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ABSTRACT
Background. Jumonji C (JmjC) proteins exert critical roles in plant development
and stress response through the removal of lysine methylation from histones. Brassica
napus, which originated from spontaneous hybridization by Brassica rapa and Brassica
oleracea, is the most important oilseed crop after soybean. In JmjC proteins of Brassica
species, the structure and function and its relationship with the parents andmodel plant
Arabidopsis thaliana remain uncharacterized. Systematic identification and analysis for
JmjC family in Brassica crops can facilitate the future functional characterization and
oilseed crops improvement.
Methods. Basing on the conserved JmjC domain, JmjC homologs from the three
Brassica species, B. rapa (AA), B. oleracea (CC) and B. napus, were identified from the
Brassica database. Some methods, such as phylogenic analysis, chromosomal mapping,
HMMER searching, gene structure display and Logos analysis, were used to characterize
relationships of the JmjC homologs. Synonymous and nonsynonymous nucleotide
substitutions were used to infer the information of gene duplication among homologs.
Then, the expression levels of BnKDM5 subfamily genes were checked under abiotic
stress by qRT-PCR.
Results. Sixty-five JmjC genes were identified from B. napus genome, 29 from B. rapa,
and 23 from B. oleracea. These genes were grouped into seven clades based on the
phylogenetic analysis, and their catalytic activities of demethylation were predicted. The
average retention rate ofB. napus JmjC genes (B. napus JmjC gene fromB. rapa (93.1%)
and B. oleracea (82.6%)) exceeded whole genome level. JmjC sequences demonstrated
high conservation in domain origination, chromosomal location, intron/exon number
and catalytic sites. The gene duplication events were confirmed among the homologs.
Many of the BrKDM5 subfamily genes showed higher expression under drought and
NaCl treatments, but only a few genes were involved in high temperature stress.
Conclusions. This study provides the first genome-wide characterization of JmjC genes
in Brassica species. The BnJmjC exhibits higher conservation during the formation
process of allotetraploid than the average retention rates of the whole B. napus genome.
Furthermore, expression profiles of many genes indicated that BnKDM5 subfamily
genes are involved in stress response to salt, drought and high temperature.
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INTRODUCTION
Epigenetics refers to heritable change for gene function that occurs without a change in
DNA sequence and can dynamically regulate global gene expression through reversible
chemical modifications on DNA and histones in eukaryotic chromatin (He & Cole, 2015).
Epigenetic regulation mainly includes acetylation, phosphorylation, histone methylation,
DNA methylation, and small non-coding RNAs. Histone modification is an important
epigenetics mechanism. Various post-translational covalentmodifications, which primarily
occur on histone (H3, H4, H2A, and H2B) lysines and arginines residues, form ‘‘histone
code’’ to regulate various biological processes (Bannister & Kouzarides, 2011). Histone
methylation is usually catalyzed by three protein families of histone methyltransferases:
protein arginine methyltransferase family, Su (var)3-9, Enhancer-of-zeste and Trithorax
(SET) domain family, and telomeric silencing disruptor that is also known as DOT1-Like
(Kmt4/DOT1L) (Greer & Shi, 2012). Histone lysine methylation, playing many different
roles in biological processes ranging from heterochromatin formation to transcription
regulation, is dynamically regulated by histone lysine methyltransferases (KMTs) and
histone lysine demethylases (KDMs), and can be distinguished depending on the position
of lysine residue and the number of added methyl groups in lysine residues, which carry
mono-, di-, or tri-methylated groups (Liu et al., 2010a; Liu et al., 2010b).

Histone modifications can influence gene expression to regulate the plant response to
stress, including cold, freezing, saline, drought and submergence (Bej & Basak, 2017).
Genome-wide H3K4 methylation patterns (H3K4me1, H3K4me2 and H3K4me3)
show dynamic responses to dehydration stress in Arabidopsis thaliana (Van Dijk et
al., 2010). Arabidopsis ATX1, H3K4me3, is involved in dehydration response through
ABA-dependent and -independent pathways (Ding, Avramova & Fromm, 2011). Under
drought stress, H3K4me3 enrichment is correlated with the activation of Arabidopsis
drought stress-responsive genes, such as RD29A and RD20 (Kim et al., 2012; Qiao & Fan,
2011). H3K4me3 can be maintained at low levels after rehydration and which could
function as an epigenetic mark of drought stress memory (Kim et al., 2012). Under
heat stress, H3K4 methylation accumulates to activate gene expression and can be
sustained after heat stress to positively respond on a future stress incident (Lämke et
al., 2016). Rice genome-wide H3K4me3 profiling showed positively correlation with the
transcript level of drought stress-responsive genes (Zong et al., 2013). Histone methylation
is also a reversible process regulated by methyltransferases and three distinct classes of
demethylases. KDMs mainly consist of LSD1/KDM1s (Lysine specific demethylase 1)
and JmjC-domain enzymes, which both utilize oxidative mechanisms. JmjC, a highly
conserved domain, was first reported by Takeuchi and colleagues in 1995 and was named
as JmjC domain in 2000 (Balciunas & Ronne, 2000; Takeuchi et al., 1995). This domain
carries eight β-sheets forming enzymatically-active pocket with three conserved and
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necessary amino-acid residues for binding with Fe (II) cofactor and two additional residues
for binding with α-ketoglutarate (αKG) (Chen et al., 2006; Klose, Kallin & Zhang, 2006).
Arabidopsis JmjC proteins are divided into five subfamilies: KDM4/JHDM3 (AtJMJ11-13),
KDM5/JARID1 (AtJMJ14-19), JMJD6 (AtJMJ21/22), KDM3/JHDM2 (AtJMJ24-29) and
JmjC domain-only (AtJMJ20 and AtJMJ30-32) (Luo et al., 2013). The H3K4 methylases
and demethylases dynamically balance the H3K4 methylation status among H3K4me1,
H3K4me2 and H3K4me3, to maintain the optimum level of H3K4 methylation and adapt
to external environment. KDM5 is a specific subfamily that specifically removes H3K4
methylation modifications. However, most reports on H3K4 demethylase functions were
mainly focused on regulating plant development. For example, AtJMJ14/PKDM7B, a
histone H3K4 demethylase, represses floral integrators Flowering Locus T (FT ), AP1, SOC1
and LFY during vegetative growth (Lu et al., 2010; Yang et al., 2010). AtJMJ15 regulates
flowering time by demethylating H3K4me3 at Flowering Locus C (FLC) chromatin (Yang et
al., 2012b). AtJMJ18 is dominantly expressed in companion cells exhibiting H3K4me3 and
H3K4me2 demethylase activity of FLC. atjmj18 mutation results in a weak late-flowering
phenotype, and its overexpression induces early-flowering (Yang et al., 2012a). Moreover,
the overexpression of AtJMJ15may regulate gene expression that enhances stress tolerance
(Shen et al., 2014). Although several functions of H3K4 methylation modifications in
response to abiotic stresses have been reported, only a few were evaluated. Brassica species
might have diverged from a common ancestor with an Arabidopsis lineage from 14.5–20.4
million years ago (Yang et al., 1999). Allotetraploid species Brassica napus (oilseed rape,
AACC, 2n= 38) originated from interspecific spontaneous hybridization between Brassica
rapa (AA, 2n = 20) and Brassica oleracea (CC, 2n = 18) (Yang et al., 2010). The protein
organization and function of JmjC domain in Brassica species and its relative relationship
with model plant Arabidopsis remain uncharacterized. B. napus is currently the most
important oilseed crop, preceded only by soybean. However, B. napus is vulnerable to
abiotic stress that limits its growth and productivity and reduces its economic benefits.
KDM5/JARID1 subfamily may regulate many abiotic stress responses genes through
down-regulated H3K4me3 and H3K4me2 but the roles of H3K4 demethylation in abiotic
stress remain unknown.

MATERIALS AND METHODS
Identification of Jmjc Proteins and Chromosomal Map Construction
The JmjC protein sequences of Arabidopsis thaliana (AtJMJ11-22 and AtJMJ24-32) were
obtained as our previously described by Huang et al. in 2016 (File S1), and these sequences
were used as queries to BLASTp JmjC proteins of B. rapa, B. oleracea and B. napus in the
Brassica database (http://brassicadb.org/brad/index.php/blastPage.php). The JmjC protein
sequences in Oryza sativa were retrieved from Phytozome database (Version 12). The
result sequences of BLASTp were confirmed using both SMART (HMMER) and NCBI
(BLASTp) with default parameters, and proteins without JmjC domain were excluded. The
loci information of JmjC gene was used to generate chromosome maps by the Mapchart,
and the retention rates were calculated based on homologous genes on corresponding
chromosome (Voorrips, 2002).
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Analysis of JmjC sequences
The gene structures were visualized by GSDS (http://gsds.cbi.pku.edu.cn/). DOG program
was used to sketch site information of domain organization (Ren et al., 2009). Multiple
sequence alignment which is based on the full-length protein sequences is performed
by ClustalW (Thompson, Higgins & Gibson, 1994), and its resulting files were subjected
to phylogenic analysis by neighbor-joining method in MEGA7.0 program with pairwise
deletion, p-distance model and Bootstrap test of 1000 replicates (Tamura et al., 2013). The
multiple sequence alignment result were subjected to phylogenic analysis by Maximum
likelihood with pairwise deletion, Nearest-Neighbor-Interchange and Bootstrap test of
1000 replicates. Proteins sequences of JmjC were aligned with ClustalW to create Logo
maps (http://weblogo.berkeley.edu/logo.cgi), and the Fe(II) binding sites are showed in
red triangle and αKG binding site are showed in black triangle.

Duplicated JmjC Genes in B. napus
The duplicated genes of B. napus were defined by the method of Yang et al. (2008) and
Sun et al. (2015). The CDS sequence coverage and amino acid identity were determined
by Blastn/Blastp. The number of non-synonymous mutations (Ka) and the number of
synonymous substitutions (Ks) of duplicated genes were calculated by DnaSP 6.0 (Town
et al., 2006). The duplication time was calculated by T = Ks/2 λ × 10−6 (λ= 1.5 × 10−8)
(Koch, Haubold & Mitchell-Olds, 2000).

Plant material and stress treatment
TheBrassica napus L. ssp Xiangyou 15was used as the plantmaterial of stress treatment. The
seeds were provided by Key Laboratory of Crop Epigenetic Regulation and Development
in Hunan Province, Hunan Agricultural University. B. napus seedlings were grown on
clay substrates at 22 ◦C chamber in a 16 h light/8 h dark photoperiod. One-month old
plants with 4 true leaves were treated. For drought stress, the seedlings were grown without
watering, and leaves were sampled at 0, 5, 10, and 15 days. For salt stress, seedlings were
treated with 0, 100, 200, and 300 mM NaCl, and leaves were harvested at 3 days after
treatment. For high temperature stress, seedlings were grown at 40 ◦C, and leaves were
harvested at 0, 12, 24, and 36 h after treatment. All harvested samples were immediately
frozen in liquid nitrogen. Three independent biological replicates for each treatment were
conducted.

RNA Extraction and Real-Time Quantitative PCR (RT-qPCR)
Samples RNA was extracted by TRIzol reagent kit (Invitrogen, Carlsbad, CA, US) and
reverse transcribed into cDNA by Revert Aid RT Kit (Thermo Fisher, USA). The specific
primer pairs (File S4) used for real-time PCR with Fast Start Universal SYBR Green Master
(ROX) (Roche, Switzerland) on a CF x 96 Real Time System (BIORAD). The BnActin gene
(accession ID: NC_027768) was used as reference gene. Each sample was run in triplicate
and their expression levels were analyzed by 2−11 method (Livak & Schmittgen, 2001).
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RESULTS
Chromosome maps of JmjC genes in Brassica
In this study, 21 Arabidopsis JmjC proteins were used as queries to Blastp in Brassica
genomics (http://brassicadb.org/brad/index.php/blastPage.php). B. napus carried 65 JmjC
genes, whereas its parents B. rapa and B. oleracea had 29 and 23, respectively (File S1). 57
JmjC genes of B. napus were mapped on 19 chromosomes (AACC, 2n= 38), and 8 genes
were still on scaffolds, in which 6 were from Cn subgenome and 2 from An subgenome.
In addition, 23 B. oleracea genes and 29 B. rapa genes lactated on C01-C09 and A01-A10
chromosomes, respectively.

The JmjC genes in An andCn subgenomes ofB. napus shownearly identical distributions
to its ancestor genomes B. rapa (A-genome, 29) and B. oleracea (C-genome, 23) (Fig. 1).
A02 and A07 chromosomes only exist in one member of B. napus, which is similar to its
ancestor B. rapa genomes. A09 chromosome carries the highest number, seven genes. Four
tandem JmjC genes pairs located on chromosomes A03, A09, and C03 in B. napus (Fig. 1).
The tandem duplicated genes BnJMJ27;e and BnJMJ27;f on A03 subgenome are derived
from BrJMJ27;a and BrJMJ27;b, which belong to AtJMJ27 orthology. Tandem duplicated
gene pairs BnJMJ27;d/BnJMJ27;b and BnJMJ17;a/BnJMJ17;c might have resulted from
the forming processes allotetraploidy of B. napus. However, BnJMJ27;a and BnJMJ27;g of
C03 subgenome are absent from the ancestor B. oleracea genomes, and the orthologous
genes of these tandemly duplicated genes appear in the corresponding location of A03
subgenome, which indicate that BnJMJ27;a and BnJMJ27;g might have derived from the
cross duplication of A03 subgenome. BnJMJ31;a of C03 subgenome, BnJMJ18;c of C08
subgenome, BnJMJ17;b, and BnJMJ29;c of C09 subgenome may have similar origins.

Phylogenetic analysis of JmjC proteins in B. napus
A phylogenetic tree was constructed with 21 JmjC proteins form Arabidopsis, 19 from
O. sativa, 29 from B. rapa, 23 from B. oleracea, and 65 from B. napus to examine their
relationships. To make the name of JmjC gene more coherent and rational, JmjC genes
of Brassica were named based on their relationship to homologous gene in Arabidopsis.
The NJ tree that has similar topology with ML tree and more high bootstrap values, is
used to analyze the phylogenetic relationship of JmjC proteins (Fig. 2; File S3). The JmjC
proteins of Brassica were divided into seven clades, except BoJMJ19;c and BoJMJ19;d:
KDM4/JHDM3, KDM5A and B, JmjC domain only A and B, JMJD6 and KDM3/JHDM2
groups. This classification pattern was similar to the one previously reported for JmjC-
domain proteins in the green lineage (Huang et al., 2016). JmjC, Jumonji N (JmjN) and
zinc-finger (ZnF) motifs were the special motifs for KDM4/JHDM3; JmjC, JmjN, F/Y-rich
N terminus (FYRN) and F/Y-rich C terminus (FYRC) for KDM5A; JmjC, JmjN and
plant homeodomain (PHD) for KDM5B; JmjC and F-box for JMJD6; JmjC and RING
(really interesting new gene) for KDM3/JHDM2; and JmjC domain for JmjC domain
only A/B (Figs. 3–7). JmjN domain specifically exists in all proteins of KDM4/JHDM3,
KDM5A and KDM5B group, except BrJMJ14;a, BnJMJ16;b, BrJMJ17 and BnJMJ17;c. B.
rapa, Arabidopsis and O. sativa possess similar amounts of JmjC proteins in KDM5B, JmjC
domain-only A, JMJD6 and JmjC domain only B group. However, B. oleracea does not have
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Figure 1 Chromosomal distribution of Brassica genes. Brassica genes (57 B. napus, 23 B. oleracea and
29 B. rapa) was mapped on chromosomes except eight scaffolds genes of B. napus: (A) B. napus genes dis-
tribution of A-genomics, (B) B. rapa genes distribution, (C) B. napus genes distribution of C-genomics,
(D) B. oleracea genes distribution. The scale on the chromosome represents megabases (Mb).

Full-size DOI: 10.7717/peerj.11137/fig-1

JmjC protein of KDM5B and JmjC domain-only A. B. napus has 63 JmjC proteins, which
is more than the sum of those for B. oleracea and B. rapa (Fig. 2; File S1). The gene pairs
imply the closest relatives within the phylogenetic tree. JmjC phylogenetic tree identified
39 sister pairs consisting of 22 An-Ar and 17 Cn-Co (Fig. 2). Moreover, most of the sister
pairs are also paralogous gene pairs between the An and Cn subgenomes (Fig. 2).
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Figure 2 Phylogenetic tree of JmjC domain proteins. The Phylogenetic tree included 21 JmjC domain-
containing proteins form Arabidopsis thaliana, 19 from Oryza sativa, 29 from Brassica rapa, 23 from Bras-
sica oleracea and 65 from Brassica napus. The JmjC domain proteins can be grouped into seven groups
based on the phylogenetic tree and domain organization. Different colors show different groups. JmjC do-
main protein sequences were aligned using ClustalW, and the phylogenetic tree analysis was performed
using MEGA7.0.The trees were constructed with the following settings: tree inference as neighbor-joining;
include sites as pairwise deletion option for total sequences analysis; substitution model as p-distance.

Full-size DOI: 10.7717/peerj.11137/fig-2

Group KDM4/JHDM3
Group-KDM4/JHDM3 contains nine JmjC proteins from B. napus, four from B. rapa,
five from B. oleracea, five from O. sativa and three from Arabidopsis (Fig. 3). Group-
KDM4/JHDM3 can be divided into two subgroups according to phylogenetic relationship,
domain characteristic and gene structure: subgroup-I with eight Brassicamembers and two
Arabidopsis homologous genes, AtJMJ11 and AtJMJ12.

The domain organization of subgroup-I members show highly-conserved and shared
JmjC, JmjN and ZnF domain. Subgroup-II contains 10 Brassica members and Arabidopsis
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Figure 3 The schematic diagrams of Group-KDM4/JHDM3. (A) Phylogeny tree, (B) domain organiza-
tion, (C) gene structure, (D) logos analysis of JmjC domain.

Full-size DOI: 10.7717/peerj.11137/fig-3

homologous gene AtJMJ13 shared JmjC, and JmjN (Figs. 3A and 3B). KDM4 subfamily
shares the JmjN and JmjCmotifs. JmjN domain is the second highly-conserved domain that
is close to the N terminus and shorter than JmjC domain (Balciunas & Ronne, 2000). The
four tandem array ZnF domain of RELATIVEOF EARLY FLOWERING 6 (REF6)/AtJMJ12
targets motif CTCTGYTY, and the ZnF domain only exists in subgroup-I (Li et al., 2016).
REF6 also tends to bind to hypo-methylated CTCTGYTY motifs in vivo (Qiu et al.,
2019). Subgroup-I generally harbors 7–8 exons, but subgroup-II keeps highly similar gene
structures with 10 exons (Fig. 3C).

JmjC proteins have been discovered as Fe(II)- and αKG-dependent histone demethylases
(Chen et al., 2006; Klose, Kallin & Zhang, 2006). The JmjN and JmjC domains, two non-
adjacent domains, interact with each other through two ‘‘z-sheets and form a single
functional unit to ensure the stability and appropriate transcription activity of Gis1
and maintain the overall protein levels and function of Jhd2 H3K4-specific demethylase
in budding yeast (Huang et al., 2010; Quan, Oliver & Zhang, 2011). KDM4/JHDM3 has
conserved Fe(II) binding site (His and Gluresidues) and αKG binding site (Phe and
Lysresidues) (Fig. 3D).

Group-KDM5A/B
KDM5/JARID1 further can be divided into two groups: KDM5A and KDM5B (Fig. 2; File
S2). Group-KDM5A contains 18 JmjC proteins from B. napus, 2 fromO. sativa, 10 from B.
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Figure 4 The schematic diagrams of Group-KDM5A/B. (A & E) Phylogeny tree, (B & F) domain organi-
zation, (C & G) gene structure, (D & H) logos analysis of JmjC domain.

Full-size DOI: 10.7717/peerj.11137/fig-4

rapa, 7 from B. oleracea and 5 from Arabidopsis (Fig. 4A). Group-KDM5B only has 4 JmjC
proteins from Brassica and 1 from Arabidopsis homologous gene AtJMJ17. B. oleracea does
not have KDM5B JmjC proteins, and B. napus carries 3 members.

Group-KDM5A is distinguished by JmjC, JmjN, FYRN and FYRC motifs (Fig. 4B), and
can be further divided into three subgroups: subgroup-I with 18 Brassica members and
3 Arabidopsis homologous genes, AtJMJ14, AtJMJ15 and AtJMJ18. These members show
highly-conserved domain organization sharing JmjC, JmjN, FYRN, and FYRC domains,
except BrJMJ14;a. The phylogenetic tree showed that B. oleracea does not have AtJMJ18
homologues. Moreover, BrJMJ18;b is clustered with BnJMJ18;a and BnJMJ18;b, as well as
BrJMJ18;a with BnJMJ18;c and BnJMJ18;d (Fig. 4A). However, B. napus does not have a
gene clustered with BrJMJ14;b, BoJMJ15;b, and BrJMJ15;b. Subgroup-II has seven Brassica
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Figure 5 The schematic diagrams of Group-JmjC domain-onlyA/B. (A & E) Phylogeny tree, (B & F)
domain organization, (C & G) Gene structure, (D & H) Logos analysis of JmjC domain.

Full-size DOI: 10.7717/peerj.11137/fig-5

members and Arabidopsis homologous gene AtJMJ16 sharing JmjC, FYRN, JmjN and
FYRC domains, except BnJMJ16;e, which display highly-conserved domain organization,
in addition to BrJMJ16;a with additional helicase superfamily C-terminal and DEAD-like
helicases superfamily domains. Subgroup-III has 10 Brassica members and Arabidopsis
homologous genes AtJMJ19 and share JmjC and JmjN domains, besides BnJMJ19;a
and BnJMJ19;b with an additional transmembrane domain. This finding suggested that
subgroup-III may have a relatively stable inheritance during the formation process of
allotetraploidy.

Group-KDM5B differs from group-KDM5A group in domain organization, which has
BRIGHT and PHD but lacking FYRN and FYRC (Fig. 4F). BRIGHT is associated with
H3K4 demethylase by DNA binding motif (CCGCCC) to regulate transcription (Tu et
al., 2008). PHD mainly exerts epigenetic effectors capable of recognizing or ‘‘reading’’
post-translational histone modifications and unmodified histone tails (Musselman &
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Figure 6 The schematic diagrams of Group-JMJD6. (A) Phylogeny tree, (B) domain organization, (C)
gene structure, (D) logos analysis of JmjC domain.

Full-size DOI: 10.7717/peerj.11137/fig-6

Kutateladze, 2011). The original PHD role in gene transcription is acted as a reader of
H3K4me3 in 2006 (Wysocka et al., 2006). Many sophisticated functions of PHD were
also determined, including H3K9me3 recognition and binding to the N-terminus of H3,
indicating its key roles in regulating transcription and chromatin structure (Wang et al.,
2015). All members of group-KDM5B group have BRIGHT or PHD domains (Fig. 4F),
indicating their involvement in demethylation using JmjC domain associated with BRIGHT
and PHD domains.

Group-KDM5A/B shows a wide range intron/exon number (5–36), but sister gene
pairs are relatively conserved in gene structure (Fig. 4). In group-KDM5A, subgroups-I/II
are highly conserved in Fe(II) and αKG binding sites, except BrJMJ16;b in which Phe is
replaced by Met in αKG binding site, and His is replaced by Arg Fe(II) binding site. In
subgroup-III, Phe is replaced by Gln in αKG binding site, and BoJMJ19;c/d is variable in
other Fe(II) and αKG binding sites (Fig. 4D). In group-KDM5B, BnJMJ17a gene structure
is similar to its parent BrJMJ17 (Fig. 4G). Group-KDM5B is highly conserved in Fe(II) and
αKG binding sites, similar to KDM4/JHDM3 group (Fig. 4H).

Group-JmjC Domain-only A/B
Group-JmjC domain-only A/B and JMJD6 are distributed in different branches of a large
clade. Group-JmjC domain-only A is close to group-JMJD6 but far from group-JmjC
domain-only B. Group-JmjC domain-only A and B have same domain organization and
only exist in JmjC domain (Fig. 2).

Group-JmjC domain-only A possesses the least number of JmjC proteins among
the groups (Figs. 2 and 5A) and contains three Brassica members and one Arabidopsis
homologous gene AtJMJ20. B. oleraace is lack of Group-JmjC domain-only A JmjC
proteins (Fig. 5). BnJMJ20;b shares coincident gene structures, domain organizations and
chromosomal map with BrJMJ20 (Fig. 1, 5B and 5C) indicating that the former may have
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Figure 7 The schematic diagrams of Group- KDM3&JHDM2. (A) Phylogeny tree, (B) domain organiza-
tion, (C) gene structure, (D) logos analysis of JmjC domain.

Full-size DOI: 10.7717/peerj.11137/fig-7

originated from the latter. Chromosomal map, CDS cover and protein ID reveal that
BnJMJ20;a might be the duplicate of BnJMJ20;b (File S2).

JmjC domain-only B contains 17 JmjC proteins: 6 from B. napus, 2 from B. oleracea,
3 from B. rapa, 1 from O. sativa and 3 from Arabidopsis. Group-JmjC domain-only B
can be further divided into three subgroups. Subgroup-I contains four Brassica members
and Arabidopsis homologous gene AtJMJ30 (Fig. 5E). Subgroup-II contains three Brassica
members and Arabidopsis homologous gene AtJMJ31. Subgroup-III contains four Brassica
members and Arabidopsis homologous gene AtJMJ32 (Fig. 5E). Subgroups-I and III
show high conservation during the forming process of allotetraploid. B. napus perfect
inherited JmjC genes from its parents B. oleracea and B.rapa: BnJMJ30;b originating from

He et al. (2021), PeerJ, DOI 10.7717/peerj.11137 12/25

https://peerj.com
https://doi.org/10.7717/peerj.11137/fig-7
http://dx.doi.org/10.7717/peerj.11137#supp-2
http://dx.doi.org/10.7717/peerj.11137


BoJMJ30;a and BnJMJ30;a from BrJMJ30;a within subgroup-I; BnJMJ32;b originating
from BoJMJ32;a and BnJMJ32;a from BrJMJ32 in subgroup-III. B. oleracea lacks JmjC
proteins in subgroup-II. BnJMJ31;a exhibits notable similarity with BnJMJ31;b in terms
of domain component and gene structure, indicating that BnJMJ31;a may have originated
from the inserted duplicate of BnJMJ31;b belonged to paralogues gene (Figs. 5F and 5G).

Group-JmjC domain-only A has stable exon distribution harboring approximately 7–9
exons. Sequence alignment and logos analysis of JmjC domain reveal that JmjC domain-
only A group is highly conserved in Fe(II) and αKG binding sites. However, compared
with that in the KDM4/JHDM3 group, Phe is replaced by Thr in Fe(II) binding site (Fig.
5D). In group-JmjC domain-only B, subgroup-I genes contains 6 exons, subgroup- III
harbors 4 exons, and subgroup- II has many exons (Fig. 5G). As compared with that in the
KDM4/JHDM3 group, the Phe residue is replaced by Ser within AtJMJ31 orthology (Fig.
5H).

Group-JMJD6
The phylogenetic tree showed that the JMJD6 group is close to JmjC domain-only A group
and includes five JmjC proteins fromB. napus, three fromB. oleracea, two fromArabidopsis,
two from B. rapa and two from O. sativa. Each JmjC gene of B. napus is clustered with a
corresponding homologous gene from B. oleracea or B. rapa (Figs. 1 and 6A).

On the basis of phylogenetic tree analysis and schematic diagrams, group-JMJD6 can
be further divided into two subgroups (Fig. 6). Subgroup-I contains six Brassica members
and Arabidopsis homologous gene AtJMJ21 having only JmjC domain, besides BoJMJ21;b
protein with an additional F-box domain (Figs. 6A and 6B). Subgroup-II contains four
Brassica members and AtJMJ22, which shares JmjC and F-box domains except AtJMJ22
missing F-box domain. However, their gene structure shows high conservation (Fig.
6). F-box domain recognizes a wide array of substrates and regulates many important
biological processes by degrading cellular proteins in plants (Gupta et al., 2015).

Subgroup-I generally harbors 15–16 exons, except BoJMJ21;a (4 exon) and BnJMJ21;a
(9 exon). Subgroup-II keeps highly similar gene structures with 2–3 exons (Fig. 6C).
Compared with that in KDM4/JHDM3 group, Phe is replaced by Ala within AtJMJ21
orthology and by Ser within AtJMJ22 orthology in JMJD6 (Fig. 6D).

Group-KDM3/JHDM2
The KDM3 & JHDM2 group is the largest group with 48 JmjC proteins: 6 from Arabidopsis
(JMJ24-29), 22 from B. napus, 8 from B. rapa, 5 from O. sativa, and 6 from B. oleracea
(Fig. 2 and 7A). Group-KDM3 & JHDM2 can be divided into four subgroups: subgroup-I
containing 14 Brassica members and 3 Arabidopsis homologous genes, AtJMJ25, AtJMJ26
and AtJMJ29. These proteins have AT-hook motif, RING and DM domains, except
JmjC domain. Subgroups-II/III/IV contain AtJMJ27, AtJMJ24 and AtJMJ28 and their
homologue genes, respectively. Subgroups-III/IV show highly-conserved and shared JmjC
and RING domains, except BoJMJ24;a (Fig. 7B). Moreover, their gene structure also shows
corresponding conservation (Fig. 7C).
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In group-KDM3/JHDM2 (Fig. 7B), half of the members harbor RING domain as the
second primary domain. Cys-X2-Cys-X(9−39)-Cys-X(1−3)-His-X(2−3)-Cys-X2-Cys-X(4−48)-
Cys-X2-Cys is the canonical RING (Deshaies & Joazeiro, 2009). The RING domain of many
proteins mainly binds to ubiquitin-conjugating enzymes and mediates the direct transfer
of ubiquitin to substrate (Deshaies & Joazeiro, 2009). The AT-hook is a small DNA-binding
motif with a preference for A/T rich regions found in various proteins, such as the high
mobility group proteins (Klosterman & Hadwiger, 2002).

Sequence alignment and logos analysis of the JmjC domain reveal that subgroups-I and
II are highly conserved in Fe(II) binding sites (His, Asp and Cys) and αKG binding sites
(Thr and Lys), except BoJMJ29;a. Moreover, both sites of subgroup-IV are different: The
His and Asp residues of Fe(II) binding sites are replaced by Gly and Glu residues, and the
Thr of αKG binding sites is replaced by Lys residue (Fig. 7D). However, subgroup-III does
not present conservation.

Stress-response expression of KDM5 subfamily genes
Arabidopsis KDM5 subfamily genes play central roles in stress-responsive gene expression
and gene priming by H3K4me3 demethylation (Jaskiewicz, Conrath & Peterhansel, 2011).
The expression of genes related to the response for drought, high temperature and saline
stresses was determined to characterize the corresponding function of KDM5 group
homologues in B. napus abiotic stress response.

Under three different stress conditions, the expression profiles of BnKDM5 subfamily
genes were detected by real-time PCR (Figs. 8–10). BnJMJ16;a, BnJMJ17;b/c and BnJMJ18;a
showed remarkably elevated expression under salt, drought and high temperature.
However, BrJMJ19;a/c did not show significant expression changes. The vast majority
of JmjC genes showed remarkably elevated expression under drought treatment, except
BnJMJ14;a and BnJMJ19;a/c/e. Under drought 5 or 10 days, most of the genes had higher
expression than drought 15 days, except BnJMJ17;c and BnJMJ19;b (Fig. 8). However,
only 6 (BnJMJ16;a, BnJMJ17, BnJMJ18;a and BnJMJ19;e) out of the 20 JmjC genes showed
elevated expression under high temperature treatment. The expressions of BnJMJ16;a,
BnJMJ17a/b and BnJMJ18;a expression was induced under 12 h of high temperature
treatment, but BnJMJ17;c and BnJMJ19;e were not substantially expressed until 36 h (Fig.
9). Moreover, nearly half of the JmjC genes (BnJMJ14, BnJMJ15;a, BnJMJ16;a, BnJMJ17;b/c
and BnJMJ18;a/d) showed remarkable expression under 100 Mm NaCl treatment, besides
BnJMJ15;c that was strongly induced by 200 mM NaCl stress (Fig. 10).

DISCUSSION
Conserved JmjC Genes of B. napus
Allotetraploid species B. napus (AACC, 2n= 38) derived from interspecific spontaneous
hybridization of B. rapa (AA, 2n= 20) and B. oleracea (CC, 2n= 18) (Nagaharu, 1935).
Nuclear genomes have remained essentially unaltered since amphidiploid species formation
(Parkin et al., 1995). Similarly, the JmjC protein family appears to be extremely conserved
during B. napus formation. Compared with the progenitor genomes of B. rapa and B.
oleracea, 27 (93.1%) JmjC orthologous gene pairs between An subgenome and 19 (82.6%)
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Figure 8 (A–T) Expression of B. naupsKDM5 subfamily in response to drought. Many of the
BnJMJ14-19 genes involved in drought stress response. The error bars depict SD, an asterisk represent
corresponding gene significantly up- or down-regulated by Student’s t test between the treatment and the
control (0.01< P < 0.05), two represent (p< 0.01).

Full-size DOI: 10.7717/peerj.11137/fig-8

between Cn subgenome in B. napus were conserved (Fig. 2). The average retention rates
from ancestor exceed the rate of all homologous gene pairs (83.7%) across the whole B.
napus genome (Chalhoub et al., 2014). Each member of B. rapa and B. oleracea can be
paired to at least one homologue of B. napus, except five members of KDM5A subfamily:
BrJMJ14;b, BrJMJ15;b, BoJMJ15;b, BoJMJ19;c and BoJMJ19;d, which indicates the JmjC
genes are highly conserved but some reductions might have been found in KDM5A
subfamily during the formation process of allotetraploid (Fig. 4). Comparing with the
reported homologous genes, BrJMJ14;b, BrJMJ15;b and BoJMJ15;b might be associated
with floral integrators and flowering time by H3K4 demethylase activities (Lu et al., 2010;
Yang et al., 2010; Yang et al., 2012b). However, the BrJMJ14;b, BrJMJ15;b and BoJMJ15;b
might be redundant, because their paralogs can be found in B. napus (Fig. 4). In addition,
BoJMJ19;c and BoJMJ19;d have present difference in structures and might only specifically
exist in B. oleracea (Fig. 4).

Gene duplication expands genome content and changes gene function to ensure
the optimal adaptability and evolution of plants (Xu et al., 2012). The 65 JmjC
proteins from B. napus were more than the total number of proteins for B. rapa (29)
and B. oleracea (23) (File S1). According to the systematic analysis results of JmjC
proteins, some new or duplicated JmjC genes were found in B. napus (Figs. 2–7).
Gene duplication events were confirmed by the method of Yang et al. (2008) and
Sun et al. (2015). BnJMJ16;e/BnJMJ16;d, BnJMJ18;a/BnJMJ18;b, BnJMJ18;d/BnJMJ18;c,
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Figure 9 (A–T) Expression of B. naupsKDM5 subfamily in response to high temperature. Many of the
BnJMJ14-19 genes involved in high temperature stress response. The error bars depict SD, an asterisk rep-
resent corresponding gene significantly up- or down-regulated by Student’s t test between the treatment
and the control (0.01< P < 0.05), two represent (p< 0.01).

Full-size DOI: 10.7717/peerj.11137/fig-9

BnJMJ31;a/BnJMJ31;b, BnJMJ29;b/BnJMJ29;d and BnJMJ17;a/BnJMJ17;b duplicated
genes pairs may have been derived from the existing JmjC gene from B. rapa and
BnJMJ28;a/BnJMJ28;b and BnJMJ29;a/BnJMJ29;c pairs from B. oleracea (File S1). These
gene pairs were duplicated through segmental duplication (File S2). Additionally, the
parent of BnJMJ17;c was not found by the method, but its sequence of JmjC domain
was consistent with the BnJMJ17;b. In crop species, gene duplicate events can contribute
to the evolution of novel functions and important agronomic traits, such as fruit shape,
flowering time, disease resistance and adaptation to stress (Panchy, Lehti-Shiu & Shiu,
2016). In contrast, whole genome triplication event of Brassica rapa and Brassica oleracea
exerts critical roles in the speciation and morphotype diversification of Brassica plants
(Cheng, Wu &Wang, 2014).

Overall, the JmjC genes of B. napus were conserved during the formation process of
allotetraploidy, and the gene reduction and duplication from parents were preferred in the
KMD5A group.

Conservation and function of JmjC proteins of B. napus
65 JmjC proteins of B. napus were clustered into seven groups based on phylogenetic
and domain organization (Figs. 2–7; File S1) similar to the result that JmjC domain
proteins is systematic analyzed ranging from green alga to higher plant (Huang et al., 2016).
Furthermore, the BnJmjC demonstrated high similarity with homologous sequences or
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Figure 10 (A–T) Expression of B. naupsKDM5 subfamily in response to NaCl stresses. Many of the
BnJMJ14-19 genes involved in NaCl stress response. The error bars depict SD, an asterisk represent corre-
sponding gene significantly up- or down-regulated by Student’s t test between the treatment and the con-
trol (0.01< P < 0.05), two represent (p< 0.01).

Full-size DOI: 10.7717/peerj.11137/fig-10

even with the whole subfamily in domain origination, chromosomal location, intron/exon
number and catalytic sites. These results indicated JmjC proteins ofB. napuswere conserved
family during allotetraploid formation.

In general, H3K4me2/me3 and H3K36 correlate with transcriptional activation, and
H3K9me2 and H3K27me3 correlate with gene silencing (Huang et al., 2011). The substrate
specificity of BnJmjC proteins can be predicted based on their conservation and previous
research results. KDM4/JHDM3 was involved in multi-demethylation (H3K4me2/3,
H3K9me3, H3K27m2/3 and H3K36me2/3), such as AtJMJ11 for H3K27m3, H3K9me3 and
H3K4me3 demethylation (Jeong et al., 2009; Crevillén et al., 2014; Noh et al., 2004; Yu et
al., 2008), AtJMJ12/REF6 for H3K4me2/3, H3K27me2/3 and H3K36me2/3 demethylation
(Cui et al., 2016; Hou et al., 2014; Hyun et al., 2016; Ko et al., 2010; Li et al., 2016; Lu et al.,
2011) and OsJM12;a/JMJ705 for H3K27me2/3 demethylation (Li et al., 2013). KDM5A
was involved in H3K4me2/3 demethylase activity, and the activity has been reported in
AtJMJ14/15/18 and JMJ703(OsJM16;a)/ JMJ704/OsJM14;a (Lu et al., 2010; Yang et al.,
2010; Yang et al., 2012b; Shen et al., 2014; Yang et al., 2012a; Chen et al., 2013; Cui et al.,
2013; Hou et al., 2015). JmjC domain-only B is involved in H3K36me2 and H3K27me3
demethylation, but only a member (AtJMJ30) is identified in this subfamily (Yan et
al., 2014; Gan et al., 2014). KDM3/JHDM2 is involved in H3K9 demethylation, and the
demethylase activity has been reported in AtJMJ25/27 (Dutta et al., 2017; Saze, Sasaki &
Kakutani, 2014). KDM5B might be associated with H3K4 demethylase by BRIGHT and
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PHD domains, but there are still no reports on the members of this family. Moreover,
JmjC domain-only A subfamily member AtJMJ20 has a crucial role in removing histone
arginine methylases (Cho et al., 2012). JMJD6 subfamily member AtJMJ22 acts as histone
arginine demethylases (Cho et al., 2012).

KDM5 response to abiotic stresses
Epigenetic marks in H3K4 exert critical functions on regulating genes response to ambient
stress (Baulcombe & Dean, 2014; Begcy & Dresselhaus, 2018). In rice, H3K4 dimethylation
of ADH1 and PDC1 is switched to trimethylation to response to submergence stress
(Qiao & Fan, 2011). H3K4me3 is also correlated with gene expression which responds to
dehydration stress (Santos et al., 2011). ArabidopsisH3K4me3 of AHG3, catalyzed by ATX4
and ATX5, plays an essential role in drought stress response (Liu et al., 2018a; Liu et al.,
2018b). Arabidopsis H3K4 hypermethylation is associated with transcriptional activation
and maintenance heat stress response (Liu et al., 2018a; Liu et al., 2018b). Furthermore,
Over-expression of KDM5 subfamily AtJMJ15, a H3K4 demethylase, enhanced salt
tolerance (Shen et al., 2014). In KDM5 subfamily, the similar gene sequences and domain
organization between Arabidopsis and B. napus suggests that B. napus members may
also possess conserved biological function with H3K4 demethylase activity (Fig. 4). The
expression patterns of BnKDM5 subfamily show that almost all of BnKDM5 genes are
involved in drought, high temperature and salt stress response (Figs. 8–10).

Under drought, high temperature or salt stress, all members of BnKDM5B exhibited
remarkable elevated expression, except BnJMJ17;a under salt stress, suggesting that these
homologous genes have conserved functions to responses to similar stress stimuli. In
general, the expression of BnKDM5A genes are relatively conserved to response to identical
stress condition. For instance, the homologous gene of AtJMJ15 (BnJMJ15;a/b/c), AtJMJ16
(BnJMJ16;a/b/c/d), and AtJMJ18 (BnJMJ18;a/b/c/d) showed similar stress response to
drought stress with remarkable increased expression. However, their display diverse
transcriptional responses to other stress stimuli, even among homologous genes. For
example, BnJMJ18;a shows remarkably elevated expression under high temperature
without the homologous genes BnJMJ18;b/c/d. These results indicate that functions of
BnKDM5 members are conserved and divergent during allotetraploid formation.

CONCLUSIONS
This study provides the first genome-wide characterization of JmjC genes inBrassica species.
The BnJmjC exhibits higher conservation during the formation process of allotetraploid
than the average retention rates of whole B. napus genome. Furthermore, expression
profiles indicated that BnKDM5 subfamily genes are involved in stress response to salt,
drought and high temperature.
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