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Background: The rapid SARS-CoV-2 outbreak caused severe pandemic infection worldwide. The present
article aims to design a potential vaccine construct VTC3 targeting the non-mutational region of
structural and non-structural proteins of SARS CoV2.

Methods: The presence of different epitopes like T cell, B cell, and IFN-gamma were estimated along
with their antigenicity, allergenicity, and toxicity. The location of all the epitopes was determined in virus
proteins. Vaccine constructs were evaluated for antigenicity, allergenicity, physicochemical properties,
and structural details. The design vaccine construct was validated using docking and molecular dynamics
simulation (MDS). Mutational sensitivity profiling of the designed vaccine was performed, and mutations
were reconfirmed from the experimental database.

Results: Results identified ten (structural and non-structural) proteins of this virus that have a role in cell
adhesion and infection were taken as a target. The different epitopes were predicted, and only
extracellular epitopes were selected that do not have cross-reactivity. Finalized epitopes of all proteins
were linked using linkers to designed different vaccine constructs. Docking of different constructs with
different TLRs and HLA demonstrated a stable and reliable binding affinity of VTC3 with the TLRs and
HLAs. MDS analysis further confirms the interaction of VTC3 with TLR1/2 complex and HLA. The VTC3
does not have similarities with the human microbiome, and interacting residues of VTC3 do not have
mutations. The present study designs a multiepitope vaccine targeting the non-mutational region of
structural and non-structural proteins of the SARS CoV2 using an immunoinformatic approach, which
needs to be experimentally validated.
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Abstract:

Background: The rapid SARS-CoV-2 outbreak caused severe pandemic infection worldwide. The present
article aims to design a potential vaccine construct VIC3 targeting the non-mutational region of structural

and non-structural proteins of SARS CoV2.

Methods: The presence of different epitopes like T cell, B cell, and IFN-gamma were estimated along with
their antigenicity, allergenicity, and toxicity. The location of all the epitopes was determined in virus
proteins. Vaccine constructs were evaluated for antigenicity, allergenicity, physicochemical properties,
and structural details. The design vaccine construct was validated using docking and molecular dynamics
simulation (MDS). Mutational sensitivity profiling of the designed vaccine was performed, and mutations

were reconfirmed from the experimental database.

Results: Results identified ten (structural and non-structural) proteins of this virus that have a role in cell
adhesion and infection were taken as a target. The different epitopes were predicted, and only
extracellular epitopes were selected that do not have cross-reactivity. Finalized epitopes of all proteins
were linked using linkers to designed different vaccine constructs. Docking of different constructs with
different TLRs and HLA demonstrated a stable and reliable binding affinity of VTC3 with the TLRs and
HLAs. MDS analysis further confirms the interaction of VTC3 with TLR1/2 complex and HLA. The VTC3
does not have similarities with the human microbiome, and interacting residues of VIC3 do not have
mutations. The present study designs a multiepitope vaccine targeting the non-mutational region of
structural and non-structural proteins of the SARS CoV2 using an immunoinformatic approach, which

needs to be experimentally validated.

Peer] reviewing PDF | (2020:10:53343:0:1:NEW 1 Dec 2020)



PeerJ

50

51

52

53

54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

1. Introduction

Immuno-pathogenesis of the infectious epidemic COVID-19 emerged as serious threat worldwide. In
the Coronaviridae family, among four different coronavirus classes (alpha, beta, delta, and gamma), alpha
and beta positive-sense RNA virus strains have been confirmed for broadly epidemic infection (de Wilde
et al. 2018; Qamar et al. 2020). SARS-CoV2 (Severe Acute Respiratory Syndrome Coronavirus 2) mediated
outbreak of the disease was firstly reported in Wuhan city, Hubei province, China, in December 2019
(Gorbalenya et al. 2020; Huang et al. 2020; Perlman 2020; Tahir Ul Qamar et al. 2019; World Health 2020;
Wu et al. 2020b; Zhu et al. 2020). The outbreak has so far infected more than 10,00,000 patients worldwide
on dated 10 May 2020. SARS-CoV2 genome sequence comparison showed that it has almost 96%, 79.5%,
and 40% similarities with bat coronavirus, SARS-CoV and MERS-CoV strain respectively (Alamri et al.
2020; Benvenuto et al. 2020; Zhou et al. 2020). The clinical symptoms of SARS-CoV2 exhibit up to 14 days
in infected people with fever (238°C), diarrhea, dry cough, low peripheral white blood cell count,
respiratory disorder, and low lymphocyte count (Huang et al. 2020). SARS-CoV2 mutation prone (Jiayuan
et al. 2020) genomic organization is a difficult task to develop a vaccine that is composed of 5'-leader-UTR-
replicase-S (Spike)-E (Envelope)-M (Membrane)-ORF6-ORF7a-ORF8-N (Nucleocapsid)-3"UTR-polyA tail.
Proteins such as ORF3a, ORF7a, ORF8 function as accessory proteins playing an essential role in viral
pathogenesis (Seema 2020; Zhu et al. 2020). Spike protein receptor-binding domain of mutation prone
SARS-CoV2 showed the more efficient binding with host’s angiotensin-converting enzyme 2 (ACE2) than
SARS-CoV (Dong et al. 2020; Gralinski & Menachery 2020; Tian et al. 2020; Wrapp & Wang 2020; WU et al.
2020a).

To overcome the issues such as cost & time mediated traditional method (monoclonal
oligonucleotides, small drug molecules) with rapid detection, isolation, disease prevention, and control
measures (Li & De Clercq 2020), virus genome was analyzed by computational methods (Chen et al. 2020).
Recently published immune-informatics based vaccine design against MERS virus, Ebola virus

chikungunya, and Zika showed the promising potential to fought against disease (Ahmad et al. 2019;
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Shahid et al. 2020; Tahir Ul Qamar et al. 2018; Tahir Ul Qamar et al. 2019). Reverse vaccinology includes
different software algorithms to evaluate the immunological data that analyze the epitopes binding
efficiency with HLA alleles, antigenicity, allergenicity, and toxicity to design the potential chimeric subunit
vaccine (De Gregorio & Rappuoli 2012; Khan et al. 2018; Mirza et al. 2016; Patronov & Doytchinova 2013).
The final chimeric epitope vaccine is a group of different epitopes joined with the help of linkers that may
enhance specific adaptive-immune responses in the host cell (Brennick et al. 2017; Chauhan et al. 2019;
Jensen & Andreatta 2018; Lu & Meng 2017; Nain et al. 2020; Purcell et al. 2007; Saadi et al. 2017).

In the recent study, SARS-CoV2 proteome was explored to determine the antigenic proteins, and
various T-cell and B-cell epitopes were predicted with their HLA alleles with each epitope antigenicity,
allergenicity, and physiochemical properties evaluation. The final epitope constructs molecular docking
was performed with different TLRs (Toll Like Receptors), and HLA (human leukocyte antigen) alleles to
confirm the stable binding interaction of the multi-epitope vaccine-receptor complex. To activate the host
immune system, the interaction of TLRs with the designed vaccine could be a potential approach against
viral infection. Intracellular TLRs that present on cell endosomes interact with ssRNA (TLR-7 & TLR-8),
dsRNA (TLR-3), and CpG DNA (TLR-9) to activate the NFkp mediated immune/cell response (Carty &
Bowie 2010). With protein-based-epitope vaccine designing, we have focused on TLR-2, TLR-4, TLR2/6,
and TLR1/2 heterodimer mediated IRF3/7 and NFK@ mediated immune cell activation. A previous study
on TLR-2 and TLR-4 mediated activation showed protective cell immunity and subvert effect on the host
cell. Targeting these two TLRs would mold the signaling cascade, beneficial for viral cell replication and
survival. TLR4 knockout studies with respect to wild type showed that for host protective immune
activation, cells need a certain degree of TLR-4 activation (Olejnik et al. 2018). To overcome the TLRs
subvert effect of the host cell, it is better to target TLR1/2 heterodimer mediated activation signalling with

mild TLR-4 interaction.

2. Materials and Methods

2.1. Protein sequence collection:

To evaluate the coronavirus suitable antigenic vaccine target, firstly, we have retrieved the different
protein sequences from NCBIL Ten different protein FASTA files have been downloaded to cover the
complete genome of SARS CoV2. These proteins are ORF6 protein (YP_009724394.1), membrane
glycoprotein  (YP_009724393.1), OREF3a protein (YP_009724391.1), nucleocapsid phosphoprotein
(YP_009724397.2), ORF10 protein (QHI42199.1), ORF7a protein (YP_009724395.1), envelope protein
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(YP_009724392.1), ORFlab (YP_009724389.1), ORF8 protein (QHD43422.1), and surface glycoprotein
(YP_009724390.1). All FASTA sequences were used as inputs for further immune-informatics analysis
(Seema 2020).

2.2. Analysis of protein Antigenicity and Trans-membrane helicity

In the development of the chimeric multi-epitope vaccine, protein antigenicity, and transmembrane
helicity play a key role in vaccine successes. To evaluate the protein antigenicity, we used the Vaxijen server
(Doytchinova & Flower 2007) with 0.4 thresholds, while transmembrane helicity was estimated using

TMHMM (Krogh et al. 2001) and Protter server (Omasits et al. 2014).

2.3. Cytotoxic T cell epitopes prediction with potential antigenicity, allergenicity, and Toxicity:

Shortlisted seven extracellular protein peptides were evaluated by NetCTLpan version 1.1 to predict
promiscuous epitopes that can enhance the immune response in the host cell by interacting with HLA-
epitope binding. In this server, we have evaluated the peptide with respect to 12 different HLA supertypes
(HLA-A01:01, HLA-A02:01, HLA-A03:01, HLA-A24:02, HLA-A26:01, HLA-B07:02, HLA-B08:01, HLA-
B27:05, HLA-B39:01, HLA-B40:01, HLA-B58:01, HLA-B15:01). With the help of the neural network, the
algorithm server predicts promiscuous high binding affinity nonameric peptides (Stranzl et al. 2010).
Vaxijen further evaluated predicted HLA binder peptides, AllergenFP (Dimitrov et al. 2013) and Toxinpred
server used to confirm the epitope’s high antigenicity, low allergenicity, and low toxicity level (Gupta et al.

2013).

2.4. Immunogenicity prediction:

Shortlisted NetCTLpan epitopes were used for immunogenicity prediction that confers the property
which can elicit the cellular and humoral response in the host cell against viral infection. Promiscuous
epitopes across prediction algorithms, ORF3a protein (1 epitope), surface glycoprotein (2 epitopes), and
ORFlab polyprotein (17 epitopes) used as input peptide. High binding capacity epitopes (by IEDB
immunogenicity tool server) were selected as positive immunogenicity epitopes. This server predicted the
immunogenicity level based on the epitope positions in the expected peptide and physicochemical

properties of an amino acid (Calis et al. 2013).

2.5. Helper T cell epitope prediction:
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With the help of IEDB MHC II binding prediction tool, we have predicted helper T cell epitopes across
HLA alleles reference sets such as HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*04:05, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, HLA-DRB1*11:01, HLA-DRB1*12:01,
HLA-DRB1*13:02, HLA-DRB1*15:01, @ HLA-DRB3*01:01, = HLA-DRB3*02:02, = HLA-DRB4*01:01,
HLADRB5%01:01, HLA-DQA1%05:01/DQB1*02:01, HLA-DQA1*05:01/DQB1*03:01, HLADQA1*03:01/
DQB1*03:02, HLADQA1%04:01/DQB1%04:02, HLADQA1%01:01/DQB1*05:01,
HLADQA1%01:02/DQB1*06:02, HLADPA1*02:01/DPB1*01:01, HLA-DPA1*01:03/ DPB1*02:01, HLA-
DPA1%01:03/DPB1*04:01, HLA-DPA1*03:01/DPB1*04:02, HLA-DPA1*02:01/ DPB1*05:01, HLA-
DPA1%02:01/DPB1*14:01. The HLA alleles reference set provides >99% population coverage. IEDB MHC II
server is based on a combinational library that generates the percentile rank and IC-50. The lower percentile
rank represents a higher affinity of the epitope-HLA complex. The epitope-alleles affinity consensus list

was generated for 15 amino acids long epitopes (Wang et al. 2008).

2.6. B cell epitope prediction

The epitopes of B cells help to detect viral infections by the antibody-based immune response. IEDB
BEPIPRED (Jespersen et al. 2017) and ABCpred (Saha & Raghava 2006) were used to analyze the B cell
interacting epitopes. Overlapped epitopes from both servers were chosen for further analysis. FASTA files
of all seven proteins were used as an input file. These resultant epitopes were further screened by Vaxijen,
AllergenFP, and TOXINPRED server to analyze the epitopes antigenicity, allergenicity and toxicity reaction

in the host cell.

2.7. Comparative, Cross-reactivity, IFN gamma induction analysis of MHC 1, II, and B cell epitopes:

All finalized MHC [, II, and B cell epitope comparative analysis have been done to remove the
overlapping epitopes. Non-overlapping epitopes should have a unique presence in the virus. To confirm
this, we performed the multiple peptide match against the human proteome (ID 9606) using Protein
Information Resource (Chen et al. 2013). Besides, IFN gamma induction has a significant role in the viral
elimination and induction of host immune response. Hence, we have predicted the IFN gamma induction

efficiency of selected epitopes via the IFNepitope server (http://crdd.osdd.net/raghava/ifnepitope/).

2.8. Chimeric multi-epitope vaccine designing

All screened epitopes that contain the antigenic property with less allergenicity, less toxicity, and less

cross-reactivity have been finalized to design the chimeric multi-epitope vaccine against SARS Co-V2. A
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potent vaccine should have the capacity to activate the immune response in the host cell but not activates
the detrimental immunity. Hence, to maintain the balance immunity in the host cell, we have selected half
non-IFN gamma inducible peptide and vice-versa. All selected epitopes were joined with the help of linker

EAAK and GGGS (Solanki & Tiwari 2018).

2.9. Evaluation of potential vaccine candiadate or constrcts

Different constructs of the vaccine were further analyzed for antigenicity (via Vaxijen), allergenicity
(via AllergenFP), and toxicity (via Toxinpred). A highly antigenic vaccine construct (i.e., VTC3) has been
further evaluated by the Protparam tool (Gasteiger et al. 2003). The secondary and tertiary structure of
selected chimeric vaccine construct VIC3 was predicted by using PESIPRED (Buchan & Jones 2019) and
Phyre2 in intensive modeling mode (Kelley et al. 2015) respectively, and modelled vaccine was validated

by PSVS analysis.

2.10. Molecular docking

To eliminate the virus infection, TLR's balanced activation is the primary need of the cell. In recent
work, the scientists are targeting TLR1/2 etc. for viral elimination; hence, these TLR heterodimers were also
included along with other TLRs for docking study with the chimeric vaccine. For this, we have docked
VTC3 with different TLRs (TLR1, TLR2, TLR3, TLR4, TLR1/2, TLR6) by PATCHDOCK server. For efficiency

analysis of the HLA-epitope complex, we also docked the VTC3 construct with different HLA alleles.

2.11. Molecular Dynamics Simulation

The MDS analysis was performed by Desmond using the published protocol (Wright et al. 2020) using
the OPLS3e force field, TIP3P solvent. MDS was run for 50ns in duplicate. The simulated system was

analyzed for the interaction diagram.

2.12. Validation of potential vaccine candidate or constrcuct with the human microbiome

Potential vaccine candidate sequence similarity with the gut microflora would create autoimmunity
in the host. To minimize this adverse effect, we compared the vaccine candidate VTC3 against gut flora
(226 organisms) sequenced by the Human Microbiome Project (Peterson et al. 2009) using Blast against 226

proteomes, with a significant hit (E-value <10° and identity >40%) (Ramos et al. 2018).

2.13. Mutational sensitivity profiling and analysis of experimental mutation data
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Mutational sensitivity profiling of the designed vaccine was performed using the MAESTROweb as
per the published method (Laimer et al. 2016). The amino acid sequence of chimeric multi-epitope vaccine
VTC3 was further analysed for any mutation which was originally present in the SARS-CoV2 virus using

the CoV-GLUE database.

3. Result

3.1. Analysis of protein antigenicity and trans-membrane helicity

The workflow has been discussed in figure 1, which explains the reverse vaccinology mechanism used
in the present study. Amino acid sequences of target proteins were collected in FASTA format to analyse
antigenicity and trans-membrane helicity. All the proteins with their antigenicity score such as
nucleoprotein phosphoprotein (0.50), ORF10 protein (0.71), ORFS8 protein (0.65), ORF7a protein (0.64),
ORF6 protein (0.61), membrane glycoprotein (0.51), envelope protein (0.60), ORF3a protein (0.49), surface
glycoprotein (0.46), and ORF1ab protein (0.46) antigenic score showed their potential to exceed the immune
response in the host cell. To elicit the immune response in the host cell, transmembrane helicity of viral
proteins has been evaluated. With the help of TMHMM and Protter servers, we have identified the
extracellular, transmembrane, and cytosolic peptides. The protein protter results showed that
nucleoprotein phosphoprotein, ORF6 protein, and ORF10 protein are complete cytosolic in nature. Hence,
for further study, these three proteins were eliminated, and the rest of the seven proteins was considered
for further study in designing the chimeric vaccine against SARS CoV2. The extracellular peptides of these

proteins will help to interact with host PAMPs and maximize the solubility of designed vaccines.

3.2. Cytotoxic T cell epitopes prediction with potential antigenicity, allergenicity, and Toxicity:

Cytotoxic T lymphocytes (CTL) epitope predictions of all seven proteins were made using NetCTLpan
1.1 using the same HLA supertypes. Out of all seven, membrane glycoprotein (YP_009724393.1) did not get
any potent HLA binder peptide. The rest six proteins showed the peptide binders with different HLA
supertypes. From this server results, we have identified different epitopes ORF8 (8 epitopes), ORF7a
protein (9 epitopes), an envelope protein (4 epitopes), ORF3a protein (3 epitopes), surface glycoprotein (125
epitopes) and ORF1lab polyprotein (707 epitopes) binders (data not shown). From the results, we manually
screened peptides that showed a binding affinity with more than one HLA allele. This approach will
minimize the HLA polymorphism so that promiscuous peptide will show binding to HLA of the wide

population. After the manual screening of proteins, we have shortlisted ORFS8 (1 epitope), ORF7a protein
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(2 epitopes), an envelope protein (2 epitopes), ORF3a protein (3 epitopes), surface glycoprotein (43
epitopes) and ORF1lab polyprotein (277 epitopes) epitope binders (data not shown). Based on antigenicity,
allergenicity and toxicity analysis of peptide, different epitopes of ORF8 (0 epitopes), ORF7a protein (0
epitopes), an envelope protein (0 epitopes), ORF3a protein (1 epitope), surface glycoprotein (2 epitopes)
and ORF1ab polyprotein (17 epitopes) further shortlisted and the potential epitopes were selected that can

enhance immune response via HLA activation (Tablel).

3.3. Immunogenicity prediction

Immunogenicity prediction of ORF3a protein (1 epitope), surface glycoprotein (2 epitopes), and
ORF1ab polyprotein (17 epitopes) epitopes showed that ORF3a protein (1 epitope), surface glycoprotein (1
epitope) and ORFlab polyprotein (6 epitopes) epitopes had a positive score (Tablel). The positive

immunogenicity with HLA binding confirmed that these epitopes would elicit a high immune response.

3.4. Helper T cell epitopes prediction with antigenicity, allergenicity, and toxicity:

Helper T-cell mediated 15 amino acid extended epitopes were generated against the HLA allele
reference set. In results the percentile rank 0.1 was set as the threshold so that we can screen high binding
affinity HLA II interacting epitopes. Based on reference threshold, ORF8 (5 epitopes), ORF7a protein (0
epitopes), membrane protein (0 epitopes), an envelope protein (0 epitopes), ORF3a protein (0 epitopes),
surface glycoprotein (19 epitopes) and ORFlab polyprotein (18 epitopes) showed <0.1 percentile rank
(Table2). Low percentile epitopes antigenicity (Table 2), allergenicity, and toxicity level (Table3) further
shortlisted the epitopes. The compiled results of all the analysis identified surface glycoprotein (12
epitopes), ORFlab polyprotein (4 epitopes), and OREFES (3 epitopes) as HLA-II binders with high antigenicity

booster and low allergenicity & low toxicity.

3.5. B cell epitope comparative prediction with antigenicity, allergenicity, and Toxicity analysis

Using the IEDB Bepipred server, we got the different epitopes from selected proteins like ORFS8 protein
(2 epitopes), ORF7a protein (2 epitopes), membrane glycoprotein (1 epitope), an envelope protein (1
epitope), ORF3a protein(1 epitope), surface glycoprotein (28 epitopes), and ORFlab protein (98 epitopes)
proteins. With ABCpred server based B cell epitope analysis, we have found the different epitope of ORF8
protein (9 epitopes), ORF7a protein (7 epitopes), membrane glycoprotein (1 epitope), and envelope protein
(3 epitopes), ORF3a protein (2 epitopes), surface glycoprotein(50 epitopes), and ORFlab protein (20

epitopes) (data not shown). To filter out the common epitope from both servers, we have manually
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screened the result, and shortlist the common overlapped epitopes. This selects different epitopes from
Orf8 protein (2 epitopes), ORF7a protein (2 epitopes), membrane glycoprotein (1 epitope), envelope protein
(1 epitope), ORF3a protein (1 epitope), surface glycoprotein (16 epitopes), and ORFlab protein (8 epitopes)
(Table 4). The screened epitopes were further analyzed for antigenicity, allergenicity, and toxicity analysis
(Table 5). This resulted in shortlisting of ORF8 protein (1 epitope), envelope protein (1 epitope), ORF3a
protein (1 epitope), surface glycoprotein(9 epitopes), and ORF1lab protein (6 epitopes) epitopes for further
study.

3.6. Comparative Cross-reactivity, IFN gamma induction analysis of MHC I, 11, and B cell epitopes:

All finalized MHC ], II, and B cell epitopes were used for comparative analysis (Table 6) to remove the
overlapping sequences. In addition to that, we have predicted the cross-reactivity of selected epitopes with
humans as the similarity between virus protein epitopes and host cells peptide, which eliminates
autoimmune reactivity. BLAST result of all selected epitopes against the human proteome and the result
showed that no epitopes were found to have cross-reactivity reactions in the host cell. In addition to this,
it was seen that in virus-human cell immune response activity, IFN gamma plays an important role. High
expression of IFN gamma leads to viral infection clearance in the human cells. IFNepitope server positive
score shows the capacity of the epitope to induce the IFN secretion via T cells, which was listed in Table 6.

All the selected epitopes were used to design the different vaccine constructs.

3.7. Vaccine properties analysis selected VTC3

Designed vaccine constructs VTC1, VTC2, and VTC3 (Table 7) showed antigenic, with no allergenic
and toxic nature. Highly antigenic vaccines construct VIC3 physiochemical analysis showed the 227 long
amino acid peptide constructs with 24 KDa weight have the instability index 23.36 that represent the
protein stable nature. VTC3 construct contains the aliphatic and GRAVY index value of 68.72 and -0.455,
respectively. PESIPRED secondary structure analysis of vaccine construct VIC3 showed the 62.56 % alpha
helicity, 7.05% extended strands, 5.73% beta-turn with 24.67 random coils. VTC3 tertiary structure has been
modeled by the Phyre2 intensive modeling tool, which validation by Ramachandran plot showed 91.1%

residue in the favored region (Figure 2).

3.8. Molecular docking analysis confirm the interaction of VIC3 with TLR and HLA.

To be effective against COVID 19, a vaccine should have the capacity to activate the immune response

of the human host. The virus can subvert the host protein function, which plays a role in host cell invasion
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or virus persistence. In previous study, it has been shown that TLRs have an extensive role in pathogen
persistence and clearance. Hence, docking analysis was performed which showed that our construct VIC3
interacts with TLR1/2 complex, TLR1, TLR3, TLR4, TLR6 but has the highest binding affinity with TLR1/2
complex, followed by TLR4 and TLR6 (Table 8). The docked poses are shown in figure 3. As mentioned in
the introduction, the interaction of VIC3 with TLR1/2 is important for the immune response for viral
infection; hence docking results further confirm it. In additional to that, we have also performed molecular
docking of VTC3 with different HLAs, which was important to induce MHC-I and MHC-II to activate the

immune response in the host cell.

3.9. Molecular dynamics simulation (MDS) analysis confirms the strong interaction of VTC3 with TLR1/2
heterodimer and HLA.

VTC3 has the best interaction with the TLR1/2 complex, followed by TLR4; hence both complexes were
used for MDS analysis. MDS was performed till 10ns for both the complex and results were analyzed for
RMSD, RMSF, etc. RMSD calculation showed that the VTC3-TLR1/2 complex is stable throughout
simulation with RMSD of around 3A (Figure 4A), and the VITC3-TLR4 was found to be unstable with RMSD
7A (Figure 4C). Similarly, the RMSF analysis showed that the VTC3-TLR1/2 complex has less fluctuation
with RMSF of around 3A (Figure 5B) while the VTC3-TLR4 complex showed that the vaccine has RMSD of
7A (Figure 5D). MDS result suggests chimeric vaccine construct VTC3 showed a stronger and stable
interaction with TLR1/2 complex as compared to TLR4 (Figure 5), this showed that this vaccine construct
induces immune response suitable for clearance of SARS-coV2. For a vaccine construct, it is also important
to interact with HLA. MDS analysis of the VIC3-HLA complex was investigated till 50ns, and the result
was analysed for RMSD and RMSF. RMSD calculation showed that the VTC3-HLA complex is stable
throughout simulation with RMSD of around 5A at 50ns (Figure 5), and RMSF analysis showed that the
VTC3-HLA complex has some fluctuation at the terminal. Both the data suggest the interaction between

VTC3 and HLA.

3.10. Chimeric subunit vaccine VIC3 does not significant similarity to the human gut microbiome.

NCBI blast of VTC3 construct against 226 gut flora showed that there is no significant similarity
(Supplementary Table 1) between amino acid sequence of the chimeric vaccine construct VIC3 and amino

acid sequence of the human gut microbiome that further minimize the cross reactivity in the host cell.

3.11. Mutational profiling of chimeric vaccine VIC3 showed less mutation sensitivity
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Mutational sensitivity profiling of VTC3 vaccine construct (figure 6) showed that only a few chimeric
epitope residues have AAG.q> 0, suggesting that our vaccine construct VTC3 has less mutation sensitivity,
which enhances the possibility of our vaccine constructs to be effective. Similarly, analysis of our vaccine
construct VIC3 in the CoV-GLUE database showed less mutation hot spots in our vaccine construct
(Supplementary Table 2). This database contains all replacements, insertions, and deletions, which have
been observed in the GISAID hCoV-19 sequence sampled from the pandemic. We have also identified the
interacting residues of vaccine construct VIC3 with the TLR1/2 complex, TLR4, and HLA. The result
showed that the residues of VTC3 with mutation does not involve in the physical interaction with these

proteins. These results further support the efficacy of our vaccine construct.

4. Discussion

In the present study, we are proposing a chimeric vaccine constructs VTC3 for SARS-CoV2 with the
help of reverse vaccinology, compiles to the outer surface-exposed epitopes of the structural and non-
structural proteins of this virus. Different therapeutic strategies have been tried to control SARS-CoV2
(Tiwari 2020b) (Tiwari 2020a). SARS-CoV2 structural proteins like surface glycoprotein, membrane, and
envelope protein have a significant contribution in surface adherence and internalization, while non-
structural protein is virulence-associated factors that cause immune-pathogenesis. SARS-CoV2 host cell
internalization is facilitated by surface glycoprotein (spike protein) interaction with the ACE2 receptor.
Targeting the outer exposed peptides of both structural and non-structural protein as a vaccine target
would be a promising approach to induce both humoral and cellular immune response that recognizes the
virus and killed it. These proteins were shortlisted by antigenicity score and trans-membrane helicity. The
shortlisted proteins were used to identify surface-exposed peptides. Surface exposed peptides of these
proteins were further analyzed to determine MHC [, II, and B cell-mediated epitopes. The selected epitopes
were shortlisted by their antigenicity, allergenicity, toxicity, cross-reactivity, immunogenicity, and IFN
gamma secretion scores. These epitopes were used to design different vaccine constructs (VIC1, VIC2, and
VTC3) with the help of linkers. Antigenicity, allergenicity, and physiochemical analysis of vaccine
constructs were further analyzed to enhance the peptide potency. The finalized construct VTC3 should
have the potential to interact with pathogen-associated molecular patterns activates the host innate
immune system and consonance of the adaptive immunity via TLRs (TLR1, 2, 3,4, 6, 7, 8 and 9). It has been
observed that the TLRs mediated virus interaction not-only combat virus virulence and infection but also
sometimes initiate the host system to overturn downstream signals for the benefit (replication and survival)

of the virus-cell. During the viral infection, membrane-associated proteins interaction with TLR2 and TLR4
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plays a nuanced role in exceeding inflammatory responses via adhesion and invasion that vitiating the host
cell(Olejnik et al. 2018). Simultaneously with TLRs, HLA alleles have a significant contribution in activation
of the robust immune response. The strong HLA-epitope interaction would maintain the signaling cascades
to activate the immune response for the viral infection clearance. To prove the modeled VTC3 construct,
we have docked it with different HLAs and TLRs. Presently, the focus lies on the development of vaccines
against viruses that can activate the innate immune system via TLR1/2 (Carty & Bowie 2010; Dowling &
Mansell 2016; Jensen et al. 2018) to overcome the subvert effect of the virus on TLR medicated signalling.
It is reported that the CD8* T cell-mediated HLA allele (HLA-B*5801) unique interaction with immune
dominant peptide contributes as a potential to control and prevent viral infection (Li et al. 2016). HLA-
B*5801 associated patients known as “elite controllers” who become infected but can control viremia. The
interaction of VIC3 was investigated with molecular docking, and molecular dynamics simulation and
result is an agreement that VTC3 construct has the highest affinity for allele HLA-B*5801. It might also
create a ray of hope for the potential creation of vaccines or convalescent serum antibodies against
COVID19. The predicted Chimeric vaccine VIC3 should be tested experimentally for therapeutic potency
in future studies. Experimental validation is necessary to demonstrate the potency of the designed vaccine

in future studies.

5. Conclusion

High mortality and morbidity rate of COVID 19 is unprecedented due to the unavailability of
vaccination hence effective treatment strategies (inhibitor, drugs, or vaccine), rapid development, trials,
and production needed immediately for this global pandemic disease. To reach out the success, it is
necessary to evaluate all possible vaccine candidates to find out the one viable outcome. To increase the
chance of success, WHO initiated vaccine solidarity trials to test all vaccine candidates until they fail. In the
present study, an attempt was made to design a chimeric multi-epitope vaccine against SARS CoV2 that
targets its exposed peptides of structural and non-structural proteins. Immunogenicity, allergenicity,
toxicity, and potent IFN-gamma inducer scores have also been analyzed to further narrow down efficient
epitopes. Peptide matching with the human proteome showed no indication of possible cross-reactivity.
However, current reverse immune-informatics approaches were executed to target surface-exposed
proteins for enhancing effective host innate with humoral and cellular immune responses. The present

study concludes the design of VTC3 as a chimeric vaccine against SARS CoV2.
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527 Figure Legends

528

529 Figure 1. Brief workflow of combinational chimeric multi-epitope vaccine designing with
530 predicted immune cell response.

531 Figure 2. Tertiary structure of modelled VTC3 construct (A) and Ramachandran plot of the
532 modelled proteins (B).

533 Figure 3. Docked pose of VTC3-TLR1/2 complex (A), and VTC3-TLR4 complex (B).

534 Figure 4. Root-mean-square deviation and Root mean square fluctuations during molecular
535 dynamics simulation analysis of VTC3-TLR1/2 complex (A and B), and VTC3-TLR4 complex (C
536 and D).

537 Figure 5. Root-mean-square deviation during molecular dynamics simulation analysis of VTC3-
538 HLA complex. MDS was performed till 50ns.

539 Figure 6. Diagrammatic presentation of proposed combinational chimeric multi-epitope vaccine
540 VTC3 showing the position of different epitopes and linker in the vaccine.
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1 Table 1. MHC I binder epitopes positive antigenicity, allergenicity, toxicity and immunogenicity analysis.

S.No Protein name Start epitope Antigenicity Allergenicity Toxicity Ir::i‘:irt‘;g
1 ORF3a 4 MRIFTIGTV 0.69 Non-allergenic Non-toxic 0.37
2 surface glycoprotein 242 WTAGAAAYY 0.63 Non—allergen%c Non—tox%c 0.15

702 FTISVTTEI 0.85 Non-allergenic Non-toxic -0.18
3449 LSFKELLVY 0.72 Non-allergenic Non-toxic -0.07
1890 EIDPKLDNY 1.61 Non-allergenic Non-toxic -0.2
1502 ETISLAGSY 0.59 Non-allergenic Non-toxic -0.16
3841 LSDDAVVCF 0.58 Non-allergenic Non-toxic 0.1
5467 YTEISFMLW 1.21 Non-allergenic Non-toxic -0.03
2413 VVTTFDSEY 0.45 Non-allergenic Non-toxic 0.1
295 FMGRIRSVY 0.52 Non-allergenic Non-toxic 0.125
f1ab pol . 3471 LLDKRTTCF 1.76 Non-allergenic Non-toxic -0.12
3 orflab polyprotein 4672 SMMGFKMNY 13 Non-allergenic Non-toxic -0.26
4615 LQAENVTGL 0.82 Non-allergenic Non-toxic 0.19
2166 NYMPYFFTL 1 Non-allergenic Non-toxic 0.15
5726 IQLSSYSLF 0.75 Non-allergenic Non-toxic -0.48
524 EQKSILSPL 0.55 Non-allergenic Non-toxic -0.26
5406 FELEDFIPM 1.26 Non-allergenic Non-toxic 0.33
724 EETGLLMPL 0.48 Non-allergenic Non-toxic -0.12
4055 KLVLSVNPY 0.54 Non-allergenic Non-toxic -0.13
2
3
4 Table 2. MHC II peptide percentile rank with antigenicity score.
] . Percentile s
S.N Protein Name Allele Start Peptide rank Antigenicity
HLA-DRB3*01:01 14 QPYVVDDPCPIHFYS 0.07 0.4574
HLA-DRB3*01:01 10 CTQHQPYVVDDPCPI 0.08 0.5165
1 ORF8 protein HLA-DRB3*01:01 13 HQPYVVDDPCPIHFY 0.08 0.55
HLA-DRB3*01:01 12 QHQPYVVDDPCPIHF 0.08 0.8637
HLA-DRB3*01:01 11 TQHQPYVVDDPCPIH 0.08 0.6706
HLA-DRB1%13:02 98 KTQSLLIVNNATNVV 0.01 0.63
HLA-DRB1%13:02 102 LLIVNNATNVVIKVC 0.01 0.09
HLA-DRB1%13:02 100 QSLLIVNNATNVVIK 0.01 0.43
HLA-DRB1%13:02 101 SLLIVNNATNVVIKV 0.01 0.47
HLA-DRB1%13:02 99 TQSLLIVNNATNVVI 0.01 0.43
HLA-DRB3*02:02 100 QSLLIVNNATNVVIK 0.02 0.43

2 surface glycoprotein HLA-

DPA1*01:03/DPB1*04:01 323 FGEVENATRFASVYA 0.03 0.04
HLA-DRB1*01:01 498 LSFELLHAPATVCGP 0.03 0.5
HLA-DRB1*01:01 497 VLSFELLHAPATVCG 0.03 0.47
HLA-DRB1*01:01 496 VVLSFELLHAPATVC 0.03 0.86
HLA-DRB1%13:02 103 LIVNNATNVVIKVCE 0.03 -0.11
HLA-DRB1%13:02 97 SKTQSLLIVNNATNV 0.03 0.62
HLA-DRB3*02:02 101 SLLIVNNATNVVIKV 0.03 0.47
HLA-DRB3*02:02 99 TQSLLIVNNATNVVI 0.06 0.433

HLA-
DPA1*01:03/DPB1*04:01 324 GEVFNATRFASVYAW 0.07 -0.12
HLA- 322 PFGEVFNATRFASVY 0.07 0.03

DPAT1*01:03/DPB1*04:01
HLA-DRB1*01:01 499 SFELLHAPATVCGPK 0.09 0.2
HLA-DRB1*01:01 495 VVVLSFELLHAPATV 0.09 0.8
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HLA-DRB3*02:02 102 LLIVNNATNVVIKVC 0.09 0.09
HLA-DRB1%13:02 98 KTQSLLIVNNATNVV 0.01 0.63
HLA-DRB1%13:02 102 LLIVNNATNVVIKVC 0.01 0.09
HLA-DRB1*09:01 54 AIILASFSASTSAFV 0.01 0.23
HLA-
DQA1%01:02/DQB1#06:02 45 AFASEAARVVRSIFS 0.08 -0.02
HLA-DRB1*07:01 10 CTFTRSTNSRIKASM 0.12 -0.02
HLA-
DPA1%03:01/DPB1*04:02 1 YFFTLLLQLCTFTRS 0.16 -0.37
HLA-DRB5*01:01 33 LGRYMSALNHTKKWK 0.17 0.04
HLA-DRB1*01:01 20 KSAFYILPSIISNEK 0.27 0.71
HLA-
DPA1*03:01/DPB1*04:02 2165 CTNYMPYFFTLLLQL 0.01 0.45
HLA-DRB1*01:01 1801 ESPFVMMSAPPAQYE 0.01 0.54
HLA-DRB1*09:01 474 ATILASFSASTSAFV 0.01 0.23
HLA-
3 orflab polyprotein DPA1*03:01/DPB1*04:02 1244 EETKFLTENLLLYID 0.03 011
HLA-DRB3*01:01 903 ATYYLFDESGEFKLA 0.04 0.23
HLA-
DQA1#01:02/DQB1*06:02 535 AFASEAARVVRSIFS 0.08 -0.02
HLA-DRB1*15:01 747 AMPNMLRIMASLVLA 0.01 0.09
HLA-DRB3*02:02 2720 AFVTNVNASSSEAFL 0.01 0.15
HLA-DRB1*11:01 865 NEFYAYLRKHFSMMI 0.02 0.22
HLA-
DQA1%05:01/DQB1#02:01 2390 QMEIDFLELAMDEFI 0.03 0.61
HLA-DRB3*02:02 2755 NYIFWRNTNPIQLSS 0.04 0.92
HLA-
DQA1%05:01/DQB1#02:01 2393 IDFLELAMDEFIERY 0.05 0.25
HLA- 663 QMNLKYAISAKNRAR 0.07 15
DPA1*02:01/DPB1*14:01
5
6  Table 3. Analysis of MHC II epitopes allergenicity and toxicity.
S.N . . - ..
o Protein Name start Peptide Allergenicity Toxicity
14 QPYVVDDPCPIHFYS Allergen -
10 CTQHQPYVVDDPCPI Non-allergenic Non-toxic
1 ORES8 protein 13 HQPYVVDDPCPIHFY Non- allergenic Non-toxic
12 QHQPYVVDDPCPIHF Allergen -
11 TQHQPYVVDDPCPIH Non-allergenic Non-toxic
98 KTQSLLIVNNATNVV Non-allergenic Non-toxic
100 QSLLIVNNATNVVIK Non- allergenic Non-toxic
101 SLLIVNNATNVVIKV Non-allergenic Non-toxic
99 TQSLLIVNNATNVVI Non- allergenic Non-toxic
100 QSLLIVNNATNVVIK Non-allergenic Non-toxic
By Surface Glycoprotein 498 LSFELLHAPATVCGP Non- allergenic Non-toxic
497 VLSFELLHAPATVCG Non-allergenic Non-toxic
496 VVLSFELLHAPATVC Non- allergenic Non-toxic
97 SKTQSLLIVNNATNV allergenic -
101 SLLIVNNATNVVIKV Non-allergenic Non-toxic
99 TQSLLIVNNATNVVI Non- allergenic Non-toxic
495 VVVLSFELLHAPATV Non-allergenic Non-toxic
20 KSAFYILPSIISNEK Non-allergenic Non-toxic
3 ORF1ab polyprotein 2165 CTNYMPYFFTLLLQL allergenic -
1801 ESPEVMMSAPPAQYE Non-allergenic Non-toxic
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2390 QMEIDFLELAMDEFI Non- allergenic Non-toxic
2755 NYIFWRNTNPIQLSS Non-allergenic Non-toxic
663 QMNLKYAISAKNRAR Non-allergenic Non-toxic

Table 4. Comparative analysis of B cell epitope using IEDB and ABCpred server and antigenicity analysis.

. . . Anti
Protein name Start Epitope IEDB BepiPred Anhgema ABCpred Start enici%
y
, 12 QHQPYVVDDP 0.4127 PYVVDDPCPIHFYSKW 15 0.56
1 OREF8 protein
49 EAGSKSPI 0.2081 ELCVDEAGSKSPIQYI 44 0.18
2 ORF7aprotein — 18 EPCSSGTYEGNSPFHPLAD 0.39 SGTYEGNSPFHPLADN 22 0.29
58 HVYQLRARSVSPKLFIRQE 0.59 HVYQLRARSVSPKLFI 58 043
membrane 7 TITVEELKK 0.57 DSNGTITVEELKKLLE 3 0.07
glycoprotein
4 e;;’;l;ie 23 YSRVKNLNSSRVP 047 YVYSRVKNLNSSRVPD 21 0.54
5 ORF3a protein — 13 LKQGEIKDATPSDFVR 0.81 QGEIKDATPSDFVRAT 17 091
IGTVTLKQGEIKDATP 10 1.22
55 VSGTNGTKRF 0.53 HRSYLTPGDSSSGWTA 230 0.6
DPFLGVYYHKNNKSWMESE
123 FRVYSSA 049 TVEKGIYQTSNFRVQP 292 0.67
234 LTPGDSSSGWTA 0.68 GCLIGAEHVNNSYECD 633 0.84
298 YQTSNFRVQP 1.18 LQSYGFQPTNGVGYQP 477 0.52
PNITNLCPFGEVFNATRFASV
315 AWNRKRISNG 047 TEIYQAGSTPCNGVEG 455 -0.01
389 GDEVRQIAPGQTGKIAD 1.06 KQIYKTPPIKDFGGEN 771 -0.22
FRKSNLKPFERDISTEIYQAGS
441  TPCNGVEGENCYFPLQSYGF 0.39 CGPKKSTNLVKNKCVN 510 0.2
QPT
surface ELLHAPATVCGPKKSTNLVK
glycoprotein 501 N 0.0029 FERDISTEIYQAGSTP 449 -0.29
619 RVYSTGSNVFQ 0.1 SWMESEFRVYSSANNC 136 017
641 VNNSYECDIPI 0.6124 EVRQIAPGQTGKIADY 391 1.38
657  ASYQTQTNSPRRARSVASQ 0.2556 TPTWRVYSTGSNVEQT 615 0.18
680 YTMSLGAENSVAYSNN 0.6434 VIGIVNNTVYDPLQPE 1114 0.71
771 KQIYKTPPIKDFGGF -0.3896 SQSIIAYTMSLGAENS 674 0.56
792 PDPSKPSKR 0.478 VSGTNGTKRFDNPVLP 55 0.51
1093 NFYEPQIITTD 0.36 FPNITNLCPFGEVFNA 314 0.6
VNNTVYDPLQPELDSFKEEL
I8 L NHTSPDYDLODISG 013 SQILPDPSKPSKRSFI 788 0.26
YQTQTNSPRRARSVAS 659 0.192
373 CHNSEVGPEH 1.14 VVKIYCPACHNSEVGP 365 0.76
763 LQPLEQPTSEAVEAP 0.05 TLKGGAPTKVTFGDDT 814 0.98
; 813 FTLKGGAP 0.88 TSRYWEPEFYEAMYTP 3996 04
orflab 1458 NLEEAAR -0.14 AVTAYNGYLTSSSKTP 1482 0.35
polyprotein 1482 AVTAYNGYLTSSSKTPEE 0.5 LNLEEAARYMRSLKVP 1457 0.33
L 2241 FSSEIIGYKAI 0.26 SEAVEAPLVGTPVCIN 771 0.74
3072 GCSCDQLREPMLQSADAQS 0.92 CGMWKGYGCSCDQLRE 3065 017
3993 NDNTSRYWEP 027 SSEIIGYKAIDGGVTR 2242 0.74
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26  Table5: Analysis of antigenic epitope allergenicity and toxicity
27
S. Protein Start  epitope IEDB bepipred Allergenici  Toxicity ABCpred Start  Allergeni Toxicity
No name ty city
1 ORF8 protein 12 QHQPYVVDDP Allergenic - PYVVDDPCPIHFYS 15 Non-
KW allergenic
2 ORF7a 58 HVYQLRARSVSPKLFIR  Allergenic - HVYQLRARSVSPK 58 Allergen -
protein QE LFI
3 membrane 7 TITVEELKK Allergenic -
glycoprotein
4 envelope 23 YSRVKNLNSSRVP Non- Non-toxic YVYSRVKNLNSSR 21 Allergen -
protein Allergenic VPD
5 ORF3a 15 LKQGEIKDATPSDFVR Non- Non-toxic QGEIKDATPSDFVR 17 Allergen -
protein Allergenic AT
IGTVTLKQGEIKDA 10 Allergen -
TP
6 surface 55 VSGTNGTKRF Non- Non-toxic HRSYLTPGDSSSGW 230 Non- Non-
glycoprotein Allergenic TA allergenic _ toxic
123 DPFLGVYYHKNNKSW  Non- Non-toxic TVEKGIYQTSNFRV 292 Allergen -
MESEFRVYSSA Allergenic QP
234 LTPGDSSSGWTA Non- Non-toxic GCLIGAEHVNNSYE 633 Non- Toxic
Allergenic CD allergenic
298 YQTSNFRVQP Allergenic - LQSYGFQPTNGVG 477 Non- Non-
YQP allergenic  toxic
315 PNITNLCPFGEVFNATR  Allergenic - EVRQIAPGQTGKIA 391 Non- Non-
FASVYAWNRKRISNC DY allergenic  toxic
389 GDEVRQIAPGQTGKIA Non- Non-toxic TPTWRVYSTGSNV 615 Non- Non-
D Allergenic FQT allergenic _toxic
641 VNNSYECDIPI Non- Non-toxic VIGIVNNTVYDPLQ 1114  Non- Non-
Allergenic PE allergenic  toxic
680 YTMSLGAENSVAYSN Non- Non-toxic SQSITAYTMSLGAE 674 Non- Non-
N Allergenic NS allergenic  toxic
792 PDPSKPSKR Non- Non-toxic VSGTNGTKRFDNP 55 Allergen -
Allergenic VLP
FPNITNLCPFGEVFN 314 Allergen -
A
7 orflab 373 CHNSEVGPEH Allergenic - VVKIYCPACHNSEV 365 Non- Non-
polyprotein GP allergenic  toxic
813 FTLKGGAP Non- Non-toxic TLKGGAPTKVTFG 814 Allergen -
Allergenic DDT
1482  AVTAYNGYLTSSSKTP  Non- Non-toxic TSRYWEPEFYEAM 3996  Allergen -
EE Allergenic YTP
3072 GCSCDQLREPMLQSAD  Non- Non-toxic SEAVEAPLVGTPVC 771 Non- Non-
AQS Allergenic IN allergenic _ toxic
SSEIIGYKAIDGGVT 2242  Non- Non-
R allergenic  toxic
28
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29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 Table 6. Comparative analysis of Final MHC I, MHC II and B cell epitopes.
49
Cross-
s. ) _ Cross- MHC I reactiv MHC II Cross-
Protein B cell Epitopes reactivity STAR . . . reactivit
Name Start (IFNscore) with T Epitopes ity Start Epitopes with
o (IFNscore) with (IFNscore) y
human human
human
ORF8 PYVVDDPCPIHF CTQHQPYVV
! protein 15 YSKW(1) NO 10 DDPCPI(1) NO
envelope YSRVKNLNSSR
2 protein 2 VP(-0.49) NO
ORF3a LKQGEIKDATPS MRIFTIGTV(-
1
3 protein > DFVR(0.62) NO 0.43) NO
VSGTNGTKRF(- WTAGAAAYY KTQSLLIVNN
% 0.75) NO 242 (0.57) NO % ATNVV(-0.37) NO
DPFLGVYYHKN
123 NKSWMESEFRV NO 498 I%S\fgé];)fl?;? NO
YSSA(3.7) )
LTPGDSSSGWT
234 AC014) NO - - - - - -
641 VNNSYECDIPI(1 NO ) ) ) ) ) )
surface )
4 glycoprotei YTMSLGAENSV
n 680 AYSNN(-0.04) NO ) ) ) ) )
799 PDPSKP)SKR(O.H NO ) ) ) ) ) )
LQSYGFQPTNG
477
VGYQP(14) NO
EVRQIAPGQTG
391 KIADY(1) NO
VIGIVNNTVYDP
1114 LQPE(12) NO
VVKIYCPACHN LSDDAVVCE(- KSAFYILPSIIS
flab 365 SEVGP(2) NO 3841 0.30) NO 20 NEK(0.33) NO
orflal
. SEAVEAPLVGTP VVTTFDSEY(- ESPFVMMSAP
5 polyirotel 771 VCIN() NO 2413 051) NO 1801 PAQYE(-0.21) NO
SSEIIGYKAIDGG FMGRIRSVY(- QMEIDFLELA
2242 VIR(Q) NO 295 025) NO 2390 MDEFI(0.31) NO
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FTLKGGAP(- LQAENVTGL(- NYIFWRNTNP
813 022) NO 4615 021) NO 2755 10LS5(027) NO
AVTAYNGYLTS NYMPYFFTL(- QMNLKYAISA
82 ook TPEE(-0.04) NO 2166 0.58) NO 663 KNRAR(1) NO
GCSCDQLREPM FELEDFIPM(-
3072 | OSADAQS(041) NO 5406 028) NO
50
51
52
53
54
55
56
57
58
59 Table 7. designing of multi-epitope Vaccine constructs.
S. Antigen
N Name Vaccine construct g Allergenicity
o icity
EAAAKCTQHQPYVVDDPCPIHEYGAEALERAGYSRVKNLNSSRVPG
GGSMRIFTIGTVHEYGAEALERAGKTQSLLIVNNATNVVGGGSLKQG
1 VTC1 EIKDATPSDFVRHEYGAEALERAGWTAGAAAYYGGGSLSFELLHAPA 0.51 Non-allergenic
TVCGPHEYGAEALERAGVSGTNGTKRFGGGSLSDDAVVCFHEYGAE
ALERAGKSAFYILPSIISNEKGGGS VVKIYCPACHNSEVGPEAAAK
EAAAKCTQHQPYVVDDPCPIHEYGAEALERAGYSRVKNLNSSRVPE
AAAKLKQGEIKDATPSDFVRHEYGAEALERAGMRIFTIGTVEAAAKK
2 VIC2 TQSLLIVNNATNVVHEYGAEALERAGDPFLGVYYHKNNKSWMESEF 047 Non-allergeni
RVYSSAEAAAKWTAGAAAYYHEYGAEALERAGPDPSKPSKREAAAK ‘ oatiergene
NYIFWRNTNPIQLSSHEYGAEALERAG SSEIIGYKAIDGGVTREAAAK
LQAENVTGL
EAAAKGCSCDQLREPMLQSADAQSHEYGAEALERAGFELEDFIPME
AAAKQMNLKYAISAKNRARHEYGAEALERAGEVRQIAPGQTGKIAD
3 VTC3 YEAAAKLSFELLHAPATVCGPHEYGAEALERAGWTAGAAAYYEAA 0.61 Non-allergenic
AKLKQGEIKDATPSDFVRHEYGAEALERAGMRIFTIGTVEAAAKYSR
VKNLNSSRVPHEYGAEALERAG PYVVDDPCPIHFYSKWEAAAK
60
61 Table 8. Molecular docking of vaccine construct with different TLRs and HLA alleles.

S.No. Receptor Receptor PDB Global Energy
2762 -1.64
3UL8 2.16
! TLR4 2763 -28.76
3UL9 -1.43
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2765 -18.55
2766 -23.62
3FXI -6.93
3ULA -1.75
4G8A -2.65
5NAM -6.18
2764 1.23
2781 -0.88
. 2780 -31.20
2 TLR1-2 hetero dimer 278D 0.22
277X 3.75
3 TLR1 o o
1FYV -6.49
1 TLR2 6NIG 10.81
5 TLR6 3A79 -13.05
2A0Z -8.85
6 TLR3 1ZIW 6.11
5IM7 -24.66
1XR8 -1.95
1SYS -17
1A6A -5.59
1AIM -3.24
7 HLA Alleles 1BX2 6.09
1H15 9.32
17SD 551
3C5) 5.12
402E 9.68
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Figure 1

Figure 1. Brief workflow of combinational chimeric multi-epitope vaccine designing with

predicted immune cell response.

Peer] reviewing PDF | (2020:10:53343:0:1:NEW 1 Dec 2020)



(0207 22a T M3IN:T:0:EFEES:0T:0Z02) | 40d BuimaIA3I (1994

Antigenic
property

\ Vaxilen

Trans-
membrane

helixity

of protein

Identification
of Outer
protein
MHC |, Il and
B cell
epitope

Molecular .dr @
Dynamics > . : ®e
Molecular - g&a:??
docking of ne
Multiepitope-
peptide- with e B
TLRs and HLA
alleles o
\ " IRF 3 and NFKB mediated
Response
Muiti-epitope ey
c 3
de n...:m”q:nn HC Il mediated
shstih Activation
Modelling by
_ Phyre2 Tho
UA - >llﬂVI.‘l\.\
TLR mediated
e Cell response
of epitope on ° .0
the basis of M., %
Antigenicity, o0 v
Allergenicity oo
and Toxicity =
- L "
°

MHC | :.,.oa__m:wa
: Activation

~ TLRs, MHC, Il & B cell

: mediated Cell death oﬂ virus

r1o9d

pamalral 8q 0] 1duosnue |y



PeerJ

Figure 2

Figure 2

Figure 2. Tertiary structure of modelled VTC3 construct (A) and Ramachandran plot of the

modelled proteins (B).
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Figure 3

Figure 3

Figure 3. Docked pose of VTC3-TLR1/2 complex (A), and VTC3-TLR4 complex (B).
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Figure 4

Figure 4

Figure 4. Root-mean-square deviation and Root mean square fluctuations during molecular

dynamics simulation analysis of VTC3-TLR1/2 complex (A and B), and VTC3-TLR4 complex (C
and D).
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Figure 5

Figure 5

Figure 5. Root-mean-square deviation during molecular dynamics simulation analysis of

VTC3-HLA complex. MDS was performed till 50ns.
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Figure 6

Figure 6. Diagrammatic presentation of proposed combinational chimeric multi-epitope

vaccine VTC3 showing the position of different epitopes and linker in the vaccine.
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