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ABSTRACT
The study of biogeography seeks taxa that share a key set of characteristics, such as
timescale of diversification, dispersal ability, and ecological lability. Tarantulas are ideal
organisms for studying evolution over continental-scale biogeography given their time
period of diversification, their mostly long-lived sedentary lives, low dispersal rate, and
their nevertheless wide circumtropical distribution. In tandem with a time-calibrated
transcriptome-based phylogeny generated by PhyloBayes, we estimate the ancestral
ranges of ancient tarantulas using two methods, DEC+j and BBM, in the context of
their evolution. We recover two ecologically distinct tarantula lineages that evolved on
the Indian Plate before it collided with Asia, emphasizing the evolutionary significance
of the region, and show that both lineages diversified across Asia at different times.
The most ancestral tarantulas emerge on the Americas and Africa 120 Ma–105.5 Ma.
We provide support for a dual colonization of Asia by two different tarantula lineages
that occur at least 20 million years apart, as well as a Gondwanan origin for the group.
We determine that their current distributions are attributable to a combination of
Gondwanan vicariance, continental rafting, and geographic radiation. We also discuss
emergent patterns in tarantula habitat preferences through time.

Subjects Biodiversity, Biogeography, Bioinformatics, Entomology, Zoology
Keywords Araneae, Biogeography, Indian plate, Tarantulas, Theraphosidae, Gondwana,
Time-calibration

INTRODUCTION
Due to the historically close geographies of several continental land masses prior to the
breakup of the supercontinents Laurasia and Gondwana, many related taxa are presently
found on opposite sides of the world. For instance, it has been shown that rodents and
primates (De Oliveira, Molina & Marroig, 2009) in the Neotropics likely arrived there
from Africa. Several mass faunal exchanges between continents have occurred when two
land masses eventually meet, such as the ‘‘Great American Interchange’’ (Marshall et al.,
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1982) after the formation of the Isthmus of Panama (O’Dea et al., 2016), the dispersal
of several taxa ‘‘out of India’’ and into Asia/Indomalaya (Karanth, 2006), and exchanges
between Africa and Eurasia (Hedges, 2001; Springer et al., 2011). If we are to understand
the evolutionary patterns involved in the diversification of taxa and the generation of
biodiversity, it becomes important to consider the roles that continental drift may play,
particularly in cases where evolutionary novelties have emerged in the diversification
process.

Studies that use model taxa to understand biogeographic patterns are limited by the fact
that the ideal model organism should have both a low dispersal ability and a wide (if not
global) distribution. Given their low motility and wide array of dispersal strategies, plants
have often been the focus of biogeographic studies (e.g., Zhou et al., 2018; McGlone et al.,
2018; Fariña et al., 2018; Echeverría-Londoño et al., 2018). Mygalomorph spiders from the
family Theraphosidae, also known as tarantulas, are also useful models for understanding
biogeographic patterns. They possess several intriguing adaptations that have received
significant attention in recent years, such as their stridulatory capacity (Galleti-Lima &
Guadanucci, 2018; Galleti-Lima & Guadanucci, 2019), urticating bristle evolution (Bertani,
2003; Kaderka et al., 2019; Foley et al., 2019), colouration (Foley, Saranathan & Piel, 2020),
and venom compositions (Santana et al., 2017; Lüddecke, Vilcinskas & Lemke, 2019).
Robust, subfamily-level phylogenies are late in coming (Lüddecke et al., 2018; Foley et
al., 2019), but these phylogenies have verified the monophylies of all studied subfamilies,
except Ischnocolinae (with Selenogyrinae being the only subfamily not represented by
these studies). It has only recently become possible to study tarantula adaptations in an
explicitly phylogenetic context.

This diverse suite of intriguing adaptations undoubtedly contributed to the success
of these creatures. They are quite widespread and are found throughout the subtropical
regions of every continent (Gallon, 2000; World Spider Catalog, 2020). However, while
many mature male tarantulas are known to wander in search of females (Prentice, 1992;
Pérez-Miles et al., 2005; Pérez-Miles et al., 2007), most juvenile and female tarantulas rarely
venture far from their retreats (Yáñez & Floater, 2000; Schultz & Schultz, 2009). Spiderlings
seldom disperse far from the burrows of their mothers, leading to dense aggregations of
burrows in relatively small areas (Reichling, 2000; Shillington & McEwen, 2006). There are
no reports of ballooning tarantulas like in other mygalomorph families (Coyle, 1983; Coyle
et al., 1985; Buzatto, Haeusler & Tamang, 2021), but some mygalomorphs are known to
be highly divergent across small areas (Starrett & Hedin, 2007). These behaviours do not
portend that tarantulas would be successful dispersers, yet they have spread across the
globe and have colonized strikingly different ecological niches.

Previous studies estimate that tarantulas emerged between 150 Ma–71 Ma (Bond et al.,
2014) or ∼107 Ma (Opatova et al., 2020), which is compatible with a Gondwanan origin.
Indeed, some tarantulas (Selenocosmiinae) are suggested to be North Gondwanan taxa
(West, Nunn & Hogg, 2012).Given their habitat specificity and lowdispersal ability, yetwide
geographic distribution, tarantulas are goodmodel organisms for addressing biogeographic
questions. In particular, two distinct lineages of Asian tarantulas were recovered in the
most recent subfamily-level tarantula phylogeny (Foley et al., 2019). Estimates surrounding
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the timing of the collision between the Indian Subcontinent and Asia vary, but most studies
agree on a late Paleocene/early Eocene timescale around 55 Ma (Hu et al., 2016; Zheng &
Wu, 2018; Westerweel et al., 2019). Migrations from the Indian Subcontinent to Asia are
known to have played a significant role in generating the high faunal diversity observed
in Asia today (Karanth, 2006; Morley et al., 2016; Morley, 2018; Garg & Biju, 2019), even
amongst spiders (Li, Shao & Li, 2020) and other invertebrates (Joshi, Karanth & Edgecombe,
2020). It has also been shown that other spiders of a comparable age originated on the
Gondwanan supercontinent, i.e., South America and Africa, before eventually colonizing
Asia and Oceania (Chamberland et al., 2018). We expect to recover a similar pattern for
tarantulas.

Here, we test the Gondwanan origin hypothesis for tarantulas using a broad sampling
of molecular data and taxa. We also hypothesize that Asian tarantulas may have originated
on the Indian Subcontinent and subsequently dispersed throughout Asia. We test this by
inferring the historical patterns that contributed to present-day theraphosid distributions.
We use a subfamily-level chronogram of Theraphosidae and estimate their ancestral
ranges under two different models, allowing us to interpret the node ages in the context
of geographical events. We then discuss a timeline of events that may have led to the
emergence of theraphosid subfamilies, with emphasis on those found in Asia, and present
some hypotheses on how those events impacted their current distributions.

METHODS
Data acquisition
Although theraphosids are the primary focus of this study, the poor fossil record in this
group required that we expand our sampling to include other Mygalomorphae with richer
fossil records so that these could assist in molecular clock calibration. Only two tarantula
fossils are known, and neither can be firmly placed onto the tarantula phylogeny; one from
Burmese amber dating to ∼100 Mya (Wunderlich & Müller, 2020), and one from Chiapas
amber dating to somewhere between the late Oligocene and mid Miocene (possibly as
young as 16 Mya, Dunlop, Harms & Penney, 2008). Inferring calibration points from prior
studies (i.e., secondary calibration) has also been discouraged (Schenk, 2016).

Transcriptome data for 29 theraphosids and 18 other mygalomorphs was obtained from
the publicly available sequence read archive (SRA) database (http://www.ncbi.nlm.nih.gov/
sra). Additionally, to improve the rooting of the family, we included a new transcriptome
from a field-collected barychelid, Rhianodes atratus (collected under permit number
NP/RP18-046, issued by the National Parks Board of Singapore). RNA was extracted using
a TRIzol total RNA extraction protocol (Simms, Cizdziel & Chomczynski, 1993). The RNA
was subsequently sent to a commercial company (NovogeneAIT) for paired-end sequencing
on an Illumina HiSeq 4000. The resulting transcriptome is available on NCBI’s Sequence
Read Archive (SRA) under bioproject number PRJNA635363 (accession GIXJ00000000).
Accession numbers for a total of 48 transcriptomes are included in Table S1. Assembly
data for the Rhianodes atratus (Barychelidae) transcriptome is available in Table S2.
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A core ortholog variant to obtain a DNA supermatrix
Transcriptomes were assembled using Trinity v2.6.6 (Grabherr et al., 2011), and protein
coding regions were predicted using TransDecoder v5.5.0 (Haas et al., 2013). The core-
ortholog (OG) pipeline as per Garrison et al. (2016) was implemented for spider-specific
ortholog selection across our dataset. The initial set of core orthologs was generated from
a selection of publicly available transcriptomes, as per Cheng & Piel (2018), and a set of
4,446 profile hidden Markov models (pHMMs) was generated following their methods.
HaMStR v13.1 (Ebersberger, Strauss & Von Haeseler, 2009) inferred orthology between
these pHMMs and our dataset. Groups of orthologous genes were then pooled together
and subjected to several filtering steps.

Software used during the filtering process include the following: MAFFT (Katoh et
al., 2005) for alignment during filtering; ALISCORE (Misof & Misof, 2009; Kück et al.,
2010) for alignment trimming; ALICUT (Kück, 2009) for excising ambiguous regions;
Infoalign (Rice, Longden & Bleasby, 2000) for generating consensus sequences from OGs.
Generally, the filtering process and criteria was the same as in Foley et al. (2019) with one
key exception—instead of removing any OG that was sampled for half (or fewer) of the
taxa included, we chose to only retain OGs that were present in all taxa, discarding the rest.
Despite this stringency, an adequate set of 743 OG alignments remained, each of which
included all 48 taxa. To obtain a more neutral, granular dataset, these protein alignments
were converted back to DNA alignments using localized tBLASTn searches for each taxon
(Camacho et al., 2009) against their corresponding Trinity outputs, in tandem with a set of
custom Perl scripts for parsing. Gene trees for each of the 743 alignments were estimated
using RAxML (Stamatakis, 2014). These departures from previous filtering criteria were
informed by the downstream needs of our analysis pipeline.

To exclude OGs with conflicting signals, we identified divergent gene trees using
Robinson-Foulds (RF) metrics (Robinson & Foulds, 1981) in the R package ‘‘phytools’’
(Revell, 2012). Given that the theraphosid tree from Foley et al. (2019) received 100%
bootstrap support at almost all nodes, we used this as the reference tree to compare with
each gene tree. In order to calculate RF values, each of our 743 gene trees was pruned to
match the set of taxa in the reference tree. Any OG DNA alignment whose corresponding
gene tree received an RF score of ≥ 6 was discarded, leaving 125 OGs.

Next, TranslatorX (Abascal, Zardoya & Telford, 2010) was used to realign the DNA
sequences for the 125 OGs according to our protein alignments. Visualization of OGs
in DAMBE v7 (Xia & Xie, 2001) showed that phylogenetically informative content was
being distorted due to sequence saturation (Xia et al., 2003; Philippe et al., 2011), so every
third base was subsequently removed to mitigate this effect. Lastly, FASconCAT (Kück &
Meusemann, 2010) was used to concatenate all 125 OGs into a supermatrix, and GBLOCKS
(Castresana, 2002) was subsequently used to trim and excise ambiguous regions. The result
was a 96% complete DNA alignment of 48 taxa and 89,302 characters.

Time calibration with PhyloBayes
BEAST v1.10.4 (Drummond & Rambaut, 2007) was used to generate an initial starting
phylogeny for time calibration, running for 100 million generations with 20% of the
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trees discarded as burnin. Divergence times were estimated in PhyloBayes v4.1 (Lartillot,
Lepage & Blanquart, 2009) using this tree, the DNA supermatrix, and four fossils to infer
calibration points. We followed Opatova et al. (2020) in treating the oldest mygalomorph
fossil (Rosamygale grauvogely, Selden & Gall, 1992) as an Avicularioidea crown group, and
use a subset of their fossil calibrations.

The first calibrated node corresponds to the Avicularioidea-Atypoidea split. The
Rosamygale grauvogely fossil dated to 242 Million years ago (Ma), which represents
the minimum bound for this node, while 323 Ma serves as the maximum bound and
corresponds to the oldest age of the Bashkirian stage from which the oldest known spider
fossil (Arthrolycosa sp.) hails (Selden et al., 2014; Garwood et al., 2016). Secondly, the split
between Nemesioidina and Bemmeridae/Theraphosidae was assigned a minimum bound
of 125 Ma based on the Cretamygale chasei fossil (Selden, 2002), and a maximum bound
of 242 Ma based on Rosamygale grauvogely. Lastly, the split between Antrodiaetidae and
Atypidae was assigned a minimum bound of 100 Ma based on a fossil of Ambiortiphagus
ponomarenkoi (Eskov & Zonstein, 1990), with Rosamygale grauvogely once again providing
the maximum bound of 242 Ma for this node.

Four independent PhyloBayes chains were each run for c. 24,000 cycles under an
autocorrelated lognormal model with a GTR matrix, and otherwise default parameters.
Several advantages of autocorrelated lognormal models over uncorrelated rates models
have been demonstrated for a variety of datasets (Lepage et al., 2007; Paradis, 2013), and
they have been shown to yield more plausible results in similar studies to ours (Sharma
et al., 2018). Burn-in was adjusted to 10% to maximize the number of estimated sample
size values that exceeded 200, yielding a total of 86,933 cycles across all chains. Divergence
times were estimated using the ‘‘readdiv’’ command in PhyloBayes for each chain, and the
results were summarized with TreeAnnotator. The resulting time-calibrated mygalomorph
phylogeny is available in Fig. S1, and we proceeded with the tarantula subsection of this
phylogeny for further analyses.

Biogeographic analysis
The tarantulas included in this study were assigned to one or more of the following
five biogeographic ranges as determined by the World Spider Catalog (2020): (A) Indian
Subcontinent; (B) Asia (non-Indian Indomalaya); (C) East of the Wallace Line; (D)
Americas; and (E) Africa. Taxon range codings are included in Table S1. We also accounted
for proximity between areas by excluding certain combinations of ancestral area (e.g., Asia
plus Americas. Full list in Table S3). These areas were chosen based on the biogeographic
realms first proposed by Udvardy (1975), but we treat India separately to the remainder of
Indomalaya given that we expect the age of theraphosids to exceed the collision of India
and Asia.

The tarantula subsection (with outgroups) of our tree from PhyloBayes served as input
forRASP (Yu et al., 2015), which estimated ancestral range distributions under twodifferent
models that were chosen via model testing (Table 1) in BioGeoBEARS (Matzke, 2013).
Despite BAYAREALIKE+j being predicted as the most favorable model, its assumption of
a static geological history (Landis et al., 2013) rendered it unsuitable. Hence, we ran the
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Table 1 Model testing.Model appropriateness as determined by model testing in BioGeoBEARS. While
BAYAREALIKE+j emerges as the most appropriate, its assumption of a static geologic history led us to
choose DEC+j instead (as indicated by bold font). Asterisks indicate a significant difference between the
appropriateness of a model with and without the +j. Hence, we also include DEC in supplementary Fig.
S3.

Model LnL AICc AICc_wt 1 −j/+j

DEC −34.83 74.13 0.22
DEC+J −33.25 73.51 0.3
DIVALIKE −38.51 81.51 0.0055 *
DIVALIKE+J −34.18 75.35 0.12
BAYAREALIKE −48.13 100.7 3.70E−07 *
BAYAREALIKE+J −33.1 73.21 0.35

analysis using our second highest scoring model—the dispersal-extinction cladogenesis
with jump dispersal (DEC+j) model (Ree & Smith, 2008). However, such ‘‘+j’’ models
have been divisive, with some criticizing the ‘‘+j’’ parameter (Ree & Sanmartín, 2018) and
others advocating for its inclusion (McDonald-Spicer et al., 2019; Klaus & Matzke, 2019).
Therefore, Bayesian Binary MCMC (BBM) was added as a second method, and was ran
under the JC69 model for 1 million generations across ten chains with sampling every
100 generations (Ali et al., 2011). As the model testing found no statistically significant
difference between DEC and DEC+j (Table 1), DEC was added as a third method. RASP
was also used to calculate an event matrix for node 21.

RESULTS
Ancestral ranges and ages of theraphosid clades
Our DEC+j (Fig. 1) and BBM (Fig. S3) results are largely in agreement, disagreeing at only
at two nodes (per Fig. 1)—node 20 (which DEC+j estimates as present on both Africa and
the Americas, whereas BBM estimates the Americas only), and node 28 (which DEC+j
estimates as present on Asia only, whereas BBM estimates it as present on Asia and East
of the Wallace line). Full range probabilities for DEC+j and BBM are given in Figs. S2
and S3 respectively. The DEC reconstruction is available in Fig. S4, and although there are
some differences between this method and the others, the larger concepts discussed are not
impacted.

Table 2 contains divergence time estimates as 95% HPDs for the theraphosid subsection
of the mygalomorph phylogeny, while Table S4 contains those estimates for all nodes. Our
earliest theraphosid node (20) is recovered 120Ma–115.5Ma in the Americas (Fig. 1), and is
found sister to Rhianodes atratus, indicating that Barychelidae are sister to Theraphosidae.
When considered alongside the divergence times, these estimations are consistent with a
Gondwanan origin for Theraphosidae.

The Indian Plate is first recovered as an ancestral area at node 25 108 Ma–103.5 Ma.
All ancestral range estimations recover two ecologically distinct Indian Plate lineages
descending from node 25. The first such node (26) emerges 99 Ma–95 Ma, yielding several
ground-dwelling taxa. It diverges into the Indian Thrigmopoeinae lineage, and the ancestor
to Selenocosmiinae (node 27), which emerges 57.4 Ma–55 Ma. Node 27 represents the

Foley et al. (2021), PeerJ, DOI 10.7717/peerj.11162 6/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.11162#supplemental-information
http://dx.doi.org/10.7717/peerj.11162#supplemental-information
http://dx.doi.org/10.7717/peerj.11162#supplemental-information
http://dx.doi.org/10.7717/peerj.11162#supplemental-information
http://dx.doi.org/10.7717/peerj.11162#supplemental-information
http://dx.doi.org/10.7717/peerj.11162#supplemental-information
http://dx.doi.org/10.7717/peerj.11162#supplemental-information
http://dx.doi.org/10.7717/peerj.11162


Figure 1 Ancestral ranges as estimated under the DEC+j model. Subfamilies are given for each species,
along with a timescale in millions of years. Node numbers are provided, and each node is color coded to
correspond with the areas highlighted on the map. Letters on the map correspond to range codings given
in the Methods section. The stars on the tree represent independent colonizations of Asia by theraphosids,
having arrived there from the Indian Subcontinent. Map credit: https://mapchart.net/, 2021. Licensed un-
der CC BY 4.0 SA.

Full-size DOI: 10.7717/peerj.11162/fig-1
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Table 2 Divergence time estimates.Divergence times with error margins per 95% HPDs as estimated by
PhyloBayes. Times are given in millions of years and are rounded to the closest 0.5 Ma. Node numbers as
per Fig. 1.

Node number Estimated age 95%HPDMax 95%HPDMin

20 119 120 115.5
21 111 112 107.5
22 57 58 55.5
23 45 45.5 43.5
24 109 111 106.5
25 107 108 103.5
26 98 99 95
27 57 57.5 55
28 47 47.5 45.5
29 99 100 96
30 72 73 69.5
31 28 28.5 27
32 16 16.5 15
33 71.5 72 69
34 34.5 35 33
35 23.5 24 22
36 100 101 97
37 95 96 92.5
38 89 90 86.5
39 77 78 74.5
40 42 42.5 40.5
41 39 39.5 37.5
42 18.5 18.5 17.5
43 41.5 42 39.5
44 55.5 56 53.5
45 50.5 51 48.5
46 29.5 30 28.5

first appearance of Asia as an ancestral area in both DEC+j and BBM, albeit alongside
the Indian Subcontinent (Fig. 1). This node then diverges into the Haplocosmia lineage,
and the ancestor to Selenocosmia and Phlogiellus, which also emerges as present east of the
Wallace line around 47.5 Ma-45.5 Ma (Fig. 1).

The second descendant of the first Indian Subcontinent node (25) corresponds to
the last common ancestor of Harpactirinae and Ornithoctoninae (node 29), emerging
100 Ma–96 Ma. This node subsequently diverges into the ancestor of Harpactirinae and
Stromatopelminae (node 30), and yet another Indian Subcontinent node corresponding
to the ancestors of the primarily arboreal Ornithoctoninae, and arboreal Poecilotheriinae
(node 33). After the divergence of Ornithoctoninae and Poecilotheriinae, we see Asia
represented as an ancestral area for the second time in both DEC+j and BBM as the
ancestor to Ornithoctoninae (node 34) emerges 35 Ma–33 Ma. DEC, however, places
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Table 3 Event matrix at node 21. The ancestor to both Eumenophorinae and the Catumiri lineage, node
21, can provide key insights into tarantula biogeography. DEC+j and BBM favor a dispersal event influ-
encing this node, which is more consistent with members of Eumenophorinae crossing from South Amer-
ica to Africa. However, DEC favors vicariance, which would attribute the present-day distribution to con-
tinental drift.

Event DEC+j BBM DEC

Dispersal 2 2 0
Vicariance 1 1 1
Extinction 0 0 0

the ancestor to Poecilotheriinae and Ornithoctoninae on both the Indian Plate and Asia
(Fig. S4).

The ancestor to the primarily African Eumenophorinae, and the Catumiri lineage (node
21) emerges in the Americas 112 Ma–107.5 Ma in all three analyses, with DEC also placing
it in Africa. The event matrices of all analyses for this node are given in Table 3.

DISCUSSION
The importance of India and the dual colonizations of Asia
The ‘‘out of India’’ hypothesis (McKenna, 1973) has been accepted as a potential distribution
pattern for the radiations of a diverse array of taxa (Karanth, 2006; Conti et al., 2002; Joshi,
Karanth & Edgecombe, 2020). Our results are consistent with two independent ‘‘out of
India’’ dispersals of tarantulas into Asia (Figs. 1 and 2). This ‘‘dual colonization of Asia
via India’’ pattern has also been demonstrated in centipedes (Joshi, Karanth & Edgecombe,
2020). Both of our Asian tarantula lineages were estimated to arrive there during timescales
consistent with Li, Shao & Li (2020), who determined that Ochyroceratid spiders likely
arrived in Asia via India 55 Ma–38 Ma, and also with the India/Asia collision timescales
(Hu et al., 2016;Westerweel et al., 2019).

All three analyses place the ancestor to Selenocosmiinae (node 27) as present on the
Indian Subcontinent and Asia 57.5 Ma–55 Ma (Fig. 1)—the first entry of theraphosids
into Asia per DEC+j and BBM. Furthermore, both of these analyses recover the ancestor
to Selenocosmia and Phlogiellus (node 28) in both Asia and east of the Wallace line, with
DEC recovering the node as Asia-only. Interestingly, despite our analyses suggesting a
Gondwanan origin for Theraphosidae, this pattern suggests that tarantulas were not always
present in Oceania, and instead is consistent with Selenocosmiinae having diversified across
Asia, eventually crossing the Wallace line sometime after the India/Asia collision (possibly
as early as 47 Ma, Fig. S3), while the terrestrial Thrigmopoeinae remained in India (Fig.
2). The second colonization event of Asia by theraphosids occurred with the common
ancestors to Ornithoctoninae (node 34, Fig. 1), which emerged in Asia at least 20 million
years later (35 Ma–33 Ma), while Poecilotheriinae remained in India (Fig. 2). DEC suggests
that this lineage colonized Asia even earlier, placing the ancestors to Poecilotheriinae (node
33) on both Asia and the Indian Plate 72Ma–69Ma, but this seems too early to be plausible
as (i) it predates the collision of the Indian Plate into the rest of Asia, and (ii) no extant
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Figure 2 The dual colonization of Asia. Two independent tarantula lineages emerge out of India.
(A) The first theraphosids on the Indian Plate diverge into the ancestor of Selenocosmiinae and
Thrigmopoeinae (98 Ma) and into the ancestor of Ornithoctoninae and Poecilotheriinae (99 Ma);
(B) present-day distributions of Selenocosmiinae. They entered Asia via India 57 Ma and crossed
the Wallace line sometime after 47 Ma. Some Selenocosmiinae (e.g., Haplocosmia nepalensis) may
also be found on the Indian Subcontinent today, where Thrigmopoeinae remain; (C) present-day
distributions of Ornithoctoniinae, which entered Asia via India 34.5 Ma but did not manage to
cross the Wallace line. Meanwhile, Poecilotheriinae remain on the Indian Subcontinent. Map credit:
https://dinosaurpictures.org/, 2021. Licensed under CC BY 4.0 SA.

Full-size DOI: 10.7717/peerj.11162/fig-2

members of Poecilotheriinae exist in the rest of Asia, and DEC did not predict an extinction
event at this node.

Our results indicate that both of these Asian lineages diverged while the Indian Plate
was still rafting towards Asia, as the collision would likely not have happened before node
25 diverges to yield nodes 26 and 29 (Table 2), both of which also emerge on the Indian
Plate in our DEC+j and BBM analyses (Fig. 1 and Fig. S3), while DEC also places node 29
on the African continent in addition to the Indian Plate. Interestingly, the two lineages also
appear to be ecologically divergent. Selenocosmiinae is a subfamily that almost exclusively
contains terrestrial members, whereas Ornithoctoninae is a largely arboreal subfamily with
terrestrial members.

A theraphosid fossil was recently uncovered in Burmese amber, dating to ∼100
Ma (Wunderlich & Müller, 2020). While the identity of the fossil cannot adequately
be established (though the authors did speculate that it may represent an ancestor to
Selenocosmiinae), Burmese amber is thought to be of Gondwanan origin (Oliveira et al.,
2016; Poinar Jr, 2018). The location and age of this fossil could plausibly correspond to
one of the ancestral tarantula groups at either node 21 or 24, and confers some support
towards the validity of our ancestral area estimations and dating.
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The Catumiri lineage as a biogeographic relic, and a journey to Africa
for Eumenophorinae
Our estimate for the age of our most ancestral theraphosid node (20) was 120 Ma–105.5
Ma (Table 2), which is consistent with previous estimates based on fewer ingroups that
dated the divergence of tarantulas to occur 150 Ma–71 Ma (Bond et al., 2014) or ∼107
Ma (Opatova et al., 2020). All three analyses recover this node in the Americas, but DEC
also places it on Africa. South America finally split from Africa 105 Ma–100 Ma (Heine,
Zoethout & Müller, 2013; Matthews et al., 2016; Olyphant, Johnson & Hughes, 2017). While
oceanic crossings were still required, it has been suggested that dispersal between both
continents may have been facilitated via the Rio Grande Rise and Walvis Ridge up until
∼40 Ma, as these might have shortened the terrestrial distance between both continents
(De Oliveira, Molina & Marroig, 2009).

The ancestor to the primarily African Eumenophorinae and the Catumiri lineage (node
21, Fig. 1) is recovered by all analyses in the Americas 112 Ma–107.5 Ma (with DEC also
placing it in Africa)—a period when South America and Africa were likely still connected.
As a member of the taxonomically troubled Ischnocolinae, Catumiri and its relatives have
been considered to be among the most basal theraphosids (Raven, 1985; Schmidt, 2003;
Guadanucci, 2014). The findings from Opatova et al. (2020) and Foley et al. (2019) seem
to agree with this with respect to Catumiri, which is recovered as an early-branching
theraphosid in both works. Catumiri was also the only neotropical taxon from Foley et
al. (2019) that was not recovered in an otherwise monophyletic group of neotropical
theraphosids. With a potential maximum age of just under 107.5 Ma (Table 2), we suggest
that the Catumiri lineage represents an ancient biogeographical relic that diversified and
remained in South America while the continents drifted apart—potentially even before
South America split from Africa. This could also plausibly explain why Ischnocolinae (the
subfamily in which Catumiri is included) was the only paraphyletic subfamily recovered
by Foley et al. (2019).

Meanwhile, the ancestor to Eumenophorinae emerges solely in Africa in all three analyses
58Ma–55.5Ma. This result leaves twopotential biogeographic origins for Eumenophorinae:
(i) a vicariant event caused by the split between South America and Africa, which resulted in
them being separated from the Catumiri lineage; or (ii) a dispersal event, where some of the
ancestors of the Catumiri lineage crossed from South America to Africa and subsequently
diversified. Per the event matrix in Table 3, the first scenario is supported by DEC (Fig. S4),
which recovers the ancestors to both groups on both South America and Africa, whereas
DEC+j and BBM favor a dispersal event, which is more consistent with a scenario where
Eumenophorinae crossed back to Africa from South America, which may still have been
possible as per the results from De Oliveira, Molina, and Marroig (2009).

A second emergence of tarantulas on Africa occurs at the ancestor to Harpactirinae and
Stromatopelminae 73 Ma–69.5 Ma (node 30, Fig. 1), having apparently crossed back via
the Indian Plate. The upward bound of this arrival can be attributed to the minimum age
of its parent node (29), which is estimated at 96 Ma (Table 2), and a minimum of 69.5 Ma
(minimum age of the ancestor to Harpactirinae and Stromatopelminae). Crossing between
Africa and the Indian Plate via Madagascar could have been possible up until around 90
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Ma to 85 Ma (Ali & Aitchison, 2008), and our estimates hence afford a short window for
this node to cross to Africa. There are a handful of extant Malagasy theraphosids (World
Spider Catalog, 2020) that could provide further support for this link, though sample
material from these taxa was not available. This ‘‘back to Africa’’ event would represent an
intriguing departure from typical patterns associated with Gondwanan vicariance.

Tarantula radiations and lifestyle switches
There are three nodes in particular (20, 35, and 37, Fig. 1) where the two descendent
lineages demonstrate high fidelity to habitat choices. For node 20, one descendant
lineage corresponds to the fossorial Selenocosmiinae and Thrigmopoeinae, while the other
corresponds to the arboreal Poecilotheriinae and Ornithoctoninae (except Haplopelma,
which is fossorial). Node 35 splits into Harpactirinae (fossorial) and Stromatopelminae
(arboreal). Node 37 splits into Theraphosinae (fossorial), andAviculariinae, Psalmopoeinae
(both arboreal) and Schismatothelinae (fossorial). These habitat choices are maintained
throughout radiations across large areas, indicating that, based on our phylogeny and
sampling, tarantula lineages may be demonstrating niche conservatism in showing high
fidelity to lifestyle and habitat choices.

This idea is also relevant to our two independent lineages of tarantulas that colonized
Asia. After the terrestrial Selenocosmiinae diversified across Asia, there may have been an
opportunity for Ornithoctoninae to capitalise on an open arboreal niche, and subsequently
colonize Asia and further diversify while largely retaining this newly acquired arboreal
preference. The two lineages that did not colonize Asia/remained on the Indian Plate
are also ecologically divergent, with Poecilotheriinae being an arboreal subfamily and
Thrigmopoeinae occupying terrestrial niches, suggesting that their lifestyle differences
may have facilitated their co-diversification throughout the Indian Subcontinent. The
divergence times imply that the arboreal Poecilotheriinae could be as old as 69 Ma, and
the terrestrial Thrigmopoeinae could be as old as 95 Ma (Table 2), which implies that this
co-diversification might have occurred before the Indian Plate fully collided with Asia.

Perhaps these radiations can be attributed to an ancient switch in lifestyle that each
ecologically distinct subfamily to become successful by exploiting different ecological
niches. Although the subfamilies in the phylogeny used here are not represented by all
members, we expect that the addition of further taxa would verify this idea, given that the
niches of most higher theraphosid taxa appear to be conserved over large timescales, and
that lifestyle changes are observed at the base of many theraphosid radiations. With the
advent of further data from more representative taxa, we encourage future studies to test
whether these lifestyle switches directly precede evolutionary rate shifts.

CONCLUSIONS
The Indian Plate played a pivotal role in the history of Theraphosidae and facilitated the
colonization of Asia by two ecologically distinct tarantula lineages at least 20 million years
apart. Ancient tarantulas appear to have undergone several diversifications on India while it
was still rafting, affirming the evolutionary significance of the subcontinent. We show that
tarantulas demonstrate pronounced niche conservation, which could explain the ecological
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divergences observed in the two independent Indian subcontinent lineages that colonized
Asia. We propose a Gondwanan origin for Theraphosidae, although their present-day
distributions suggest that continental rafting and geographic radiations facilitated their
colonizations of subsequent landmasses.
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