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ABSTRACT

Population-specific spatial and temporal distribution data are necessary to identify
mechanisms regulating abundance and to manage anthropogenic impacts. However
the distributions of highly migratory species are often difficult to resolve, particularly
when multiple populations’ movements overlap. Here we present an integrated
model to estimate spatially-stratified, seasonal trends in abundance and population
composition, using data from extensive genetic sampling of commercial and
recreational Chinook salmon (Oncorhynchus tshawytscha) fisheries in southern
British Columbia. We use the model to estimate seasonal changes in
population-specific standardized catch per unit effort (a proxy for abundance)
across six marine regions, while accounting for annual variability in sampling effort
and uncertain genetic stock assignment. We also share this model as an R package
stockseasonr for application to other regions and species. Even at the relatively
small spatial scales considered here, we found that patterns in seasonal abundance
differed among regions and stocks. While certain locations were clearly

migratory corridors, regions within the Salish Sea exhibited diverse, and often
weak, seasonal patterns in abundance, emphasizing that they are important,
year-round foraging habitats. Furthermore, we found evidence that stocks with
similar freshwater life histories and adult run timing, as well as relatively
proximate spawning locations, exhibited divergent distributions. Our findings
highlight subtle, but important differences in how adult Chinook salmon use marine
habitats. Down-scaled model outputs could be used to inform ecosystem-based
management efforts by resolving the degree to which salmon overlap with other
species of concern, as well as specific fisheries. More broadly, variation in
stock-specific abundance among regions indicates efforts to identify mechanisms
driving changes in size-at-maturity and natural mortality should account for distinct
marine distributions.
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INTRODUCTION

Spatial and temporal distributions determine exposure to physical and biological processes
that regulate population dynamics. Distribution data are critical when managing exploited
species, where harvest impacts must be disentangled from natural drivers (Hilborn e
Walters, 1992), and in migratory species, where long-distance movements may span
multiple political jurisdictions and function as bottlenecks in survival (Runge et al,
2014; Secor, 2015). These complications are particularly relevant to Pacific salmon
(Oncorhynchus spp.), since they support large-scale fisheries and undergo extensive
migrations through freshwater and marine ecosystems. Juvenile Pacific salmon migrate to
the ocean and disperse along the continental shelf or offshore to mature, returning to
spawn from several months to six years later. Since Pacific salmon typically return to their
natal streams, freshwater migrations are well described at the population level and
variation among stocks has long informed fisheries management. However, population-
specific marine migrations, particularly at fine temporal scales, are often more poorly
resolved due to the long distances that are travelled and extensive overlap among
populations (Quinn, 2018). Marine distributions of Pacific salmon are of interest because
substantial mortality (Parker, 1968; Seitz et al., 2019), as well as the vast majority of somatic
growth (Quinn, 2018), occurs during marine residence. Thus knowledge of marine
distributions, which regulate exposure to bottom-up processes, predators, and fisheries, is
necessary to identify mechanisms responsible for changes in productivity.

Unlike most other North American Pacific salmon species, Chinook salmon
(O. tshawytscha) exhibit a mix of nearshore and offshore distributions and may be
harvested year-round in mixed stock marine fisheries (Riddell et al., 2018). Since the 1970s,
large-scale tagging programs have been used to estimate Chinook salmon harvest rates
and distributions to inform management decisions. Most commonly, juvenile fish
are tagged with coded wire tags (CWTs) that identify an individual to a release group
and which are recovered in fisheries or on spawning grounds. The abundance and
age-at-maturity of a tagged stock can be estimated by assuming age-specific natural
mortality rates, as well as applying expansions to account for sampling effort (Johnson,
2004; Nandor, Longwill ¢& Webb, 2010). Widespread tagging was originally intended to
inform multinational management negotiations (such as the Pacific Salmon Treaty);
however, these data have also provided substantial information on juvenile (Trudel et al.,
2009; Fisher et al., 2014) and adult (Weitkamp, 2010; Shelton et al., 2019) marine
distributions. For example, CWT studies provided evidence of differential migration
patterns among Chinook salmon life history types (Fisher et al., 2014), demonstrated
stocks often exhibit regionally coherent marine distributions (Weitkamp, 2010), and
revealed stock-specific responses to climate change impacts (Shelton et al., in press).

CWT recoveries, however, provide an imperfect estimate of Pacific salmon
distributions. A subset of stocks serve as indicators for larger stock groups and, due to
convenience, these indicators are often hatchery populations. Although direct
comparisons are limited, there is evidence that the distribution of some Pacific salmon
stocks may not be well represented by recoveries of their indicators (Winther ¢ Beacham,
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20065 Peterson, Clark e» Evenson, 2016; Beacham et al., 2019). Furthermore, salmon
enhancement programs have changed over time, with indicator groups discontinued

or added, creating gaps in the time series of life history types that are of particular
management concern (e.g., Upper Fraser River yearling spring run Chinook salmon;
DFO, 2020) and complicating efforts to evaluate interannual changes in stock composition.
The implementation of mass marking strategies that consist of large releases of

marked and untagged (i.e., adipose fin clipped and no CWT) individuals, coupled with
mark-selective fisheries has reduced the efficiency of CWT recovery programs (PSC, 2005).
As a result, estimating contemporary stock-specific distributions, especially at fine spatial
or temporal scales, is not always feasible using CWT recoveries alone.

Natural tags, most commonly genetic stock identification (GSI) techniques, have
increasingly been incorporated into Pacific salmon management frameworks (Shaklee
et al., 1999; Dann et al., 2013). GSI can be used to identify individual fish to their
population of origin using microsatellites or single nucleotide polymorphisms and is the
only means of reliably identifying stock of origin when an individual is not tagged by a
management agency. Furthermore, GSI allows a greater proportion of the sample to
inform composition estimates because all fish are “tagged”. GSI is commonly used to
estimate the stock composition of fisheries-independent surveys (Tucker et al., 2012),
as well as escapement, bycatch, and terminal fisheries (Wilmot et al., 1998; Shaklee et al.,
1999; Hess et al., 2014). More recently, GSI has begun to be incorporated into the
management of more highly mixed open-ocean fisheries (Satterthwaite et al., 2014), where
it has been used, often in tandem with CWT data, to inform time-area closures (Winther ¢
Beacham, 2006; Dobson, Holt ¢ Davis, 2020).

Mixed-stock fishery challenges are particularly acute in southern British Columbia.
The region is used by a diverse assemblage of Chinook salmon stocks (Weitkamp, 2010),
including populations spawning as far south as central California. While some stocks
encountered by southern BC fisheries are above their management reference points, many
others are at low abundance and several Canadian-origin stocks are of conservation
concern (COSEWIC, 2018). Furthermore, declines in Chinook salmon abundance have
co-occurred with persistently low population growth rates for southern resident killer
whales (Orcinus orca; Ward, Holmes ¢ Balcomb, 2009; Vélez-Espino et al., 2015). Southern
resident killer whales appear to prey heavily upon Fraser River Chinook salmon (Hanson
et al., 2010), several populations of which are currently at low abundance (COSEWIC,
2018), creating ecosystem-based fisheries management incentives to promote Chinook
salmon recovery. Finally, there is growing evidence that generic categories of Chinook
salmon marine distributions, such as offshore migrants or continental shelf residents,
fail to capture subtle differences in habitat use. For example, Puget Sound Chinook salmon
appear to exhibit partial residency where considerable portions of certain populations
remain within that basin (O’Neill ¢» West, 2009; Chamberlin et al., 2011).

To address these challenges, biologists and fisheries managers in BC have used recovery
of anthropogenic tags (CWTs and thermally marked otoliths), as well as GSI to refine
time-area closures that minimize impacts on stocks of concern. For example, intensive
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sampling of fisheries near Haida Gwaii and west coast Vancouver Island (WCVI) revealed
that depleted, wild WCVI populations disproportionately use nearshore migration
corridors (DFO, 2012; Winther ¢ Beacham, 2006). Similar sampling of fisheries
throughout southern BC has been used to resolve fine-scale marine migration patterns of
early run Fraser River stocks (Dobson, Holt ¢» Davis, 2020). In both cases fishery closures
have resulted in reduced harvest of at-risk stock groups (Beacham et al., 2008; Dobson,
Holt & Davis, 2020). However, such data are applied on a case-by-case basis and have not
yet been synthesized to generate predictions of stock-specific marine distributions or
relative abundance throughout BC. Similarly, previous examinations of adult Chinook
salmon distributions have focused on regions with lower stock diversity (Satterthwaite
et al., 2013; Satterthwaite et al., 2015; Bellinger et al., 2015) or relatively coarse ecological,
spatial, and temporal scales (Weitkamp, 2010; Larson et al., 2013; Shelton et al., 2019).

We build on these findings by presenting estimates of seasonal changes in the
distribution of adult Chinook salmon in southern BC derived from extensive GSI sampling
of commercial and recreational fisheries. We develop a flexible, integrated model, which
accounts for uncertainty in individual genetic stock assignments and uses splines to
generate smoothed predictions over the annual cycle. We focus our analysis on regional
stock aggregates that describe general patterns associated with spawning regions and
life-history type, as well as Canadian-origin stocks relevant to domestic management
actions. Although our estimates are generated at relatively large spatial scales to maximize
seasonal coverage, the model can be down-scaled to generate predictions at finer ecological
and spatio-temporal scales and is available within our included R package stockseasonr.
Ultimately spatially and temporally explicit estimates of stock composition and relative
abundance can improve our understanding of how Chinook salmon stocks use distinct
nearshore habitats and differ in exposure to drivers of population dynamics.

METHODS
Study system

Chinook salmon are harvested by American and Canadian commercial, recreational, and
First Nations fisheries, prior to and during return migrations to freshwater spawning
habitats. In Canada, management decisions are often applied at the scale of DFO’s Pacific
Fishery Management Areas (PFMAs) (DFO, 2018). A PFMA may contain multiple
subareas, with a PFMA denoted by a numeric and a subarea by an alphabetical.

Our analysis focused on PFMAs throughout southern British Columbia (i.e., the west coast
of Vancouver Island (WCVI) and the Canadian portions of the Salish Sea), which we
aggregated into six catch regions based on proximity and shared oceanographic features
(Fig. 1). Note that we moved two PFMA subareas (13M and 13N), located in the northern
Strait of Georgia, to that catch region from the Queen Charlotte/Johnstone Strait

region. The timing and location of fisheries restrictions within a given PEMA may change
to avoid stocks of concern, as well as changes in quota as determined under the Pacific
Salmon Treaty. For example, in recent years, management actions have resulted in the
commercial troll fishery (largely restricted to outside portions of WCVI) shifting from
harvesting in the late fall through early spring to harvesting only in late summer.
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Figure 1 Southern British Columbia catch regions and Pacific fishery management areas (PFMAs).
Shading and lines denote PEMAs and subareas within a given catch region. Unshaded portions represent
areas in which insufficient data were available to estimate model parameters or areas outside Canadian
jurisdiction. Commercial data originated from outside catch regions (i.e., NWVI and SWVI), while
recreational data originated from inside catch regions (i.e., Queen Charlotte/Johnstone Strait, Juan de
Fuca Strait, and northern and southern Strait of Georgia).  Full-size Kal DOI: 10.7717/peerj.11163/fig-1

The WCVI and inside (i.e., Canadian Salish Sea plus Queen Charlotte Strait) sport fisheries
operate year-round with area-specific retention regulations, but the majority of effort
occurs from early summer to early fall.

Data collection

Tissue samples for genetic stock identification (GSI) were collected from commercial
and recreational fisheries by two independent sampling programs. Genetic stock
assignments were performed using cBAYES and a reference baseline derived from
microsatellite markers that consisted of 268-populations with more than 50,000
individuals (Beacham et al., 2006).

Genetic samples were collected from the commercial troll fishery, predominantly
dockside and at processing facilities, from 2007-2015. Sampling was performed by
observers contracted by Fishery and Ocean Canada’s (DFO) Mark Recovery Program to
recover CWTs. The Mark Recovery Program aims to sample 20% of the landed WCVI
commercial catch and these samples were further sub-sampled to provide GSI samples
with a target of 4% of the monthly catch. We note that GSI samples from the commercial
fishery could be attributed to a catch region and landing day, but not to a specific spatial
location or harvest date because trollers may fish multiple PFMAs and remain at sea
for several days before landing their catch. Additional GSI samples originated from two
other WCVI fisheries. The first was a contracted test fishing troller with an at-sea observer,
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which gathered samples in May, June, and September of 2008-2011 from locations in
the NWVI catch region immediately before and after the standard commercial opening.
The second was the T’aaq-wiihak fishery, a First Nations economic-opportunity fishery,
that operates on the west coast of Vancouver Island. T’aaq-wiihak fishery openings

may occur at different times than standard commercial fisheries and we only retained
samples in this analysis that overlapped with commercial openings. Commercial catch
(individual fish) and effort (boat days) data were retrieved from DFO’s Fisheries
Operations System database for all PEMAs and years in which GSI samples were available.
These data consist of daily individual catch values from mandatory vessel logbooks, as well
as the number of licensed vessels operating on a given day in each PFMA. Data from
the commercial fishery were restricted to the northwest Vancouver Island (NWVI) and
southwest Vancouver Island (SWVI), otherwise referred to as “outside”, catch regions
(Fig. 1). We included commercial catch and effort data from 2007-2015 with catch and
composition data available for all months except July in SWVT (18,470 individual samples;
Figs. S1; S2).

Genetic samples were collected from the recreational fishery by dockside creel survey
observers, as well as via a citizen science program, Avid Anglers, which is a collaboration
between DFO, recreational harvesters, sport fishing guides, and the Pacific Salmon
Foundation. The program encourages individuals who are consistent fishers (e.g., guides)
to provide size and location data for all salmon that they encounter (kept and released), as
well as sampling at least one fish per day for GSI. We aggregated the recreational GSI
data to catch region and month to ensure adequate sample sizes and facilitate comparisons
with commercial data. Recreational catch data were obtained from DFQ’s creel database,
which records estimates of monthly catch (individual fish) and effort (boat days) at
the subarea level based on dockside fisher interviews and regular fly-overs (English,
Searing & Nagtegaal, 2002). Sufficient GSI samples and catch data from recreational
fisheries were only available from PFMAs within “inside” regions (i.e., Queen Charlotte
and Johnstone Strait, the Strait of Georgia, and Juan de Fuca Strait; Fig. 1) and, with the
exception of southern Strait of Georgia GSI data, were only available for a subset of
months. Therefore, we fit the recreational models to data from these catch regions for
months between January and December, with specific ranges differing among regions
(Fig. S2). Recreational catch/effort data spanned 2009-2019 and stock composition data
(11,729 individual samples) spanned 2014-2019 (Figs. S1; S2). All biological sampling was
covered by a blanket Section 52 license relevant to Fisheries and Oceans Canada field
activities for management purposes.

We pooled populations with similar freshwater distributions and run timing to generate
two sets of stock aggregates. The first grouping (Regional, Table 1) contained aggregates
based on those defined in Pacific Salmon Treaty documents (CTC, 2019), with the
modification that several regional aggregates that are less common in southern BC fisheries
were pooled and that Columbia River stocks were grouped based on common juvenile
patterns of marine dispersal (Fisher et al., 2014). The second, Canadian-centric grouping
retained fine-scale Canadian-origin aggregates most relevant to southern BC management
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Table 1 Regional and Candian-centric stock aggregates, as well as associated abbreviations. Pooled
groupings (i.e., CA/OR-coast and NBC/SEAK) include stock aggregates that are relatively rare in
southern BC fisheries. Columbia River Upper Spring includes Snake River individuals.

Regional Canadian-centric

California and Oregon Coastal (CA/OR-coast) Other
Columbia River Upper Spring (CR-upper_sp)

Columbia River Lower Spring (CR-lower_sp)
Columbia River Upper Summer/Fall (CR-upper_su/fa)
Columbia River Lower Fall (CR-lower_fa)
Woashington Coastal (WA-coast)

Puget Sound (PSD)

Northern British Columbia and Southeast Alaska

(NBC/SEAK)
Strait of Georgia (SOG) East-coast Vancouver Island (ECVI)
Southern British Columbia Mainland (SOMN)
Fraser River Early Run (FR-early) Fraser Spring 4.2
Fraser Spring 5.2
Fraser Summer 4.1
Fraser Summer 5.2
Fraser Late Run (FR-late) Fraser Fall
West-coast Vancouver Island (WCVI) West-coast Vancouver Island (WCVI)

decisions and pooled all other aggregates (Table 1). Although the PST Chinook
technical committee recently included higher resolution stock groupings for certain
Canadian stocks (CTC, 2020), we use the older regional groupings to improve
readability and because the relevant stocks are shown in the Canadian-centric results.
Our groupings largely pool stocks with evidence of similar marine distributions based on
CWT recoveries (Weitkamp, 2010); however, aggregating stocks will necessarily obscure
population-specific distributions. We recommend using down-scaled model versions
when a small number of stocks are of interest. Additionally, we note that most stock
aggregates contain a mix of hatchery- and wild-origin populations; however, the relative
proportion of each varies among aggregates, as well as years, and we did not attempt to
distinguish between patterns in hatchery and wild abundance.

Stock-specific distribution model

We assumed catch per unit effort (CPUE) could be used as a proxy for relative abundance
in a given spatio-temporal strata (here catch region and month), though we note that
hyperstable catch rates can violate this assumption (Harley, Myers ¢» Dunn, 2001).

To predict standardized CPUE (i.e., catch of all stocks given a fixed mean effort), we
modeled catch (individual fish) C as a negative binomial process, with mean u and inverse
dispersion ¢ (Var[C] = u + /@), via a log link and a generalized additive model (GAM).
We included log effort as an offset (i.e., fixed the effort coefficient at one), and allowed
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changes in seasonal abundance to be described by splines. The GAM followed the
general form:

Ci ~ NegBin(:uiv ¢)7 (la)

M
log(;) = oty + oty + > _ fin, (m:) + log(by), (1b)

m=1

Normal(uay,aiy>, ify=1

0L,
¢ Normal(ay_1,0§y>, if y>1

(1c)
where i is an observation, a, is a random intercept for year y modeled as a random walk, a,
is a fixed intercept for PFMA p, f,,, is a PFMA-specific smooth function for month m, and b
is the number of boat days (representing effort). Each smoother is represented by a
sum of k basis functions, multiplied by corresponding coefficients (Wood, 2011). When
data were available for the full annual cycle (e.g., commercial and southern Strait of
Georgia composition data) we fixed k at four and fit the model with cubic cyclic splines,
which constrained estimates for the first and last months of the year to converge on
one another (Wood, 2006). When data were available for a fraction of the annual cycle,
we fixed k at three and fit the model using thin plate splines. Values of k were chosen after
preliminary model runs indicated higher values failed to converge or resulted in unrealistic
seasonal patterns.

To facilitate comparison with the stock composition data, which could not be reliably
assigned to PFMAs in the commercial fishery, we estimated u,,, (monthly catch within
each catch region r) as the sum of its component PFMAs:

p
B, = D b (2)
p=1

We modeled stock composition as a Dirichlet-multinomial process—a compound
distribution that accounts for variability in observed proportion data, similar to the
approaches used by Thorson et al. (2017) and Douma & Weedon (2019). We assumed
predicted stock proportions q are related to a vector of observed stock proportions € and
sample size n:

q ~ Multinomial(0, n). 3)

Variability in stock proportions, associated with uncertainty in the assignment
probabilities for individual fish, is approximated using a Dirichlet distribution described by
a vector of positive parameters A representing its mean and variance.

A benefit of using a Dirichlet-multinomial, rather than multinomial, distribution is its
ability to incorporate uncertainty in individual stock assignments (i.e., non-whole number
observations of stock-specific counts in a sample), while accounting for variation
among spatio-temporal strata in sampling effort. This contrasts with many GSI analyses
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where threshold probabilities are used to assign individuals to a population (e.g., 75%),
effectively assuming perfect identification and excluding data associated with ambiguous
stock assignments.

In practice, we implemented the model by computing the integrated Dirichlet-
multinomial distribution (7horson et al., 2017). Since individual assignment probabilities
were identified at the scale of spawning populations (i.e., sub-stock units), we first
aggregated GSI data into the stocks described in Table 1 by summing, within an individual,
all probabilities associated with populations belonging to stock s. We next defined a
sampling event j as all the individuals collected on a given day and within a given catch
region and created vector v; by summing the assignment probabilities of all sampled
individuals. Thus v; has length equal to the total number of stocks S and sums to #;
(i.e., v; is equivalent to n; 6;). Using the gamma function within the likelihood function of
the Dirichlet-multinomial allows it to be defined for non-negative (rather than whole
number only) sample sizes:

; (4)

S
L(q,p|v, 1’1) — F(T’I + 1) F(p)p) HF(VS + st)

[, T(ve+1)T(n+ P4s

where y represents the gamma function and p is a parameter representing overdispersion
resulting from the Dirichlet distribution (Thorson et al., 2017).

We modelled seasonal patterns in stock composition similarly to Eq. (1b) using a logit
link and the GAM:

M
logit(q;) = B, + B, + D _ gm, (m)), (5a)
m=1

2 o —
Normal(,uﬂy, J/}y), ify=1
Normal(/i),_17 (ffgy), if y>1

By~ (5b)

where B, is a random intercept for year y modeled as a random walk, §, is a fixed
intercept for catch region r, and g,,, is a catch region-specific smooth function for month m.
We used the same number of basis functions and the same spline types for the stock
composition component of the model as the aggregate abundance component. To ensure
model convergence we replaced zero stock assignment probablities in 8; with very small
values (0.00001). Similarly, parameters associated with stock-region combinations that
were never observed (CA/OR-coast and Fraser Spring 4.2 in the northern Strait of
Georgia) were fixed at zero.

We used the negative binomial and Dirichlet-multinomial model components to
predict seasonal changes in standardized CPUE and stock composition, respectively, in a
given catch region. We first generated predictions of standardized CPUE by assuming
effort was fixed at a fishery-specific (i.e., commercial or recreational) mean value. We then
used the product of predicted standardized CPUE and the probability of encountering a
given stock to predict standardized stock-specific CPUE, a proxy for stock-specific
abundance. By integrating across random effects, these predictions can be interpreted as
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representing an average year. Thus the model allows inferences to be made about the
seasonal distribution of stocks in various catch regions, while accounting for interannual
differences in sampling effort. Note that we also present estimates of predicted stock
composition fit separately from abundance data because recreational GSI data were
available for several months that lacked complete catch and effort data.

We fit the model to four datasets: regional stock aggregates captured in the commercial
fishery (outside regions), regional stock aggregates captured in the sport fishery (inside
regions), Canadian-origin stock aggregates captured in the commercial fishery, and
Canadian-origin stock aggregates captured in the sport fishery (Table 1). We focus on
regional aggregates in the main text, but include Canadian-centric results as a supplement.

We also completed two supplemental analyses to account for data collection methods
that could impact our conclusions. First, we evaluated the effect of including the Avid
Angler (i.e., voluntarily submitted) samples, which may be a less representative sample of
stock composition, by repeating the composition analysis for the recreational fisheries,
either including or excluding the Avid Angler samples. We then compared the predictions
of models fit to the full and restricted datasets. Excluding the Avid Angler samples reduced
the total number of samples by ~50% and this analysis was limited only to early summer
to fall months. These results are presented in the main text and as supplemental figures.
Second, we evaluated the effect of fisheries restrictions in Juan de Fuca Strait and the
southern Strait of Georgia on abundance and stock composition estimates. Management of
Chinook salmon fisheries in southern BC includes spatio-temporal closures, as well as
mark- and size-selective fisheries, to reduce impacts on stocks of concern. We included
GSI samples collected from released individuals in all our analyses and, in a supplemental
methods section, evaluated whether these samples adequately represent the activity of the
recreational fishery.

We emphasize that estimates of commercial and recreational CPUE are independent,
relative proxies for abundance and their scales should not be considered equivalent for
several reasons. First, each dataset was collected over different time periods. Second,
estimates of recreational catch and effort are substantially less precise than commercial
equivalents due to differences in reporting requirements. Third, catchability differs
between the fisheries because of differences in gear type and regulations, resulting in
distinct relationships between CPUE and abundance. Fourth, the parameters in each
fishery’s model were estimated independently and predictions were generated with effort
standardized to a fishery-specific mean. Thus the “effort effect” is different and not directly
comparable between commercial and recreational models.

We identified parameter values that maximized the marginal likelihood with respect to
fixed effects while integrating across random effects via the the non-linear minimizer
nlminb in R 4.0.2 (R Core Team, 2020). We first used the mgcv R package to define
model matrices containing the appropriate splines to estimate seasonal and effort effects
(Wood, 2011). We then fit the models with TMB, which implements the Laplace
approximation to integrate across random effects and the generalized delta method to
compute standard errors of all fixed and random effects, as well as derived quantities
(Kristensen et al., 2016). We computed the standard errors on predictions in link space and
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Figure 2 Seasonal trends in model-predicted aggregate standardized catch per unit effort (represents
thousands of fish assuming fixed mean effort) in southern BC catch regions (colours) estimated using
commercial (A) and recreational (B) fisheries data. Ribbons represent 95% confidence intervals. Pre-
dictions assume mean effort within a fishery and are for an average year, integrating over annual random
effects. Note that y-axes differ among panels. Standardized CPUE is not directly comparable between
commercial and recreational fisheries. Full-size &) DOT: 10.7717/peerj.11163/fig-2

calculated confidence intervals as Wald confidence intervals. The TMB framework
allows the model to be fit quickly and the model’s structure is sufficiently flexible to
accommodate a wide range of spatially stratified composition and catch data. Code to
reproduce the analysis is available at https://github.com/CamFreshwater/chinDist and
DOI 10.5281/zenodo.4672524, while the functions that allow fitting the integrated
model to any similarly formatted dataset are available as an R package stockseasonr
(DOI 10.5281/zenodo.4672540).

RESULTS

To facilitate comparisons across time and space, all predictions assumed a fishery-specific
mean effort that was fixed over the annual cycle. Predicted Chinook salmon standardized
CPUE typically peaked between July and August; however, there was substantial
variation among regions in the shape of seasonal trends (Figs. 2; S3; S4). Peaks in
abundance were most noticeable on the west coast of Vancouver Island, where catch and
effort data were available for all months (Fig. 2A). CPUE in the Strait of Georgia,
particularly in the south, exhibited a different seasonal trend characterized by a weak
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Figure 3 Seasonal trends in model-predicted mean composition of regional stock aggregates for
southern BC catch regions estimated using genetic samples collected from commercial (NWVI
and SWVI; A-B) and recreational (Queen Charlotte and Johnstone straits, Juan de Fuca Strait, N.
Strait of Georgia, and S. Strait of Georgia; C-F) fisheries. Stock aggregates are arranged approxi-
mately latitudinally, based on freshwater entry point, from north (blue) to south (red). To improve
visibility, Columbia River upper and lower spring run stocks were pooled for this figure only. Predictions
are for an average year, integrating over annual random effects. Portions of the year lacking sufficient
composition data in a given region are blank. Full-size K&] DOT: 10.7717/peerj.11163/fig-3

decline in abundance from a peak in spring (Fig. 2B). Estimates of standardized CPUE also
varied substantially among years (Figs. S5; S6).

We found evidence of seasonal changes in stock composition in all regions.
For example, in SWVI, Puget Sound individuals present in winter and early spring were
gradually outnumbered by Columbia River upper summer/fall and lower fall run, as well as
Fraser River late run stocks. Seasonal changes in NWVI were less pronounced, but
relatively small contributions of Columbia upper spring, northern BC/southeast AK, and
WCVI stocks were replaced by California/Oregon-coastal and Washington-coastal
stocks in the late summer (Figs. 3A, 3B; S7). The Canadian-centric model indicated Fraser
River Fall and, to a lesser extent, Fraser Summer 4.1 stocks were the most common
Canadian-origin stocks (Figs. S8; S9).

Although GSI sampling of inside regions was more limited, there was still evidence of
complex seasonal trends in composition, with the relative abundance of stocks varying as
the annual cycle progressed. In the southern Strait of Georgia and Juan de Fuca Strait,
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Puget Sound stocks present during the winter and spring were gradually replaced by a
more balanced composition (Figs. 3D, 3F; blue and magenta in Fig. S10). In the southern
Strait of Georgia, first Fraser River late run, then Fraser River early run stocks increased in
relative abundance, with the contribution of local stocks (i.e., SOG, which includes east
coast Vancouver Island and southern BC mainland populations) remaining relatively
stable. In Juan de Fuca Strait, the contribution of Fraser River early run stocks increased in
summer before declining, as the relative abundance of WCVT stocks increased. Fraser
River late run stocks were notably absent (Fig. 3D; magenta in Fig. S10). Fraser River late
run were relatively common in the northern Strait of Georgia, but absent in Queen
Charlotte/Johnstone Straits where they were replaced by Fraser River early run stocks;
however, both regions had strong contributions of SOG populations (Fig. 3C, 3E; green
and gold in Fig. S10). The Canadian-centric model clarified that Fraser River early run
components were made up predominantly of subyearling life histories (i.e., Fraser Summer
4.1), although Fraser Spring 5.2 populations made a substantial contribution in Juan de
Fuca Strait (Figs. S8; S11).

We identified seasonal trends in stock-specific abundance by simultaneously estimating
aggregate standardized CPUE, which accounted for seasonal variation in effort, and stock
composition in an integrated model. On the west coast of Vancouver Island, stock
aggregates fell along a continuum from year-round residence to compressed distributions
peaking in late summer (Fig. 4). Puget Sound stocks were the best example of the former
pattern, but in NWVI SOG and three of the four Columbia River stock aggregates
were also present year-round, albeit at low abundance. Maximum abundance was typically
greater in NWVI than SWVI, with the exception of Columbia River lower spring and
fall run, Puget Sound, and Fraser River late run stocks. The Canadian-centric model
generated qualitatively similar predictions, with evidence of strong seasonal peaks in
abundance and typically greater stock-specific abundance in NWVI (Fig. S13). The major
distinction when results focused on Canadian stock aggregates was that Fraser Spring 4.2
and Southern Mainland populations had 95% confidence intervals that approached
zero for considerable portions of the year.

Seasonal patterns in stock-specific standardized CPUE were more variable among inside
catch regions (Fig. 5). Juan de Fuca Strait exhibited strong and compressed seasonal peaks
in standardized CPUE, which differed in breadth and timing among stocks (Fig. 5;
magenta in Fig. S14). Seasonal trends were particularly diverse in the southern Strait of
Georgia, where stock-specific standardized CPUE was low and stable (most California
Current stocks), declined through the year (Puget Sound and Strait of Georgia stocks),
increased modestly (Fraser early run and WCVI), or was convex (Fraser late run)

(Fig. 5; S14). Unlike most other stock aggregates, the standardized CPUE of SOG
populations was concentrated in Queen Charlotte/Johnstone Straits and the northern
Strait of Georgia (Fig. 5; green and gold in Fig. S14).

Stock composition results from recreational fisheries did not appear to be sensitive to
the inclusion of Avid Angler (i.e., voluntarily submitted) GSI samples. Predictions from a
model parameterized with only data collected by DFO creel observers were qualitatively
similar to those that included both observer- and Avid Angler-collected data. The most
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Figure 4 Seasonal trends in model-predicted stock-specific standardized catch per unit effort (represents thousands of fish assuming fixed
mean commercial effort) of regional stock aggregates in west coast Vancouver Island catch regions (colours) estimated using commercial
fisheries data. Ribbons represent 95% confidence intervals. Predictions are for an average year, integrating over annual random effects. Stock
aggregates are arranged approximately latitudinally, based on freshwater entry point, from north to south (A-L). Note that y-axis scales differ among
stock aggregates. Full-size K&l DOI: 10.7717/peerj.11163/fig-4

noticeable difference was a reduction in the contribution of Fraser River Fall stocks,
replaced by Puget Sound and Fraser River Summer 4.1, in southern Strait of Georgia
(Fig. S12).

Conversely, fisheries restriction in portions of Juan de Fuca Strait and the southern
Strait of Georgia are likely to impact spring and early summer stock composition estimates
in these regions. Since relatively few genetic samples were collected from released fish,
it is likely that the relative abundance of Fraser River early run stocks were underestimated
for these spatio-temporal strata (discussed in detail in Supporting Information).

DISCUSSION

Chinook salmon marine distributions are typically classified as falling within one of several
broad categories associated with freshwater life history and ocean entry location.
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Figure 5 Seasonal trends in model-predicted stock-specific standardized catch per unit effort (represents thousands of fish assuming fixed
mean recreational effort) of regional stock aggregate in inside catch regions (colours) estimated using recreational fisheries data. Ribbons
represent 95% confidence intervals. Predictions are for an average year, integrating over annual random effects. Stock aggregates are arranged
approximately latitudinally, based on freshwater entry point, from north to south (A-L). Note that y-axis scales differ among stock aggregates.
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Subyearlings (i.e., fish that enter without overwintering as juveniles in freshwater) rear
near their natal rivers throughout their first marine winter before migrating north and
maturing along the continental shelf, while yearling Chinook salmon may migrate offshore
immediately or after several months of shelf residence, depending on stock (Healey, 1983;
Trudel et al., 2009; Weitkamp, 2010; Tucker et al., 2012; Fisher et al., 2014). While
stock-specific distributions at fine spatial and temporal scales are often incorporated into
local fisheries management decisions, these data may not be publicly available or widely
disseminated (DFO, 2019). Here, we used extensive genetic sampling of southern BC
fisheries to estimate seasonal trends in abundance and stock composition, and identified
differences in marine migration behaviour among Chinook salmon populations. Similar
to recent work on resident Chinook salmon within Puget Sound (e.g., O'Neill & West,
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2009; Chamberlin et al., 2011), our results suggest a continuum of marine distributions or
migration behaviours. Even among stocks spawning in close proximity and with similar
freshwater life histories, we observed divergent patterns in the timing and extent to which
stocks use nearshore habitats. Such differences in distribution may result in unique
responses to basin-scale environmental drivers, predators, and fisheries.

Regional variation

Although Chinook salmon standardized CPUE, a proxy for relative abundance, generally
peaked in mid-summer, seasonal trends differed among regions. Broadly, this variation
suggests Chinook salmon use habitats on the west coast of Vancouver Island differently
to regions within the Salish Sea, though both fall within Healey’s category of a continental
shelf distribution (Healey, 1983). On the west coast of Vancouver Island, seasonal

peaks in relative abundance were broad due to a mix of resident and migratory life-history
types, as well as a particularly diverse stock composition. Conversely, the seasonal peak in
relative abundance in Juan de Fuca Strait was compressed, consistent with the region
being used predominantly as a migratory corridor for a smaller number of stocks returning
to systems within the Salish Sea. The other inside regions (Queen Charlotte and Johnstone
straits, as well as the northern and southern Strait of Georgia), exhibited much weaker
seasonal cycles. The lack of an obvious seasonal peak in relative abundance in the southern
Strait of Georgia, which had robust estimates of catch and effort throughout the year,
suggests that substantial numbers of fish remain resident year-round or return to inside
waters before recruiting to the fishery (45 or 62 cm fork length depending on PFMA).
Chinook salmon residence has been relatively well documented in Puget Sound (O’Neill ¢
West, 2009; Chamberlin et al., 2011; Chamberlin & Quinn, 2014; Arostegui et al., 2017);
however, in the Strait of Georgia, this life-history strategy has not received extensive
attention in the primary literature (but see Healey ¢» Groot, 1987).

Coast-wide analyses indicate the stock composition of adult Chinook salmon varies
spatially, with marine distributions correlated with freshwater life history (Healey, 1983;
Fisher et al., 2014) and ocean entry location (Weitkamp, 2010). We found that each
region’s catch was dominated by three or four stock aggreagates with resident populations
eventually replaced by migratory stocks in summer and fall. Yet seasonal patterns in
composition were highly variable among regions. Some of these patterns are intuitive
(e.g., stocks that migrate directly from freshwater to the California Current are rarely
observed within the Salish Sea). Others, however, are less obvious. For example, Puget
Sound stocks were common in southern outside (SWVI) and inside (southern Strait of
Georgia and Juan de Fuca Strait) regions during winter and spring, but in regions slightly
further north they were replaced by similar stocks (i.e., predominantly fall run,
subyearling) from the Columbia River basin or the Strait of Georgia.

Stock-specific patterns

Patterns of stock-specific relative abundance (i.e., stock-specific standardized CPUE)
within southern BC emphasize subtle differences in distribution and migratory behaviour
among Chinook salmon populations that are lost when broadly categorizing stocks as
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continental shelf residents or offshore migrants. For example, the standardized CPUE of
many subyearling, fall run populations was greatest in NWVI (e.g., Strait of Georgia,
upper Columbia River summer/fall, CA/OR coastal), but lower Columbia River and Fraser
River late run populations were more abundant in SWVI. The relative difference in
standardized CPUE between NWVI and SWVT also ranged from ambiguous (e.g., Puget
Sound) to dramatic (e.g., Washington coastal). While ocean-type stocks that are
observed in southeast Alaskan troll fisheries are often referred to as far-north migrating
(CTC, 2019), our seasonal estimates of stock-specific abundance suggest differences in
distribution may also occur further south. Such stock-specific patterns are likely a result of
differences in marine maturation grounds, but may also be influenced by migratory
behaviours, such as travel speed or distance from shore, that moderate a stock’s exposure
to fisheries.

Chinook salmon residence in southern continental shelf, and even nearshore, habitats
during non-migratory periods is well known by fisheries managers and described
qualitatively in Pacific salmon life history texts (e.g., Riddell et al., 2018). However, by
quantifying seasonal trends in relative abundance, we are able to better resolve
stock-specific distributions. First, Puget Sound fish were abundant throughout the year
in both SWVI and NWVT, peaked in abundance in late winter or early spring in the
southern Strait of Georgia, and migrated through Juan de Fuca Strait in late summer. This
diversity may represent multiple allopatric components of the same cohort or perhaps
movements between basins associated with ontogeny. Substantial numbers of Puget Sound
Chinook salmon are resident within the sound during winter and early spring (O’Neill ¢
West, 2009; Chamberlin et al., 2011; Chamberlin ¢ Quinn, 2014), and individuals may
exhibit restricted localized distributions (Arostegui et al., 2017).

Second, Columbia River (except lower spring run populations) and Strait of Georgia
stocks were also present in NWVI during the winter and spring. Yet seasonal patterns in
abundance were much more pronounced than in Puget Sound fish, suggesting the majority
of each stock migrates north or offshore. Individuals caught in winter and spring may
represent an early arrival by northern/offshore fish that will mature the following year or
the southern portion of those populations’ marine distribution.

Third, Fraser River late run (fall run, subyearling fish) and Strait of Georgia
(predominantly fall run, subyearling east coast Vancouver Island populations) stocks were
abundant early in the year in the Strait of Georgia. Yet there was also a late summer peak in
the abundance of these stocks on the west coast of Vancouver Island, followed by an
increase in Juan de Fuca Strait. These patterns suggest that Fraser River late run and Strait
of Georgia stocks may exhibit multiple, distinct migratory behaviors. Some proportion
appear to either return early to inside waters via Johnstone Strait (a migratory pulse that
has not been well-resolved with available data) or else remain resident within the Salish Sea
until they recruit into the fishery. Another component of these stocks appears to migrate
from the continental shelf through Juan de Fuca Strait immediately prior to spawning
migrations. If, as we suspect, some fish remain resident within the Salish Sea, there may be
substantial implications for management. For example, previous estimates of poor
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overwinter survival from acoustically tagged east coast Vancouver Island Chinook salmon
may be biased low (Neville, Beamish ¢» Chittenden, 2014).

Conservation implications

Near year-round occupancy of the west coast of Vancouver Island and the Strait of
Georgia by Chinook salmon emphasizes these locations should be considered foraging and
maturation habitats for a relatively large number of stocks. Importantly, each region

has oceanographic characteristics that differ from each other, as well as from offshore
and northern areas (Ware & McFarlane, 1989; Mackas ¢» Coyle, 2005). The west coast
of Vancouver Island is the approximate location of the bifurcation of the North
Pacific Current and straddles downwelling-dominated regions to the north and
upwelling-dominated regions to the south (Ware ¢» McFarlane, 1989). Interannual
variation in the latitude of the bifurcation point and basin-scale climate forcing (e.g., the
Pacific Decadal Oscillation) influences primary productivity and zooplankton
community composition, with subsequent effects on higher trophic levels, including
salmon (Peterson, 2009; Sydeman et al., 2011; Malick et al., 2017). Conversely, the Strait
of Georgia is a protected coastal sea that is strongly influenced by estuarine circulation
and freshwater inputs, rather than vertical transport (LeBlond, 1983). These traits
have resulted in zooplankton communities (Mackas et al., 2013) and fish population
dynamics (e.g., herring; Cleary et al., 2020) that are distinct from those of the continental
shelf.

Distinct spatio-temporal distributions may contribute to variation among salmon
stocks in growth and productivity. While declines in Chinook salmon body size and
age-at-maturity are widespread, their extent varies among regions (Ohlberger et al., 2018;
Oke et al., 2020). Given that Pacific salmon size- and age-at-maturity are influenced by
growth late in marine residence (Quinn, 2018), stock-specific adult marine distributions
may be essential to identifying mechanistic drivers of these declines. Already CWT
recovery data suggest Chinook salmon may exhibit stock-specific shifts in marine
distribution as climate change progresses, which could magnify divergent responses to
what is commonly viewed as a shared environment (Shelton et al., in press). From a
metapopulation perspective, variation in marine distributions may contribute to salmon
portfolio effects and stabilize aggregate abundance (Freshwater et al., 2018). Indeed
Chinook salmon populations entering the Salish Sea, a region that we have illustrated to
contain greater variability in marine behaviour, exhibit weaker synchrony in productivity
than stocks that enter the California Current or Gulf of Alaska (Dorner, Catalano ¢
Peterman, 2017; Ruff et al., 2017).

Interspecific interactions, including predation, are likely impacted by differences in
spatio-temporal distribution among Chinook salmon populations. Resident killer whales
preferentially target Chinook salmon and early in the summer depend heavily on spring
and summer run yearling Fraser River stocks (predominantly from the upper and
middle portions of the watershed) (Hanson et al., 2010). Although the absolute abundance
of yearling Fraser River Chinook salmon (all early run timing populations) is less than
summer and fall run subyearling stocks (CTC, 2019), our estimates of relative abundance
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suggest that yearling stocks may be particularly available to southern resident killer
whales due to their compressed migration through Juan de Fuca Strait. Conversely,
Fraser River fall run stocks have a more dispersed spatial and temporal distribution within
southern BC, which may reduce their availability as prey.

Data and model structure assumptions

Our predictions of stock-specific abundance depend on imperfect sampling of
fisheries-dependent data, resulting in several assumptions. First, we accounted for annual
variation via random effects. Such an approach was necessary due to imbalanced sampling
across the annual cycle among years and relatively few samples for many strata;
however, without year-specific fixed effects, the model will underestimate anomalous
boom or bust years in stock-specific abundance. Second, estimates of catch and effort for
the recreational fisheries data, derived from creel surveys and overflights, are particularly
uncertain. Since this observation error was not incorporated into our predictions, the
uncertainty associated with standardized CPUE estimates in inside regions is
underestimated.

Third, it is unclear how precisely stock-specific harvest reflects stock-specific relative
abundance because fisheries-independent estimates of mature Chinook salmon abundance
in marine areas are not available. For example, catchability may vary seasonally due to
changes in the depth distribution or behaviour of fish, as well as changes in fleet
composition (e.g., highly motivated and skilled fishers may make up a greater proportion
of the fleet during winter). Management actions, such as area closures and non-retention
periods, will impact fisher behaviour and may also decouple catch from abundance.

As a result, we can provide only minimum estimates of relative abundance of Fraser River
early run stocks in Juan de Fuca Strait and the southern Strait of Georgia, as well as WCVI
stocks in NWVI and SWVI, because spatio-temporal closures are used to minimize
incidental harvest of those stocks (DFO, 2012; Dobson, Holt ¢ Davis, 2020). Estimates of
composition may be particularly biased in Juan de Fuca Strait and the southern Strait
of Georgia, where recreational fisheries release relatively large numbers of individual
that are difficult to genetically sample (Dobson, Holt ¢» Davis, 2020; see Supporting
Information for additional information). These and other difficulties associated with
fisheries-dependent data emphasize the importance of developing robust catch sampling
programs and of leveraging multiple data sources to inform fisheries management
decisions.

Age structure is not incorporated into many salmon distribution models derived from
GSI data (including the one presented here), but is a logical addition to increase
ecological realism. CWT recoveries suggest older juvenile (Trudel et al., 2009) and adult
(Weitkamp, 2010) Chinook salmon age classes, within a stock, are distributed further
from their natal streams. GSI analyses incorporating age data from scale samples or
associated CWT indicators could be used to resolve how robust this pattern is and increase
the spatio-temporal resolution of movement models. Disentangling age- and stock-specific
marine distributions may be necessary to identify the mechanisms driving declines in
older age classes (Ohlberger et al., 2018; Oke et al., 2020).
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Our model estimates stock-specific abundance as a function of total abundance and
stock composition. Yet stock-specific abundance is commonly inferred directly from CWT
recoveries, which are expanded for tagging and sampling effort, then used to calculate total
abundance and stock composition as necessary. Such an approach approximates reality,
where total abundance is the sum of stock-specific abundance, and is necessary for
CWT recoveries because the entire catch is not tagged (thus composition estimates cannot
be applied to total catch). We believe, however, that this method is less appropriate for
GSI data because the expansion factors that are necessary to account for variable sampling
effort when analyzing CWT recoveries are not readily available for GSI samples.

We account for variable sampling effort by explicitly incorporating sample size into

the stock composition component of the model, which has the additional benefit of
accounting for uncertain stock assignments. Nevertheless, comparing inferences derived
from CWT and GSI data using a common model, perhaps by estimating stock-specific
abundance as latent variables constrained by total abundance, would be a valuable addition.

CONCLUSIONS

We believe that seasonal patterns of composition and stock-specific abundance derived
from GSI data can continue to improve fisheries management and our understanding of
Chinook salmon marine ecology. Future work could integrate GSI information with
data from other sources to clarify how ontogeny influences residence in different regions
or compare the distributions of tagged and untagged stocks. Where composition and catch
data can be matched at fine spatio-temporal scales, the model we present can be readily
down-scaled and used to guide tactical fisheries management decisions. Similarly, by
incorporating equivalent data on freshwater migration timing (Parken et al., 2008), this
framework could be extended throughout the migratory corridor. Finally, predictions of
seasonal abundance and composition could be used to parameterize simulation models to
inform strategic decisions related to ecosystem-based fisheries management.

We used a novel statistical model integrating catch, effort, and genetic data to predict
how stock-specific Chinook salmon abundance changes seasonally within nearshore
regions of southern British Columbia. We found that stocks, even those with similar
freshwater life histories and geographically proximate spawning locations, exhibited
marked differences in whether and when they used specific nearshore habitats. These
patterns represent distinct marine behaviours and may result in Chinook salmon
exhibiting stock-specific responses to environmental drivers such as basin-scale
oceanographic patterns or marine mammal abundance.

ACKNOWLEDGEMENTS

We are grateful to DFO Southcoast Area staff and their partners who collected the catch,
effort, and genetic stock composition data. Lee Kearey, Karin Mathias, and Bryan Rusch
provided particularly helpful insight when interpreting data. We also thank participants
of the Avid Anglers program who voluntarily submit biological data to improve salmon
stock assessment. Will Duguid, James Losee, and Chuck Parken provided valuable
information during discussions on Chinook salmon life history. Feedback from Kendra

Freshwater et al. (2021), PeerdJ, DOI 10.7717/peerj.11163 20/27


http://dx.doi.org/10.7717/peerj.11163
https://peerj.com/

Peer/

Holt, Will Satterthwaite, and an anonymous reviewer greatly improved the quality of this
manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Pacific Salmon Commission Southern Endowment Fund
and Fisheries and Oceans Canada. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
Pacific Salmon Commission Southern Endowment Fund.
Fisheries and Oceans Canada.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Cameron Freshwater conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.

e Sean C. Anderson performed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

e Terry D. Beacham performed the experiments, authored or reviewed drafts of the paper,
and approved the final draft.

o Wilf Luedke performed the experiments, authored or reviewed drafts of the paper, and
approved the final draft.

e Catarina Wor conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.

e Jackie King conceived and designed the experiments, authored or reviewed drafts of the
paper, and approved the final draft.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

Fisheries and Oceans Canada provided approval for DFO staff to sample fish for
scientific purposes under a blanket Section 52 license.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

Fisheries and Oceans Canada provided approval for DFO staff to sample fish for
scientific purposes under a blanket Section 52 license. (File Number 2018-502-0012).

Freshwater et al. (2021), PeerdJ, DOI 10.7717/peerj.11163 21/27


http://dx.doi.org/10.7717/peerj.11163
https://peerj.com/

Peer/

Data Availability

The following information was supplied regarding data availability:
Data and code necessary to complete all analyses are available at

DOI 10.5281/zenodo.4672524.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.11163#supplemental-information.

REFERENCES

Arostegui MC, Smith JM, Kagley AN, Spilsbury-Pucci D, Fresh KL, Quinn TP. 2017. Spatially
clustered movement patterns and segregation of subadult Chinook salmon within the Salish Sea.
Marine and Coastal Fisheries 9(1):1-12 DOI 10.1080/19425120.2016.1249580.

Beacham TD, Jonsen KL, Supernault J, Wetklo M, Deng L, Varnavskaya N. 2006. Pacific Rim
population structure of Chinook salmon as determined from microsatellite analysis.
Transactions of the American Fisheries Society 135(6):1604-1621 DOI 10.1577/T06-071.1.

Beacham TD, Wallace C, Jonsen K, McIntosh B, Candy JR, Willis D, Lynch C, Moore JS,
Bernatchez L, Withler RE. 2019. Comparison of coded-wire tagging with parentage-based
tagging and genetic stock identification in a large-scale coho salmon fisheries application
in British Columbia, Canada. Evolutionary Applications 12(2):230-254 DOI 10.1111/eva.12711.

Beacham TD, Winther I, Jonsen KL, Wetklo M, Deng L, Candy JR. 2008. The application of
rapid microsatellite-based stock identification to management of a Chinook salmon troll fishery
off the Queen Charlotte Islands, British Columbia. North American Journal of Fisheries
Management 28(3):849-855 DOI 10.1577/M06-167.1.

Bellinger MR, Banks MA, Bates SJ, Crandall ED, Garza JC, Sylvia G, Lawson PW. 2015. Geo-
referenced, abundance calibrated ocean distribution of Chinook salmon (Oncorhiynchus
tshawytscha) stocks across the West Coast of North America. PLOS ONE 10(7):1-25.

Chamberlin JW, Essington TE, Ferguson JW, Quinn TP. 2011. The influence of hatchery rearing
practices on salmon migratory behavior: is the tendency of Chinook salmon to remain within
Puget Sound affected by size and date of release? Transactions of the American Fisheries Society
140(5):1398-1408 DOI 10.1080/00028487.2011.623993.

Chamberlin JW, Quinn TP. 2014. Effects of natal origin on localized distributions of Chinook
salmon, Oncorhynchus tshawytscha, in the marine waters of Puget Sound. Washington Fisheries
Research 153(Suppl. 1):113-122 DOI 10.1016/j.fishres.2014.01.008.

Cleary J, Hawkshaw S, Grinnell M, Grandin C, Daniel K, Thompson M. 2020. Pacific Herring in
British Columbia, 2019. In: Boldt Jennifer L, Javorski B, Chandler PC, eds. State of the Physical,
Biological and Selected Fishery Resources of Pacific Canadian Marine Ecosystems in 2019
Number. Vol. 3377. Burlington: Fisheries and Oceans Canada, 73-77.

COSEWIC. 2018. Chinook salmon (Oncorhynchus tshawytscha): COSEWIC assessment and
status report 2018. Committe on the Status of Endangered Wildlife In Canada. Available at
https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/
cosewic-assessments-status-reports/chinook-salmon-2018.html.

CTC. 2019. Annual report of catch and escapement for 2018. Technical Report 19-01, Pacific
Salmon Commission. Available at https://www.psc.org/publications/technical-reports/technical-
committee-reports/chinook/.

Freshwater et al. (2021), PeerdJ, DOI 10.7717/peerj.11163 22/27


https://doi.org/10.5281/zenodo.4672524.
http://dx.doi.org/10.7717/peerj.11163#supplemental-information
http://dx.doi.org/10.7717/peerj.11163#supplemental-information
http://dx.doi.org/10.1080/19425120.2016.1249580
http://dx.doi.org/10.1577/T06-071.1
http://dx.doi.org/10.1111/eva.12711
http://dx.doi.org/10.1577/M06-167.1
http://dx.doi.org/10.1080/00028487.2011.623993
http://dx.doi.org/10.1016/j.fishres.2014.01.008
https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/chinook-salmon-2018.html
https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/chinook-salmon-2018.html
https://www.psc.org/publications/technical-reports/technical-committee-reports/chinook/
https://www.psc.org/publications/technical-reports/technical-committee-reports/chinook/
http://dx.doi.org/10.7717/peerj.11163
https://peerj.com/

Peer/

CTC. 2020. Annual report of catch and escapement for 2019. Technical Report 20-01, Pacific
Salmon Commission. Available at https://www.psc.org/publications/technical-reports/technical-
committee-reports/chinook/.

Dann TH, Habicht C, Baker TT, Seeb JE. 2013. Exploiting genetic diversity to balance
conservation and harvest of migratory salmon. Canadian Journal of Fisheries & Aquatic Sciences
70(5):785-793 DOI 10.1139/cjfas-2012-0449.

DFO. 2012. Assessment of West Coast Vancouver Island Chinook and 2010 forecast. Canadian
Science advisory secretariat science advisory report, 2012/032. Available at http://publications.gc.
ca/site/eng/432189/publication.html.

DFO. 2018. Pacific region integrated fisheries management plan June 1, 2017 - May 31, 2018:
Salmon Southern BC. Technical report. Available at https://www.pac.dfo-mpo.gc.ca/fm-gp/ifmp-
eng.html.

DFO. 2019. Technical review of stream-type Fraser River Chinook management approach.
Canadian science advisory secretariat science advisory report, 2019/056:16.

DFO. 2020. Recovery potential assessment for 11 designatable units of Fraser River Chinook
salmon, Oncorhynchus tshawytscha, Part 1: elements 1 to 11. CSAS science advisory report,
2020/23(May). Available at http://publications.gc.ca/site/eng/9.887559/publication.html.

Dobson D, Holt K, Davis B. 2020. A technical review of the management approach for
stream-type Fraser River chinook. DFO Canadian science advisory secretariat research
document, 2020/027:290. Available at http://publications.gc.ca/collections/collection_2020/mpo-
dfo/fs70-5/Fs70-5-2020-027-eng.pdf.

Dorner B, Catalano MJ, Peterman RM. 2017. Spatial and temporal patterns of covariation in
productivity of Chinook salmon populations of the Northeastern Pacific. Canadian Journal of
Fisheries and Aquatic Sciences 75(7):1082-1095 DOI 10.1139/cjfas-2017-0197.

Douma JC, Weedon JT. 2019. Analysing continuous proportions in ecology and evolution: A
practical introduction to beta and Dirichlet regression. Methods in Ecology and Evolution
10(9):1412-1430 DOI 10.1111/2041-210X.13234.

English K, Searing GP, Nagtegaal DA. 2002. Review of the Strait of Georgia recreational creel
survey, 1983-1999. Canadian Technical Report of Fisheries and Aquatic Sciences 2414:95.

Fisher JP, Weitkamp LA, Teel DJ, Hinton SA, Orsi JA, Farley EV, Morris JFT, Thiess ME,
Sweeting RM, Trudel M. 2014. Early ocean dispersal patterns of Columbia River Chinook and
coho salmon. Transactions of the American Fisheries Society 143(1):252-272
DOI 10.1080/00028487.2013.847862.

Freshwater C, Burke BJ, Scheuerell MD, Grant SCH, Trudel M, Juanes F. 2018. Coherent
population dynamics associated with sockeye salmon juvenile life history strategies. Canadian
Journal of Fisheries and Aquatic Science 75(8):1346-1356 DOI 10.1139/cjfas-2017-0251.

Hanson MB, Baird RW, Ford JKB, Hempelmann-halos J, Doornik DMV, Candy JR,
Emmons CK, Schorr GS, Gisborne B, Ayres KL, Wasser SK, Balcomb KC, Sneva ]G,
Ford MJ. 2010. Species and stock identification of prey consumed by endangered southern
resident killer whales in their summer range. Endangered Species Research 11:69-82
DOI 10.3354/esr00263.

Harley SJ, Myers RA, Dunn A. 2001. Is catch-per-unit-effort proportional to abundance?
Canadian Journal of Fisheries and Aquatic Sciences 58(9):1760-1772 DOI 10.1139/f01-112.
Healey MC. 1983. Coastwide distribution and ocean migration patterns of stream- and ocean-type

Chinook salmon, Oncorhynchus tshawytscha. Canadian Field-Naturalist 97(4):427-433.
Healey MC, Groot C. 1987. Marine migration and orientation of ocean-type Chinook and sockeye
salmon. In: Dadswell M, Klauda R, Moffitt C, Saunders R, Rulifson R, Cooper J, eds. Common

Freshwater et al. (2021), PeerdJ, DOI 10.7717/peerj.11163 23/27


https://www.psc.org/publications/technical-reports/technical-committee-reports/chinook/
https://www.psc.org/publications/technical-reports/technical-committee-reports/chinook/
http://dx.doi.org/10.1139/cjfas-2012-0449
http://publications.gc.ca/site/eng/432189/publication.html
http://publications.gc.ca/site/eng/432189/publication.html
https://www.pac.dfo-mpo.gc.ca/fm-gp/ifmp-eng.html
https://www.pac.dfo-mpo.gc.ca/fm-gp/ifmp-eng.html
http://publications.gc.ca/site/eng/9.887559/publication.html
http://publications.gc.ca/collections/collection_2020/mpo-dfo/fs70-5/Fs70-5-2020-027-eng.pdf
http://publications.gc.ca/collections/collection_2020/mpo-dfo/fs70-5/Fs70-5-2020-027-eng.pdf
http://dx.doi.org/10.1139/cjfas-2017-0197
http://dx.doi.org/10.1111/2041-210X.13234
http://dx.doi.org/10.1080/00028487.2013.847862
http://dx.doi.org/10.1139/cjfas-2017-0251
http://dx.doi.org/10.3354/esr00263
http://dx.doi.org/10.1139/f01-112
http://dx.doi.org/10.7717/peerj.11163
https://peerj.com/

Peer/

Strategies of Anadromous and Catadromous Fishes number 1 in American Fisheries Society
Symposium. Vol. 1. Bethesda: American Fisheries Society, 298-312.

Hess JE, Whiteaker JM, Fryer JK, Narum SR. 2014. Monitoring stock-specific abundance, run
timing, and straying of Chinook salmon in the Columbia River using genetic stock identification
(GSI). North American Journal of Fisheries Management 34(1):184-201
DOI 10.1080/02755947.2013.862192.

Hilborn R, Walters CJ. 1992. Quantitative fisheries stock assessment: choice, dynamics and
uncertainty. London: Chapman & Hall.

Johnson JK. 2004. Regional overview of coded wire tagging of anadromous salmon and steelhead
in northwest America. Regional Mark Processing Center, Pacific States Marine Fisheries
Commission. Available at https://www.rmpc.org/files/RegionalOverviewProfPaper-30May04.pdf.

Kristensen K, Nielsen A, Berg CW, Skaug H, Bell BM. 2016. TMB: automatic differentiation and
laplace approximation. Journal of Statistical Software 70(5):1-21 DOI 10.18637/jss.v070.i05.

Larson WA, Utter FM, Myers KW, Templin WD, Seeb JE, Guthrie CM III, Bugaev AV,

Seeb LW. 2013. Single-nucleotide polymorphisms reveal distribution and migration of Chinook
salmon (Oncorhynchus tshawytscha) in the Bering Sea and North Pacific Ocean. Canadian
Journal of Fisheries and Aquatic Sciences 70(1):128-141 DOI 10.1139/cjfas-2012-0233.

LeBlond PH. 1983. The Strait of Georgia: functional anatomy of a coastal sea. Canadian Journal of
Fisheries and Aquatic Sciences 40(7):1033-1063 DOI 10.1139/£83-128.

Mackas D, Galbraith M, Faust D, Masson D, Young K, Shaw W, Romaine S, Trudel M, Dower ],
Campbell R, Sastri A, Bornhold Pechter EA, Pakhomov E, El-Sabaawi R. 2013. Zooplankton
time series from the Strait of Georgia: results from year-round sampling at deep water locations,
1990-2010. Progress in Oceanography 115(50):129-159 DOI 10.1016/j.pocean.2013.05.019.

Mackas DL, Coyle KO. 2005. Shelf-offshore exchange processes, and their effects on
mesozooplankton biomass and community composition patterns in the northeast Pacific. Deep
Sea Research Part II: Topical Studies in Oceanography 52(5-6):707-725
DOI 10.1016/j.dsr2.2004.12.020.

Malick MJ, Cox SP, Mueter FJ, Dorner B, Peterman RM. 2017. Effects of the North Pacific
Current on the productivity of 163 Pacific salmon stocks. Fisheries Oceanography 26(3):268-281
DOI 10.1111/fog.12190.

Nandor GF, Longwill JR, Webb DL. 2010. Overview of the coded wire tag program in the greater
pacific region of North America. In: Wolf KS, O’Neal JS, eds. PNAMP Special Publication:
Tagging, Telemetry and Marking Measures for Monitoring Fish Populations. Portland, Oregon:
Pacific Northwest Aquatic Monitoring Partnership, 5-46.

Neville CM, Beamish RJ, Chittenden CM. 2014. Poor survival of acoustically-tagged juvenile
Chinook Salmon in the Strait of Georgia, British Columbia. Canada Transactions of the
American Fisheries Society 144(1):25-33 DOI 10.1080/00028487.2014.954053.

Ohlberger J, Ward EJ, Schindler DE, Lewis B. 2018. Demographic changes in Chinook salmon
across the Northeast Pacific Ocean. Fish and Fisheries 19(January):533-546
DOI 10.1111/faf.12272.

Oke KB, Cunningham CJ, Westley PAH, Baskett ML, Carlson SM, Clark J, Hendry AP,
Karatayev VA, Kendall NW, Kibele J, Kindsvater HK, Kobayashi KM, Lewis B, Munch S,
Reynolds JD, Vick GK, Palkovacs EP. 2020. Recent declines in salmon body size impact
ecosystems and fisheries. Nature Communications 11(1):4155
DOI 10.1038/s41467-020-17726-z.

Freshwater et al. (2021), PeerdJ, DOI 10.7717/peerj.11163 24/27


http://dx.doi.org/10.1080/02755947.2013.862192
https://www.rmpc.org/files/RegionalOverviewProfPaper-30May04.pdf
http://dx.doi.org/10.18637/jss.v070.i05
http://dx.doi.org/10.1139/cjfas-2012-0233
http://dx.doi.org/10.1139/f83-128
http://dx.doi.org/10.1016/j.pocean.2013.05.019
http://dx.doi.org/10.1016/j.dsr2.2004.12.020
http://dx.doi.org/10.1111/fog.12190
http://dx.doi.org/10.1080/00028487.2014.954053
http://dx.doi.org/10.1111/faf.12272
http://dx.doi.org/10.1038/s41467-020-17726-z
http://dx.doi.org/10.7717/peerj.11163
https://peerj.com/

Peer/

O’Neill SM, West JE. 2009. Marine distribution, life history traits, and the accumulation of
polychlorinated biphenyls in Chinook salmon from Puget Sound. Washington Transactions of
the American Fisheries Society 138(3):616-632 DOI 10.1577/T08-003.1.

Parken CK, Candy JR, Irvine JR, Beacham TD. 2008. Genetic and coded wire tag results combine
to allow more-precise management of a complex Chinook salmon aggregate. North American
Journal of Fisheries Management 28(1):328-340 DOI 10.1577/M06-110.1.

Parker RR. 1968. Marine mortality schedules of pink salmon of the Bella Coola River, Central
British Columbia. Journal Fisheries Research Board of Canada 25(4):757-794
DOI 10.1139/f68-068.

Peterson R, Clark RA, Evenson DF. 2016. Does the Queets Exploitation Rate Indicator Stock
represent the distribution of fishery impacts of Washington coast Chinook salmon stocks in
Pacific Salmon Treaty fisheries? Alaska Department of Fish and Game, Division of Commercial
Fisheries, Regional Information Report, 5].2016-06:50. Available at https://www.arlis.org/docs/
vol1/M/974924132.pdyf.

Peterson WT. 2009. Copepod species richness as an indicator of long-term changes in the coastal
ecosystem of the northern California Current. CalCOFI Report 50:73-81.

PSC. 2005. Report of the expert panel on the future of the coded wire tag recovery program for
Pacific salmon. Pacific Salmon Commission Technical Report, 18(November):230 p.

Quinn TP. 2018. The behaviour and ecology of pacific salmon and trout. Second Edition. Seattle,
WA: University of British Columbia Press.

R Core Team. 2020. R: a language and environment for statistical computing. Vienna, Austria: The
R Foundation for Statistical Computing.

Riddell BE, Brodeur RD, Bugaev AV, Moran P, Murphy JM, Orsi JA, Trudel M, Weitkamp LA,
Wells BK, Wertheimer AC. 2018. Ocean ecology of Chinook Salmon. In: Beamish RJ, ed. Ocean
Ecology of Pacific Salmon and Trout. Bethesda, MD: American Fisheries Society, 555-696.

Ruff CP, Anderson JH, Kemp IM, Kendall NW, McHugh PA, Velez-Espino A, Greene CM,
Trudel M, Holt CA, Ryding KE, Rawson K. 2017. Salish Sea Chinook salmon exhibit weaker
coherence in early marine survival trends than coastal populations. Fisheries Oceanography
26(6):625-637.

Runge CA, Martin TG, Possingham HP, Willis SG, Fuller RA. 2014. Conserving mobile species.
Frontiers in Ecology and the Environment 12(7):395-402 DOI 10.1890/130237.

Satterthwaite WH, Ciancio J, Crandall E, Palmer-Zwahlen ML, Grover AM, O’Farrell MR,
Anderson EC, Mohr MS, Garza JC. 2015. Stock composition and ocean spatial distribution
inference from California recreational Chinook salmon fisheries using genetic stock
identification. Fisheries Research 170(Suppl. 1):166-178 DOI 10.1016/j.fishres.2015.06.001.

Satterthwaite WH, Mohr MS, O’Farrell MR, Anderson EC, Banks MA, Bates SJ, Bellinger MR,
Borgerson LA, Crandall ED, Garza JC, Kormos BJ, Lawson PW, Palmer-Zwahlen ML. 2014.
Use of genetic stock identification data for comparison of the ocean spatial distribution, size at
age, and fishery exposure of an untagged stock and its indicator: California Coastal versus
Klamath River Chinook salmon. Transactions of the American Fisheries Society 143(1):117-133
DOI 10.1080/00028487.2013.837096.

Satterthwaite WH, Mohr MS, O’Farrell MR, Wells BK. 2013. A comparison of temporal patterns
in the ocean spatial distribution of California’s Central Valley Chinook salmon runs. Canadian
Journal of Fisheries and Aquatic Sciences 70(4):574-584 DOI 10.1139/cjfas-2012-0395.

Secor DH. 2015. Migration ecology of marine fishes. Baltimore, MD: Johns Hopkins University
Press.

Freshwater et al. (2021), PeerdJ, DOI 10.7717/peerj.11163 25/27


http://dx.doi.org/10.1577/T08-003.1
http://dx.doi.org/10.1577/M06-110.1
http://dx.doi.org/10.1139/f68-068
https://www.arlis.org/docs/vol1/M/974924132.pdf
https://www.arlis.org/docs/vol1/M/974924132.pdf
http://dx.doi.org/10.1890/130237
http://dx.doi.org/10.1016/j.fishres.2015.06.001
http://dx.doi.org/10.1080/00028487.2013.837096
http://dx.doi.org/10.1139/cjfas-2012-0395
http://dx.doi.org/10.7717/peerj.11163
https://peerj.com/

Peer/

Seitz AC, Courtney MB, Evans MD, Manishin K. 2019. Pop-up satellite archival tags reveal
evidence of intense predation on large immature Chinook salmon (Oncorhynchus tshawytscha)
in the North Pacific Ocean. Canadian Journal of Fisheries and Aquatic Science 76(9):1608-1615
DOI 10.1139/cjfas-2018-0490.

Shaklee JB, Beacham TD, Seeb L, White BA. 1999. Managing fisheries using genetic data case
studies. Fisheries Research 43(1-3):45-78 DOI 10.1016/S0165-7836(99)00066-1.

Shelton AO, Satterthwaite WH, Ward EJ, Feist BE, Burke B]J. 2019. Using hierarchical models to
estimate stock-specific and seasonal variation in ocean distribution, survivorship, and aggregate
abundance of fall run Chinook salmon. Canadian Journal of Fisheries and Aquatic Sciences
76(1):95-108 DOI 10.1139/cjfas-2017-0204.

Shelton AO, Sullaway GH, Ward EJ, Feist BE, Somers KA, Tuttle VJ, Watson JT,
Satterthwaite WH. Redistribution of salmon populations in the northeast Pacific ocean in
response to climate. Fish and Fisheries (in press) faf.12530.

Sydeman W], Thompson SA, Field JC, Peterson WT, Tanasichuk RW, Freeland HJ, Bograd SJ,
Rykaczewski RR. 2011. Does positioning of the North Pacific Current affect downstream
ecosystem productivity? Geophysical Research Letters 38(12):L12606
DOI 10.1029/2011GL047212.

Thorson JT, Johnson KF, Methot RD, Taylor IG. 2017. Model-based estimates of effective sample
size in stock assessment models using the Dirichlet-multinomial distribution. Fisheries Research
192(November):84-93 DOI 10.1016/j.fishres.2016.06.005.

Trudel M, Fisher J, Orsi JA, Morris JFT, Thiess ME, Sweeting RM, Hinton S, Fergusson EA,
Welch DW. 2009. Distribution and migration of juvenile Chinook salmon derived from coded
wire tag recoveries along the continental shelf of western North America. Transactions of the
American Fisheries Society 138(6):1369-1391 DOI 10.1577/T08-181.1.

Tucker S, Trudel M, Welch D, Candy ], Morris J, Thiess M, Wallace C, Beacham T. 2012.
Annual coastal migration of juvenile Chinook salmon: static stock-specific patterns in a highly
dynamic ocean. Marine Ecology Progress Series 449:245-262 DOI 10.3354/meps09528.

Vélez-Espino LA, Ford JK, Araujo HA, Ellis G, Parken CK, Sharma R. 2015. Relative
importance of Chinook salmon abundance on resident killer whale population growth and
viability. Aquatic Conservation: Marine and Freshwater Ecosystems 25(6):756-780
DOI 10.1002/aqc.2494.

Ward EJ, Holmes EE, Balcomb KC. 2009. Quantifying the effects of prey abundance on killer
whale reproduction. Journal of Applied Ecology 46(3):632-640
DOI 10.1111/j.1365-2664.2009.01647 x.

Ware DM, McFarlane GA. 1989. Fisheries production domains in the northeast Pacific Ocean.
Effects of Ocean Variability on Recruitment and an Evaluation of Parameters Used in Stock
Assessment 108:359-379.

Weitkamp LA. 2010. Marine distributions of Chinook salmon from the west coast of North
America determined by coded wire tag recoveries. Transactions of the American Fisheries Society
139(1):147-170 DOI 10.1577/T08-225.1.

Wilmot R, Kondzela C, Guthrie C, Masuda M. 1998. Genetic stock identification of chum salmon
harvested incidentally in the 1994 and 1995 Bering Sea trawl fishery. North Pacific Anadromous
Fish Commission Bulletin 1:285-299.

Winther I, Beacham TD. 2006. The application of Chinook salmon stock composition data to
management of the Queen Charlotte Islands troll fishery, 2002 to 2005. Canadian Technical

Freshwater et al. (2021), PeerdJ, DOI 10.7717/peerj.11163 26/27


http://dx.doi.org/10.1139/cjfas-2018-0490
http://dx.doi.org/10.1016/S0165-7836(99)00066-1
http://dx.doi.org/10.1139/cjfas-2017-0204
http://dx.doi.org/10.1029/2011GL047212
http://dx.doi.org/10.1016/j.fishres.2016.06.005
http://dx.doi.org/10.1577/T08-181.1
http://dx.doi.org/10.3354/meps09528
http://dx.doi.org/10.1002/aqc.2494
http://dx.doi.org/10.1111/j.1365-2664.2009.01647.x
http://dx.doi.org/10.1577/T08-225.1
http://dx.doi.org/10.7717/peerj.11163
https://peerj.com/

Peer/

Report of Fisheries and Aquatic Sciences, 2665. Available at https://www.researchgate.net/
publication/281294557_The_application_of _Chinook_salmon_stock_composition_data_to_
management_of _the_Queen_Charlotte_Islands_troll_fishery_2002_to_2005.

Wood S. 2006. Generalized additive models: an introduction with R. London: Chapman and Hall.

Wood SN. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of
semiparametric generalized linear models. Journal of the Royal Statistical Society 73(1):3-36
DOI 10.1111/j.1467-9868.2010.00749.x.

Freshwater et al. (2021), PeerdJ, DOI 10.7717/peerj.11163 27/27


https://www.researchgate.net/publication/281294557_The_application_of_Chinook_salmon_stock_composition_data_to_management_of_the_Queen_Charlotte_Islands_troll_fishery_2002_to_2005
https://www.researchgate.net/publication/281294557_The_application_of_Chinook_salmon_stock_composition_data_to_management_of_the_Queen_Charlotte_Islands_troll_fishery_2002_to_2005
https://www.researchgate.net/publication/281294557_The_application_of_Chinook_salmon_stock_composition_data_to_management_of_the_Queen_Charlotte_Islands_troll_fishery_2002_to_2005
http://dx.doi.org/10.1111/j.1467-9868.2010.00749.x
http://dx.doi.org/10.7717/peerj.11163
https://peerj.com/

	An integrated model of seasonal changes in stock composition and abundance with an application to Chinook salmon
	Introduction
	Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


