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ABSTRACT
Overdispersion is a common feature of models of biological data, but researchers
often fail to model the excess variation driving the overdispersion, resulting in biased
parameter estimates and standard errors. Quantifying and modeling overdispersion
when it is present is therefore critical for robust biological inference. One means to
account for overdispersion is to add an observation-level random effect (OLRE) to
a model, where each data point receives a unique level of a random effect that can
absorb the extra-parametric variation in the data. Although some studies have in-
vestigated the utility of OLRE to model overdispersion in Poisson count data, studies
doing so for Binomial proportion data are scarce. Here I use a simulation approach
to investigate the ability of both OLRE models and Beta-Binomial models to recover
unbiased parameter estimates in mixed effects models of Binomial data under var-
ious degrees of overdispersion. In addition, as ecologists often fit random intercept
terms to models when the random effect sample size is low (<5 levels), I investigate
the performance of both model types under a range of random effect sample sizes
when overdispersion is present. Simulation results revealed that the efficacy of OLRE
depends on the process that generated the overdispersion; OLRE failed to cope with
overdispersion generated from a Beta-Binomial mixture model, leading to biased
slope and intercept estimates, but performed well for overdispersion generated by
adding random noise to the linear predictor. Comparison of parameter estimates
from an OLRE model with those from its corresponding Beta-Binomial model read-
ily identified when OLRE were performing poorly due to disagreement between effect
sizes, and this strategy should be employed whenever OLRE are used for Binomial
data to assess their reliability. Beta-Binomial models performed well across all con-
texts, but showed a tendency to underestimate effect sizes when modelling non-Beta-
Binomial data. Finally, both OLRE and Beta-Binomial models performed poorly
when models contained <5 levels of the random intercept term, especially for esti-
mating variance components, and this effect appeared independent of total sample
size. These results suggest that OLRE are a useful tool for modelling overdispersion in
Binomial data, but that they do not perform well in all circumstances and researchers
should take care to verify the robustness of parameter estimates of OLRE models.
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INTRODUCTION
Binomial data are frequently encountered in the fields of ecology and evolution. Re-

searchers often wish to know what factors determine the proportion of offspring sired by a

focal individual (Tyler et al., 2013), the proportion of eggs of a clutch that successfully hatch

(Harrison et al., 2013a), or the prevalence of disease in a population (Bielby et al., 2014). To

determine which factors drive variation in the proportion data of interest, researchers often

fit Binomial models to their data and model the Binomial mean as a function of covariates.

However, in many cases these Binomial models exhibit overdispersion, where the variance

of the data is greater than that predicted by the model (e.g., Zuur et al., 2009; Bolker et

al., 2009). Failing to deal with overdispersion can lead to biased parameter estimates and

standard errors in these models (Hilbe, 2011; Harrison, 2014), potentially leading to false

conclusions regarding which covariates are truly influential on the outcome variable. It is

therefore crucial that we find robust means to deal with overdispersion in order to correctly

identify the biological processes underlying our observed Binomial data.

Several methods to deal with overdispersion are currently available. As overdispersion

can downwardly bias standard errors in models, one method involves ‘correcting’ the

standard errors by multiplying them by the square root of the dispersion coefficient (Zuur

et al., 2009). This multiplicative correction for overdispersion occurs when one specifies

the ‘quasi’ family in Generalized Linear Models (GLMs) in the statistical software R (R

Core Team, 2014). However, a weakness of the ‘quasi’ approach is that it does not model

the overdispersion in the data, but merely adjusts the resulting parameter estimates with

a single correction factor. The assumption that all standard errors are biased to the same

degree is an obvious problem, which may not be appropriate (e.g., Harrison, 2014, Table

1). The alternatives to the ‘quasi’ approach for proportion data are to explicitly model the

source of extra-Binomial variation in the data (e.g., Williams, 1982; Hughes & Madden,

1993; Lee & Nelder, 1996; Richards, 2008), for example by using compound probability

structures (e.g., Beta-Binomial models), or to use observation-level random effects

(OLRE). With OLRE models, each observation in the model receives a unique level of a

random effect that absorbs the extra-Binomial variation in the data, hopefully yielding a

model with unbiased parameter estimates and without overdispersion. However, although

several studies have sought to investigate the utility of OLRE to model overdispersion in

Poisson count data (Elston et al., 2001; Harrison, 2014), similar investigations for Binomial

proportion data are relatively rare. Harrison (2014) found that for Poisson data, OLRE

yielded accurate parameter estimates and r2 values in most situations of overdispersion,

but that OLRE could not adequately cope with overdispersion caused by zero-inflation.

Here I will address the shortfall in our understanding of the capacity of OLRE to model

overdispersion in Binomial data, with a specific focus on mixed effects models. In order

for OLRE to be an appropriate tool, they should be robust to the process generating

overdispersion in the data, and thus I test OLRE on overdispersed Binomial data generated

by a variety of mechanisms. In addition, I explore the utility of Beta-Binomial hierarchical

models as an alternative to OLRE models, and compare the accuracy of parameter

estimates derived from both approaches.
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A typical Binomial example
For these examples, I will assume the outcome variable that we are measuring is the

number of eggs h that have hatched out of a total clutch c for a hypothetical lizard species. I

assume that the proportion of hatched eggs is described by a Binomial distribution:

hi ∼ Binomial(ci,pi) (1)

where hi is the number of eggs hatched by individual i from its total clutch ci, with

mean probability pi. In a typical Binomial model, we can model the mean hatch rate

pi as a function of covariates of interest. Let us assume that hatch rate shows a positive

relationship with how many prey items an individual lizard has consumed, and also that

there is a weak negative relationship between body size and hatch rate. Let us also assume

we have measured N individuals from J populations of lizards, and that we wish to control

for variation among populations using a random intercept.

logit(pi) = alphaj(i) + βprey × Preyi + βbodysize × Bodysizei (2)

alphaj ∼ Normal(µpop,σ
2
pop) for j = 1,...,J, (3)

pi =
1

(1 + exp(−logit.pi))
(4)

where the hatch rate pi is a function of a linear model. alphaj(i) is the intercept for

population j to which individual i belongs, where each alphaj is drawn from a normal

distribution with mean µpop and variance σ 2
pop (Eq. (3)). βprey and βbodysize are the slope

parameters for the effects of number of prey items consumed and body size, respectively.

Preyi and Bodysizei are the prey and body size measurements of individual i. We convert the

linear predictor (logit.pi from, Eq. (1)) back to a probability (pi) using a logit link (Eq. (4)).

Suppose now we wanted to model our hatching success data using these covariates.

Statistical packages such as lme4 (Bates et al., 2014) readily fit such generalized linear

mixed models (GLMMs)

m1<-glmer(cbind(hatch,clutch-hatch)~ Prey

+ Bodysize + (1|Population),family=binomial(logit))

R Code

where hatch and clutch are vectors where each row corresponds to the measurements for a

single individual i for hi and ci from Eq. (1). Prey and Bodysize are vectors of measurements

of Preyi and Bodysizei corresponding to Eq. (2). Population is a vector denoting the

population ID of each individual. We also specify the Binomial error distribution with

a logit link using the ‘family’ argument in the glmer call. When we fit model m1, we are

modeling our data according to Eq. (1)–Eq. (4) above. The model will estimate βprey,

βbodysize, µpop, and σpop. In order to be confident that the resulting parameter estimates are

robust, we should check for overdispersion in model m1. Bolker et al. (2009) and Harrison

(2014) provide R code to calculate the dispersion parameter for such models. Briefly, a

point estimate of the dispersion parameter can be calculated as the ratio of the sum of
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squared Pearson residuals to the residual degrees of freedom for the model, where a value

>1 indicates overdispersion (Zuur et al., 2009; Bolker et al., 2009). Harrison (2014) also

provides code to estimate the dispersion parameter and 95% confidence intervals using

parametric bootstrapping. If the data exhibit overdispersion, we can adjust our model to

take this into account, either with observation-level random effects, or using a compound

error structure such as the Beta-Binomial.

Modeling overdispersion using observation-level random effects
Including an observation-level random effect requires that we modify Eq. (2) above to

include an additional term in the linear predictor:

logit(pi) = alphaj(i) + β1prey × Preyi + βbodysize × Bodysizei + εi (5)

εi ∼ Normal(0,σ 2
ε ) (6)

where εi is an additional term unique to each observation i that is drawn from a

normal distribution with a mean of 0 and variance σ 2
ε . If a dataframe D containing the

observations has N rows, we can create an observation level random effect as follows:

obs<-seq(nrow(D))

R Code

where D is the dataframe in which the values of Prey and Bodysize are stored. We can then

modify our model m1 to include the OLRE denoted by ‘obs’:

M2<-glmer(cbind(hatch,clutch-hatch)~ Prey
+ Bodysize + (1|Population + (1|obs),family=binomial(logit))

R Code

Model m2 will estimate the same parameters as m1, but in addition will also estimate the

additional parameter σ 2
ε . The larger the value of σ 2

ε , the greater the degree of overdis-

persion in the dataset. The magnitude of the variance parameter σ 2
ε can be informative,

for example when compared to hierarchical variance components (e.g., individual nested

within brood, nested within site (see Elston et al., 2001)). However, in many cases the

OLRE will simply ‘soak up’ the extra-Binomial variation in the data, effectively treating

the overdispersion as nuisance variation. The problem with this approach is that often the

overdispersion might be biologically interesting (Zuur et al., 2009) and indeed relevant

to our hypotheses regarding the processes underlying variation in the observed data.

An alternative way to model overdispersion is by using hierarchical models such as

Beta-Binomial models.

Modeling overdispersion using hierarchical Beta-Binomial models
An alternative to adding an observation-level random effect to models involves modelling

the overdispersion using compound probability distributions such as the Beta-Binomial.

The benefit of this approach is that by quantifying the process generating the overdisper-

sion (through the estimate of φ, see below), one may gain a more precise understanding

of the ecological mechanisms underlying observed data (Martin et al., 2005; Richards,
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2008). For Beta-Binomial models, the linear predictor remains the same as Eq. (2)–Eq. (4)

above, on the logit scale but instead of drawing observed counts directly from a Binomial

distribution with mean pi, we draw the Binomial probabilities from a beta distribution

with parameters a and b:

beta.pi ∼ Beta(ai,bi) (7)

ai =
pi

φ
(8)

bi =
(1 − pi)

φ
(9)

hi ∼ Binomial(ci,beta.pi) (10)

where ai and bi are the shape and scale parameters of the Beta distribution for individual i,

calculated using the value of pi (Eq. (4)) and φ, which is the constant overdispersion term

in the model. As with σ 2
ε for the OLRE models above, the larger the value of φ the greater

the degree of overdispersion in the data.

Overdispersion and sample size
Multiple features biological data can influence the accuracy with which models recover

parameter estimates for effect sizes. Overdispersion is likely a ubiquitous feature of the

kinds of ‘messy’ data collected by ecologists from field and laboratory studies, and is

known to bias parameter estimates in count data (Hilbe, 2011; Harrison, 2014). In addition,

overdispersion can arise for a variety of reasons, including aggregation (heterogeneity)

in the data, or through failing to measure important covariates, or include relevant

interactions between covariates in models (Hilbe, 2011). However, multiple factors may

interact with overdispersion to add further bias to models of overdispersed data, including

most notably the sample size of the datasets. To date, relatively little is known in the

ecological literature about the interaction between overdispersion and sample size and how

this affects parameter estimates. This is particularly relevant to mixed effects models, where

the number of grouping levels of a random intercept term (e.g., number of populations)

can greatly influence model accuracy. Low replication at the level of the random effect

grouping variable can mean there is not enough information to estimate the variance

among groups, especially if one employs 5 or fewer levels (Gelman & Hill, 2006, p. 247).

Unfortunately, ecologists often fit factors containing fewer than 5 levels as random effects

(e.g., a random intercept for ‘Year,’ Harrison et al., 2013a; Harrison et al., 2013b), largely

because gathering 3 or 4 years of data in the laboratory or field represents an enormous

amount of work.

In order for OLRE to be considered a robust tool for modeling overdispersion in

Binomial data, they should yield accurate parameter estimates under a broad range of

conditions, including high overdispersion and low sample size. This paper investigates the

influence of 3 specific variables on the accuracy of parameter estimates from mixed models:

(i) for a fixed sample size, the influence of weak, moderate and strong overdispersion; (ii)

for strong overdispersion, the influence of the level of replication of the random intercept
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term; and (iii) for strong overdispersion, the influence of Binomial sample size. For all

three scenarios, I consider overdispersion resulting from two mechanisms, using either

a Beta-Binomial distribution or an overdispersed Binomial distribution to generate the

data (see equations above). Finally, I use both OLRE and Beta-Binomial models to assess

the relative performance of each model type for a given scenario of overdispersion and

sample size. Model performance is assessed by (i) quantifying the accuracy with which

the models can recover estimates of βprey, µpop and σ 2
pop (values fixed for all simulations);

and (ii) including a weak negative effect of βbodysize (−0.01), corresponding to roughly a

4% difference in reproductive success between the smallest and largest individuals in the

dataset, and quantifying the proportion of simulation replicates for a given scenario that

incorrectly inferred a positive slope for βbodysize. Such an outcome is important, because

most ecological datasets likely contain variables of weak effect that are ‘biologically

relevant’ to the organism(s) in question, but our ability to detect such effects in the

presence of overdispersion has received relatively little attention (but see Richards, 2008).

METHODS
Data generation
I explored the consequences varying three key parameters in Binomial mixed models:

(i) the magnitude of overdispersion (‘Overdispersion’ Scenario), (ii) the number of the

levels of the random intercept term, (‘Random Effect’ Scenario) and (iii) the Binomial

sample size (number of trials per observation) (‘Binomial Sample Size’ Scenario).

For each scenario, I simulated data from both an overdispersed Binomial distribution

using Eq. (1)–Eq. (6) and a Beta-Binomial distribution using Eq. (1)–Eq. (4) and

Eq. (7)–Eq. (10) (see Introduction) to examine whether the accuracy of the mixed models

also depended on the mechanism generating the overdispersion in the data. For the

Overdispersion simulations, φ was set at 0.1, 1, or 2 for the Beta-Binomial data, and σε

(specified as standard deviation, not variance σ 2
ε , in the R code) set to 0.1, 1.5 or 3 for the

corresponding overdispersed Binomial data. A value of σε = φ = 0.1 corresponds to weak

overdispersion (model dispersion parameter ∼1.1), whereas σε = 3/φ = 2 corresponds to

a model dispersion parameter of ∼2. For all simulations parameter values were fixed at the

following: µpop = −1;σpop = 0.5; βbodysize = −0.01;βprey = 0.6. For the Overdispersion

and Binomial Sample Size scenarios, I assumed 10 different populations had been sampled,

each with a sample size of 20 individuals (n = 200). For the Random Effect scenario,

the number of populations was set at 3, 5 or 20. Clutch size (Ci) was fixed at 5 for the

Overdispersion and Random Effect simulations, but was set to 2, 4 or 10 for the Binomial

Sample Size scenario. Full details of the parameters used in each of the 3 scenarios are

provided in Table 1.

Model fitting simulations
All simulations were coded in R v3.1.1 (R Core Team, 2014). One thousand datasets were

simulated for each set of three different parameter estimates for each of the three scenarios

and data types (Beta-Binomial or overdispersed Binomial, see Table 1). For each dataset, I
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Table 1 Parameter values for simulation scenarios employed in the study. ‘φ,’ overdispersion param-
eter for Beta-Binomial models; ‘σε ,’ overdispersion parameter for overdispersed Binomial models; ‘n
trials,’ Binomial sample size (maximum clutch) for simulations, equivalent to Ci in Eq. (1); ‘n individuals,’
number of individuals per simulated population; ‘n populations,’ number of populations simulated for
each dataset, and fitted as a random intercept term in all models, referred to as random effect sample
size. Values for the variable under investigation in each scenario are shown in bold.

Overdispersion
φ/σε

n trials
(clutch size)

n
individuals

n
populations

Overdispersion

1 0.1/0.1 5 20 10

2 1/1.5 5 20 10

3 2/3 5 20 10

Levels of random effect

1 2/3 5 20 3

2 2/3 5 20 5

3 2/3 5 20 20

Binomial sample size

1 2/3 2 20 10

2 2/3 4 20 10

3 2/3 10 20 10

fitted model m2 containing an OLRE (see Introduction) in the lme4 package and extracted

parameter estimates for µpop , σpop , βprey, βbodysize and σε (the SD of the observation level

random effect, ‘obs’). Following 1,000 simulations, I calculated simulation means and 95%

quantiles for parameters. I also calculated the proportion of models that falsely estimated

the effect of body size to be positive (βprey > 0). Data for the proportion of models where

βprey > 0 are presented as means and bootstrapped 95% confidence intervals for each

parameter/data type combination. I did not test for significant differences between mean

values for each parameter.

For each of the three scenarios and two data types, I fitted a corresponding Bayesian

Beta-Binomial hierarchical model in JAGS (Plummer, 2013) using the R package runjags

(Denwood, 2014), following Eq. (1)–Eq. (4) and Eq. (7)–Eq. (10) above. This resulted

in four combinations of data-generating process and statistical model used in analysis:

Beta-Binomial data with OLRE, overdispersed Binomial data with OLRE, Beta-Binomial

data with a Beta-Binomial Model, and overdispersed Binomial data with Beta-Binomial

model. The Bayesian framework is extremely flexible, meaning models following these

equations can be easily specified, even though few frequentist mixed model packages in

R permit the fitting of Beta-Binomial models (but see spaMM, Rousset & Ferdy, 2014;

glmmADMB, Fournier et al., 2012). Models were run for 20,000 iterations with a thinning

interval of 20 following a burnin of 2,000. Convergence was assessed by running two

parallel chains and calculating the Gelman–Rubin statistic, which was below 1.05 for

parameters, indicating convergence. Results are presented as posterior means and 95%

credible intervals for all parameters. I used uninformative Normal priors with mean 0
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and precision 0.001 for µpop, βprey and βbodysize; an uninformative uniform prior on the

interval (0,10) for σpop, and an uninformative gamma prior with a = b = 0.001 for φ. To

test sensitivity of model output to choice of priors, I reran models where φ had a uniform

prior on the interval (0,10) and σpop had a gamma prior where a = b = 0.001. Results from

both sets of models were similar, suggesting limited sensitivity to prior specification.

Unlike frequentist models, their Bayesian equivalents are much more computationally

intensive and thus slower to run. Because of this, I generated only 1 dataset and ran 1 model

for each scenario/data type combination (n = 18). Both Bayesian and frequentist data are

plotted alongside one another in the figures, but it is important to note that the frequentist

data are the 95% intervals of the distribution of 1,000 means for each parameter, whilst the

Bayesian data are the 95% credible intervals of 1,000 samples from the parameter space for

a single mean. Although they are slightly different quantities, the point of the comparison

is to assess the relative accuracy of a Beta-Binomial model compared to a Binomial model

allowing for overdispersion on the linear predictor i.e., containing observation-level

random effects. However because of the use of Bayesian analyses in these simulations,

the type of model (OLRE or Beta-Binomial) is therefore confounded with the fitting

algorithm (Maximum Likelihood or Bayesian, respectively). That is, frequentist methods

may perform poorly in generalized mixed models (Ferkingstad & Rue, 2015), and Bayesian

methods may perform slightly better, and this may have little to do with the type of model.

To test the sensitivity of the parameter estimates to Beta-Binomial modeling philosophy, I

reran the data simulations for highly overdispersed Binomial (σε = 3) and Beta-Binomial

(φ = 2) data with 10 populations, 20 individuals per population and a clutch size of 5 per

individual. Instead of Bayesian Beta-Binomial models, I fitted frequentist Beta-Binomial

mixed models using the ‘spaMM’ package’ and extracted means and 95% confidence

intervals for parameters after 1,000 simulations.

Model code for the Bayesian models, and all data simulations in the manuscript are

provided in Online Supplementary Information.

RESULTS
Overdispersion
Weak overdispersion (σε/φ = 0.1) resulted in accurate parameter estimates for βprey, µpop

and σpop for all four data/models combinations as expected (Fig. 1). However, for both

moderate and strong overdispersion, bias increased for all parameters when the data were

generated from a Beta-Binomial distribution but analysed using OLRE (yellow circles,

Fig. 1). Conversely, the overdispersed Binomial/OLRE model did not suffer the same bias,

although the standard error of all estimates increased in tandem with overdispersion

(blue circles, Fig. 1). Beta-Binomial models performed well for both Beta-Binomial

and overdispersed Binomial data (yellow and blue diamonds, Fig. 1), but were unable

to accurately estimate σpop when overdispersion was high (σε/φ = 3/2 respectively).

Increasing overdispersion caused an increase in the proportion of models incorrectly

inferring a positive slope for βbodysize for both types of data (Fig. 4A). Summary: OLRE

are highly sensitive to the mechanism generating the overdispersion in the data, yielding
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Figure 1 Effect of varying degrees of overdispersion on parameter estimation. Parameter estimates and 95% intervals for 3 levels of overdispersion
under 4 combinations of overdispersion and model type. Yellow circles, Beta-Binomial overdispersion and an observation-level random effect
(OLRE) model; blue circles, overdispersed Binomial data and OLRE model; yellow diamonds, Beta-Binomial data and a Beta-Binomial model; blue
diamonds, overdispersed Binomial data and a Beta-Binomial model. Beta-Binomial data were analysed using Bayesian Hierarchical Beta-Binomial
mixed models and so error bars are 95% credible intervals. ‘βprey,’ slope parameter for effect of number of prey items consumed; ‘µpop,’ mean value
of population random intercept term; ‘σpop,’ standard deviation of population random effect. X axis labels refer to the overdispersion parameters
for each model type: overdispersed Binomial models, σε , the standard deviation of a random effect with mean 0 added to the linear predictor;
Beta-Binomial models, φ, the dispersion parameter for the Beta-Binomial mixture distribution.

large bias when applied to Beta-Binomial data. Parameter bias gets progressively worse as

overdispersion increases.

Number of levels of the random effect
For all four data/model combinations, the precision of the estimates increased as the

number of levels of the random effect increased from 3 to 20 (Fig. 2). This was expected,

as a higher number of levels yields more information to estimate hierarchical modeling

components such as σpop. However, for the Beta-Binomial data/OLRE model, increasing

the number of levels yielded both a consistently biased mean value for βprey, and increased

precision around the biased mean (yellow circles, Fig. 2). OLRE models on overdispersed

Binomial data (blue circles) performed generally well for both βprey and µpop. Conversely

a Beta-Binomial model on overdispersed Binomial data (blue diamonds, Fig. 2) tended

to underestimate βprey. For all four data/model combinations, estimates of σpop were

highly imprecise when only 3 populations were considered. This was especially true for

both Beta-Binomial models (yellow and blue diamonds, Fig. 2). There was still a large

degree of bias when n = 5, especially when OLRE models were applied to Beta-Binomial

data (yellow circles and diamonds). The proportion of models recovering βbodysize > 0

tended to decrease as the n increased, but only by 5% on average, and there appeared to

be no differences in proportion depending on the kind of overdispersion generated in

the data. Increasing the sample size to ∼200 but using only 3 populations (67 individuals

per population) still resulted in biased parameter estimates, especially for Beta-Binomial

models (Table 2A), suggesting it is random effects sample size and not total sample size

driving this pattern. Summary: Higher replication of the random effects results in more
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Figure 2 Effect of varying sample size of the random intercept term (number of populations) on parameter estimates in the presence of
overdispersion. Parameter estimates and 95% intervals for 3 different levels of replication of the random intercept term under 4 combinations
of overdispersion and model type. Yellow circles, Beta-Binomial overdispersion and an observation-level random effect (OLRE) model; blue circles,
overdispersed Binomial data and OLRE model; yellow diamonds, Beta-Binomial data and a Beta-Binomial model; blue diamonds, overdispersed
Binomial data and a Beta-Binomial model. Beta-Binomial data were analysed using Bayesian Hierarchical Beta-Binomial mixed models and so error
bars are 95% credible intervals. ‘βprey,’ slope parameter for effect of number of prey items consumed; ‘µpop,’ mean value of population random
intercept term; ‘σpop,’ standard deviation of population random effect. For all simulations σε , was set to 3 for overdispersed Binomial models, and
φ set to 2 for Beta-Binomial models.

precise estimates, but cannot fix the bias caused by overdispersion when using OLRE for some

data types. All models perform poorly when the number of populations is 3, especially for

σpop, suggesting there is no modeling ‘fix’ for poor replication of the random effect.

Binomial sample size
Of the three scenarios considered, Binomial sample size had the smallest effect on

parameter accuracy and precision. As with the Random Effects scenario, increasing

Binomial sample size did not remedy the bias in βprey caused by overdispersion, but did

yield slightly higher precision (yellow circles, Fig. 3). Estimates for all other parameters

were similar irrespective of Binomial sample size and type of overdispersion (blue circles,

yellow diamonds and blue diamonds, Fig. 3), and the proportion of models where

βbodysize > 0 were fairly constant across all values tested (Fig. 4C). Summary: OLRE

models on Beta-Binomial data continue to perform poorly in the presence of overdispersion,

irrespective of the Binomial sample size. All other models performed equally well, and there

was evidence suggesting that even over the narrow range of sample sizes tested (2–10),

precision increased with sample size.

A comparison of frequentist and Bayesian beta-binomial
estimates
Model estimates from the Beta-Binomial models were very similar irrespective of whether

they were from frequentist or Bayesian models (Fig. 1 and Table 2B). Interestingly,

both the frequentist and Bayesian models suggested that using Beta-Binomial models
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Table 2 Model results investigating the effects of total sample size and model type on parameter
estimates. (A) Parameter values and 95% confidence intervals for 1,000 simulations of data where 3
populations were simulated each with a sample size of 67 (n = 201) and analysed with OLRE models.
Results are highly similar to when 3 populations are simulated each with a sample size of 20 (n = 60,
see Fig. 2), suggesting it is replication of the random effects and not total sample size driving the poor
performance of models. True simulated values are shown in parentheses. ‘Beta-Binomial Data’ refer to
data generated from a Beta-Binomial mixture model with dispersion parameter φ = 2; ‘overdispersed
Binomial Data’ refers to data generated by adding random noise to the linear predictor of a Binomial
model on the link scale, from a Normal distribution with mean 0 and standard deviation σε = 3. (B)
Parameter values and 95% confidence intervals for 1,000 simulations of overdispersed data analysed with
frequentist Beta-Binomial models. Results are highly similar to their Bayesian equivalents (see Fig. 1),
suggesting it is the mechanism generating the overdispersion in the data that results in poor parameter
estimates and not modelling philosophy (frequentist/maximum likelihood vs. Bayesian).

Beta-Binomial data Overdispersed binomial data

Parameter Mean 95% CI Mean 95% CI

(A)

βprey (0.6) 2.2 [1.33, 3.41] 0.61 [0.19, 1.07]

βbodysize (−0.01) −0.03 [−0.34, 0.29] −0.007 [−0.18, 0.17]

µpop (−1) −3.82 [−11.79, 2.99] −1.06 [−4.82, 2.59]

σpop (0.5) 0.79 [0, 2.77] 0.23 [0, 0.89]

(B)

βprey (0.6) 0.62 [0.37, 0.89] 0.299 [0.02, 0.599]

βbodysize (−0.01) −0.01 [−0.1, 0.08] −0.004 [−0.09, 0.07]

µpop (−1) −1.24 [−1.82, −0.69] −0.59 [−1.24, −0.02]

σpop (0.5) 0.29 [0.14, 0.43] 0.18 [0.06, 0.29]

Notes.
βprey , slope parameter for effect of number of prey items consumed; βbodysize, slope parameter for effect of individual
body size; µpop, mean value of population random intercept term; σpop, standard deviation of population random
effect.

Figure 3 Effect of Binomial sample size on accuracy of parameter estimates in the presence of overdispersion. Parameter estimates and 95%
intervals for 3 different Binomial sample sizes (clutch size) under 4 combinations of overdispersion and model type. Yellow circles, Beta-Binomial
overdispersion and an observation-level random effect (OLRE) model; blue circles, overdispersed Binomial data and OLRE model; yellow diamonds,
Beta-Binomial data and a Beta-Binomial model; blue diamonds, overdispersed Binomial data and a Beta-Binomial model. Beta-Binomial data were
analysed using Bayesian Hierarchical Beta-Binomial mixed models and so error bars are 95% credible intervals. ‘βprey,’ slope parameter for effect of
number of prey items consumed; ‘µpop,’ mean value of population random intercept term; ‘σpop,’ standard deviation of population random effect.
For all simulations σε, was set to 3 for overdispersed Binomial models, and φ set to 2 for Beta-Binomial models.
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Figure 4 Proportion of models after 1,000 simulations incorrectly estimating the weakly negative slope of the body size parameter to be
positive. Bars are mean and 95% confidence intervals following 1,000 simulations of either Beta-Binomial (yellow bars) or overdispersed Binomial
(blue bars) data and analysed with OLRE models. (A) the influence of increasing levels of overdispersion; (B) the influence of increasing the
replication of the random intercept term for population; (C) the influence of increasing the Binomial sample size (total clutch).

on overdispersed Binomial data leads to underestimating the values of both of µpop

(middle pane, Fig. 1; Table 2C) and βprey (left pane, Fig. 1; Table 2B). Collectively

these results suggest the discrepancies in parameter estimates observed between OLRE

and Beta-Binomial models were not simply due to using either Bayesian or frequentist

methods, but reflected a genuine difference in ability of certain models to handle certain

types of overdispersion.

DISCUSSION
Using a simulation approach, I have investigated both the ability of observation-level

random effects to recover accurate parameter estimates under various degrees of

overdispersion in Binomial models, and whether the performance of OLRE in mixed

models is consistent across multiple types of overdispersion. In addition, I have examined

how model performance changes in the presence of overdispersion when both the sample

size of random effects (number of levels) and Binomial sample size is low for both OLRE

and Beta-Binomial models. In general, OLRE models performed poorly when fitted to

Beta-Binomial data, and this effect was particularly pronounced when the number levels of

the random effect was ≤5, or the Binomial sample size was small. In all cases, increasing the

number of levels of the random effect or Binomial sample size failed to remedy the bias in

the estimates caused by overdispersion. Here I discuss the implications of these results for

choosing OLRE as a suitable tool to model overdispersion in ecological data.

The ability of OLRE to cope with overdispersion depends on the
process generating the overdispersion
This study has shown that the ability of OLRE to recover accurate parameter estimates

in overdispersed mixed models depends on the process generating the overdispersion
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in the dataset. For overdispersion generated by adding random noise to the linear

predictor (overdispersed Binomial data), the model recovered accurate mean estimates

for slopes, intercepts and variance components at all levels of overdispersion, although

the precision of the estimates declined (increasing standard errors) as overdispersion

increased. Conversely, for data generated using a Beta-Binomial process, parameter

estimates became increasingly more biased as overdispersion increased, leading to inflated

estimates of effect size for the variables of interest. The implications of these results are that

OLRE may not be a robust tool for dealing with overdispersion in Binomial mixed models

because the researcher is unlikely to know which process generated the overdispersion in

the first instance, meaning it is unclear if the parameter estimates are trustworthy. More

worryingly, that the use of OLRE can lead to inflated effect sizes may result in researchers

concluding that variables under investigation are highly influential, when in fact their effect

sizes may be more modest. These patterns were not observed in the Beta-Binomial models,

irrespective of data type, although the confidence intervals did also increase in concert

with overdispersion. The relative utility of Beta-Binomial models over OLRE models is

discussed below.

Increasing random effect sample size increases precision, even
for biased estimates
For all model/data combinations, increasing the number of populations measured from

3 to 20 greatly increased the precision of estimates for all parameters, reflected by smaller

95% confidence intervals. Importantly, this result held even when controlling for total

sample size, demonstrating that higher replication within populations cannot compensate

for fitting a population random intercept term with only 3 levels. Arguably, parameter

precision was also poor when using 5 populations, especially for the variance component

σpop. This corroborates the general rule of thumb that random intercept terms should

ideally contain more than 5 levels in order to yield accurate estimates and good model

performance (Gelman & Hill, 2006), especially when overdispersion is present. The key

result of the random effects simulations is that when using OLRE on Beta-Binomial data,

increasing sample size of the random effect does nothing to remedy the bias in slope

estimates for effects such as βprey. Instead, increasing the number of levels of the random

effect simply makes one more certain of the accuracy of the estimates by decreasing the

95% confidence intervals, even when the mean estimate is biased. This is worrying,

as well-replicated studies studying 10s to 100s of ‘groups’ (be they populations, genetic

lines or sampling locations etc.) may recover highly precise estimates for parameters that

are highly inflated with respect to their true value. In addition, it means one cannot use

enormous standard errors as diagnostic evidence for suspicious behavior of OLRE (i.e., for

βprey when n populations = 3) because these are likely to change with sample size.

Parameter estimates are largely similar irrespective of Binomial
sample size
Binomial sample size had the smallest influence on model behavior of the three scenarios

tested. There was some indication that parameter accuracy increased with Binomial sample
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size, but these effects were modest for most data/model combinations, especially when

compared to the relatively large influence of random effect sample size (see above). Such a

result is intuitive, as one would expect total sample size to be more influential than simply

the sample size of a single observational unit. That model precision is similar irrespective

of maximum sample size is encouraging, particularly as researchers in the fields of ecology

and evolution deal with an enormous range in sample sizes e.g., analyzing the hatching

success of a bird that produces only 2 eggs at a time (Harrison et al., 2013b) or an insect

that produces 100s of eggs at a time (Tyler et al., 2013). Collectively these results suggest

that model precision need not be sacrificed if working on organisms with life history

characteristics such as small clutch size or low fecundity.

Are Beta-Binomial models more robust than OLRE models for
Binomial data?
A persistent pattern in the results shown here is that OLRE perform poorly for Beta-

Binomial data, yet Beta-Binomial models tend to perform well across both Beta-Binomial

and overdispersed Binomial data. This does not mean that OLRE models are unsuitable for

modeling overdispersion, simply that one must interpret initial model results with caution

and examine the suitability of OLRE for a particular dataset . The most straightforward

way to probe the robustness of OLRE model results would be to compare parameter esti-

mates from a given OLRE model with the Beta-Binomial equivalent. There were dramatic

differences in estimates for the βprey slope between models types for the Beta-Binomial

data, yet very little difference for the corresponding overdispersed Binomial data, and so

the comparative approach should readily identify potential problems with OLRE.

When performing model comparison, whether one uses a frequentist statistical package,

or codes the model manually in a Bayesian framework in JAGS appears to be a matter of

preference, as these two approaches yielded similar results in the current study. Although

Bayesian methods do have several advantages over frequentist methods (e.g., Ellison,

2004; Kery, 2010), in many cases they recover similar parameter estimates to frequentist

models when uninformative priors are used (e.g., Kery, 2010). In support of this, sensitivity

analyses presented in this paper suggest that model results are similar whether one uses a

Bayesian or a frequentist Beta-Binomial model, meaning choice of model rather than of

statistical philosophy is the more important driver here. However, I would caution that

I only repeated the frequentist Beta-Binomial simulations for a limited subset of cases

(high overdispersion, 10 populations, 20 individuals per population), and so it should

not be assumed that frequentist and Bayesian approaches would agree in every case (see

also examples in Kery, 2010). A final caveat for these results is that the data generated in

this study are ‘ideal’ in so far as they are perfectly balanced across populations (identical

numbers of individuals per population). In reality this is unlikely to hold, as ecological

datasets often contain poorly represented groups with far lower sample sizes than others

e.g., years with poor breeding success and limited data on clutch size (e.g., Harrison et al.,

2011; Harrison et al., 2013b). How imbalance in sample size affects model estimates in the

presence of overdispersion for two models with identical number of levels of the random

intercept term warrants further investigation.
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Superficially, it appears that Beta-Binomial models perform better than OLRE models

in most cases, and so a natural inclination would be to simply use Beta-Binomial models

for any kind of overdispersed Binomial data. However, results from this study indicated

that Beta-Binomial models can underestimate slope values (e.g., the value of βprey),

whereas the corresponding OLRE model does not. Thus, Beta-Binomial models do not

universally outperform OLRE models, and one should not sacrifice OLRE from the set of

tools available to deal with overdispersed Binomial data. Both Beta-Binomial and OLRE

models estimate an overdispersion parameter that can reveal a biological cause underlying

aggregation/non-independence of probabilities in the dataset (e.g., Beta-Binomial models,

Hilgenboecker et al., 2008; OLRE models, Elston et al., 2001, and the size of the aggregation

parameter is informative and comparable across studies (Richards, 2008)). Beta-binomial

models are frequently employed in the ecological literature to model non-independence

among probabilities (e.g., Hughes & Madden, 1993; Lee & Nelder, 1996; Clark, 2003;

Richards, 2008) and may be less prone to overfitting than the corresponding OLRE

models, which may explain why OLRE models performed poorly for Beta-Binomial

data. Indeed, the dispersion parameter of models containing OLRE frequently collapses

to <0.5 (data not shown), suggesting the addition of OLRE replaces overdispersion with

underdispersion, which can be equally as problematic (Zuur et al., 2009).

Summary
Observation-level random effects provide a simple means to control overdispersion that

can be easily implemented in mixed effects model packages. However, it is clear that their

use may not be appropriate in all cases. Results from models containing OLRE should

be carefully inspected, and where possible corroborative evidence should be sought

from alternative modeling approaches such as (Bayesian) Hierarchical Beta-Binomial

models to quantify agreement between parameter estimates and ensure the conclusions

drawn from such analyses are robust. Finally, one should avoid fitting random intercept

terms to models when the random term contain <5 levels, especially in the presence

of overdispersion, as parameter estimates become unreliable irrespective of modeling

approach. One should also interpret model results with caution when the random effect

sample size is large (e.g., >20), because models with OLRE can yield inaccurate but precise

(small confidence intervals) slope estimates under certain scenarios that may give the false

impression of that model having performed well.
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