largest impact 

380 through reduction of mortality. The results we present cannot definitely answer these types of 

381 question, but instead they provide a framework for where to begin and provide a methodology 

382 that can be implemented as more data become available. 

383 Conclusions

384 Due to the seasonality of bat fatalities at wind farms, it is imperative that more research toward 

385 understanding the migratory movements of bats be done. This study provides a framework with 

386 which to start understanding migratory corridors for these species that could be used in a variety 

387 of ways toward reducing mortality. Additionally, while not explored here, for some types of 

388 studies such as biomarker migration studies, the SDMs created can be used as priors to better 

389 inform probabilistic models for assignment to a location and could be used in conjunction to 

390 improve isotopic or other biomarker models for determining movement. 
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391 Developing better understanding on how these species move to and from summer habitat may be 

392 key in reducing the number of bats killed at wind farms. With bats making significant 

393 contributions to the economy of the United States through ecosystem services (Boyles et al. 

394 2011) and provide valuable ecological services (Ghanem & Voigt 2012) effective and practical 

395 measures are necessary to reduce the number of bat deaths annually at wind farms (Frick et al. 

396 2017). By understanding migration, we can better mitigate and conserve species that are 

397 currently of concern in many states (e.g. Ohio Division of Wildlife 2015). Our study provides a 

398 proof of concept of how SDMs can be used to predict migratory pathways, thereby informing 

399 researchers on where to focus our efforts toward the goal of reducing bat mortality due to wind 

400 farms.

401
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Table 1(on next page)

GBIF Occurrence Data

Number of GBIF occurrence points per month for each species analyzed after filtering
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1

January February March April May June July August September October November December

L. borealis 45 33 44 75 99 151 205 192 123 86 49 27

L. cinereus 29 38 44 80 99 108 125 138 110 86 36 24

L. noctivagans 25 24 28 62 110 111 104 131 106 74 38 21

Total 99 95 116 217 308 370 434 461 339 246 123 72
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Table 2(on next page)

Variable Importance

Variable importance rank for three of the four SDM models implemented in these analyses. 1
– indicates the most important variable, while 9 – represents the least important. Each
importance was found by the following: RF we used the ‘importance’ function in the
“randomForest” R package, MaxEnt, variable importance was assessed using
‘var.importance’ function in “ENMeval”, GLM model, we used the ‘varImp’ function present in
“caret”.
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1

Precipitation Solar Radiation Temperature Vapor Pressure Wind Speed Human Influence Elevation NDVI Forest Cover

Random Forest 5 2 1 3 8 7 4 6 9

MaxENT 6 2 1 3 8 4 5 7 9

GLM 6 1 2 3 7 4 5 8 9
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Table 3(on next page)

Spatial Clustering of Paths

Moran’s I and Geary’s C to determine if clustering among potential migratory pathways is
present. For Moran’s I, values range between -1 and 1, with values above 1 indicating
positive clustering. Geary’s C values range between 0 and 2, with values below 1 indicating
positive clustering. Results given for paired t-tests comparing Euclidean and Least-Cost
distances.
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I p-value C p-value Mean Increase p-value I p-value C p-value Mean Increase p-value

L. noctivagans 0.39 0.01 0.60 0.01 880.40 <0.001 0.34 0.01 0.67 0.01 767.16 <0.001

L. borealis 0.45 0.01 0.54 0.01 348.33 <0.001 0.42 0.01 0.56 0.01 325.39 <0.001

L. cinereus 0.36 0.01 0.65 0.01 721.51 <0.001 0.37 0.01 0.63 0.01 526.85 <0.001

Spring Fall

Moran's I Geary's C Paired t-test Moran's I Geary's C Paired t-test
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Figure 1
Methods Overview

Flowchart showing how occurrence data were analyzed and used to infer migratory pathways
for each bat species.
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Figure 2
Seasonal Suitability for Three Species of Migratory Bat Species

Seasonal SDMs for all three species (L. borealis, L. cinereus, and L. noctivagans). Colors
identify either individual species or groups of species that occur in a given area. For more
detailed figures for each species, see supplemental Figures S2-S4.
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Figure 3
Potential Migratory Pathways

Migration pathways determined using two approaches: binary models determined from TSS

weighted ensemble model using 95th percentile threshold determined for each species
(shown in grey and white), and least-cost-path density (shown as color gradient) for L.

borealis, L. cinereus, and L. noctivagans, M. lucifugus, and E. fuscus.
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Figure 4
Pathway Summary

Summary of proposed migratory pathways used by two species (L. borealis and L. cinereus)
of migratory tree bats. Due to the more limited range, eastern red bats, are proposed to use
the yellow and blue portions, while hoary bats use all four.
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