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ABSTRACT
Many environmental and biomedical biomonitoring and detection studies aim to
explore the presence of specific organisms or gene functionalities in microbiome
samples. In such cases, when the study hypotheses can be answered with the exploration
of a small number of genes, a targeted PCR-approach is appropriate. However, due
to the complexity of environmental microbial communities, the design of specific
primers is challenging and can lead to non-specific results. We designed PhyloPrimer,
the first user-friendly platform to semi-automate the design of taxon-specific oligos
(i.e., PCR primers) for a gene of interest. The main strength of PhyloPrimer is the
ability to retrieve and align GenBank gene sequences matching the user’s input, and to
explore their relationships through an online dynamic tree. PhyloPrimer then designs
oligos specific to the gene sequences selected from the tree and uses the tree non-
selected sequences to look for and maximize oligo differences between targeted and
non-targeted sequences, therefore increasing oligo taxon-specificity (positive/negative
consensus approach). Designed oligos are then checked for the presence of secondary
structure with the nearest-neighbor (NN) calculation and the presence of off-target
matches with in silico PCR tests, also processing oligos with degenerate bases. Whilst
the main function of PhyloPrimer is the design of taxon-specific oligos (down to
the species level), the software can also be used for designing oligos to target a gene
without any taxonomic specificity, for designing oligos from preselected sequences
and for checking predesigned oligos. We validated the pipeline on four commercially
availablemicrobialmock communities using PhyloPrimer to design genus- and species-
specific primers for the detection of Streptococcus species in themock communities. The
software performed well on these mock microbial communities and can be found at
https://www.cerealsdb.uk.net/cerealgenomics/phyloprimer.

Subjects Bioinformatics, Microbiology, Molecular Biology
Keywords Oligo design, Primers, Consensus sequence, Taxon specificity, PCR, Environmental
sample, Bioinformatics pipeline

INTRODUCTION
The Polymerase Chain Reaction (PCR) is a pivotal technique to many molecular protocols
and is widely used to exponentially amplify a specific portion of DNA (e.g., gene) using
DNA or RNA template (e.g., the entire DNA or RNA content of an environmental sample),
primers, deoxynucleotides (dNTPs), DNA polymerase and reaction buffers (Garibyan &
Avashia, 2013). Before starting with any PCR-based procedure, primers need to be selected
to target the specific DNA region and organisms. The amplification starts where the primers
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anneal to the DNA template, for this reason the specificity of the PCR reaction is highly
impacted by the specificity of the primers to the DNA template.

The design of new oligonucleotides (i.e., primers or probes), hereafter abbreviated as
oligos, is a relatively easy task when working with known axenic cultures or known low
complexity communities but can be challenging when dealing with unknown organisms
and complex environmental communities. Different studies can require different level
of oligo-specificity: oligos could be designed to target the same DNA portion in all the
community organisms (e.g., universal primers), in a specific group of organisms or in a
specific species or strain. The latter two tasks become challenging when the target DNA
fragment is present in non-target organisms that are part of the community (Fierer et al.,
2005).

Many different primer and probe sequences have been published. These oligos can
target a broad variety of different DNA sequences and can present a wide range of target
organism’s specificity. Universal oligos, such as primers targeting housekeeping genes
(e.g., 16S rRNA gene) are widely used for the study of microbial diversity and in diagnostic
surveys (e.g., Takahashi et al., 2014). It is also possible to target non-universal genes, such
as the nifH gene (e.g., Gaby & Buckley, 2012) and the pmoA gene (e.g., Wang et al., 2017),
in order to target only organisms with a specific metabolism and that occupy specific
environmental niches. Oligos can also have a more specific target: they can amplify only
genes present in organisms of interest even when the gene is present in a wider selection
of organisms (e.g., You & Kim, 2020; Yu et al., 2005). When no predesigned oligos are
available, however, it is necessary to develop new ones. Oligo sensitivity is a trade-off
between the specificity of the oligo to the DNA template and allowing some oligo-template
mismatch if targeting different organisms in order to get an even coverage of all the
representative organisms (Parada, Needham & Fuhrman, 2016). Depending on the user
needs, there are many web-tools and software packages freely available for the oligo design.
Some of the most widely used tools for primer design are Primer3 and its web interface
Primer3Plus (Untergasser et al., 2007; Untergasser et al., 2012), Oligo7 (Rychlik, 2007) and
Primeclade (Gadberry et al., 2005). To target unknown genes where only the protein or
related gene sequences are known, it is necessary to design degenerate oligos. The latter
take advantage of the codon degeneracy property of the amino acid sequences and, having
degenerate bases in their sequences, represent a pool of unique primers that target the
same amino acid coding sequence. Primer design tools for degenerate primers can require
the input of proteins, such as CODEHOP (Rose, Henikoff & Henikoff, 2003; Boyce, Chilana
& Rose, 2009) or Primer Premier (Singh et al., 1998); or the input of DNA sequences or
alignments, such as DegePrimer (Hugerth et al., 2014), HYDEN (Linhart & Shamir, 2005)
or FAS-DPD (Iserte et al., 2013).

Environmental communities pose many challenges for the oligo specificity as we
often do not know what organisms are present and therefore it is difficult to foresee the
possible nonspecific products (Morales & Holben, 2009; Deiner et al., 2017). In silico PCR
is an essential step towards the design of specific oligos (Yu & Zhang, 2011). Some of the
commonly used tools are UCSC In-Silico PCR (Kent et al., 2002), FastPCR (Kalendar, Lee
& Schulman, 2009) and Primer-BLAST (Untergasser et al., 2012). The latter allows one to
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check the oligo specificity against the comprehensive NCBI databases (Sayers et al., 2020).
Further to their taxonomic specificity, oligos need to be tested for different parameters, such
as the absence of homopolymer regions or di-nucleotide repetitions and the presence of a
GC clamp (Elbrecht, Hebert & Steinke, 2018). Primers must also be scanned for the presence
of secondary structures such as self-dimers, cross-dimers and hairpins (Chuang, Cheng &
Yang, 2013). The analysis of secondary structure 1G is integrated in the pipeline of widely
used oligo design software, such as Oligo 7 (Rychlik, 2007) and Primer3 (Untergasser et
al., 2012), or can be performed with specific software, such as PrimerROC (Johnston et al.,
2019). The characteristics of the targeted organisms must also be taken in consideration.
For instance, prokaryotic genomes rarely have introns as gene splicing is rare in these
organisms (Sorek & Cossart, 2010), whereas introns and multiple splicing sites are widely
present in eukaryotic genomes and must be taken in consideration when designing primers
(Goel, Singh & Aseri, 2013; Shafee & Lowe, 2017).

In case the PCR target is a gene possessed only by a specific organism, the primers
can be designed directly on that gene sequence. If more than one gene variant needs to
be amplified (e.g., multiple species are targeted), a consensus sequence can be calculated
and the oligos can then be designed on it (consensus primers). A consensus sequence is
created from a sequence alignment and is defined as a sequence that reports the most
frequent base present in the alignment in each position. The construction of this sequence,
and consequently the designed oligos, is greatly influenced by the selection of the initial
sequences. This pivotal step is usually not implemented in the oligo design software as
these require the upload of preselected sequences. To date, only ARB implemented a
toolkit that allows the creation of new primers and probes on sequences selected from the
ARB phylogenetic tree of ribosomal sequences (Ludwig et al., 2004; Essinger et al., 2015).
However, in order to work on other DNA portions, the user needs to create a sequence
database to import inside the software.

Other tools, such as Morphocatcher (Shirshikov, Pekov & Miroshnikov, 2019) and
Uniqprimer (Karim et al., 2019), propose high specificity primers. This is achieved
by comparing the sequences that are the target of the PCR amplification with non-
target sequences. However, no help in the sequence selection through phylogenetic tree
visualization is available. Therefore in most tools, prior to the oligo design, the user has to
retrieve the sequences of interest from a database (e.g., NCBI database), making sure that
the sequences represent the DNA portion of interest and that they cover the same sequence
fragment. This process can be complex and time-consuming especially when working with
environmental microbial communities or working with a ubiquitous and divergent gene.

We present PhyloPrimer, a user-friendly and comprehensive online platform to (i) select
the DNA sequences to use for oligo design, (ii) construct a consensus sequence, (iii) design
microbial oligos (i.e., primers), (iv) test for oligo specificity through in silico tests and (v) test
the oligos for the presence of secondary structures with the nearest-neighbour (NN) model
for nucleic acids. In addition it provides a unique platform to check oligos (i.e., primer pairs,
primer and probe assays, and single oligos) for both secondary structure and non-specific
targets. The real strength of PhyloPrimer is the DNA sequence selection where the user
can explore the diversity of the sequence of interest through a dynamic phylogenetic
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tree. The sequences used for the tree construction are retrieved from a modified version
of the GenBank database (Sayers et al., 2019) and are used by the software to increase
taxon-specificity (down to the species level) of the designed oligos (positive/negative
consensus approach). PhyloPrimer can design both primers and probes for PCR and qPCR
applications, however, no qPCR-related tests were performed.

To test the efficiency and usability of PhyloPrimer we used the rpoB gene, which is a
universal gene and encoding the β-subunit of RNA polymerase (Adékambi, Drancourt
& Raoult, 2009). This is an essential enzyme to all the transcription processes in a
cell as it accounts for the synthesis of mRNA, tRNA and rRNA. Its sequence is less
conserved across different genomes compared to the 16S rRNA gene. This makes it less
suitable to design universal primers but more suitable to design primers that can target
specific organisms (Case et al., 2007). We tested PhyloPrimer by designing PCR primers
suitable to the detection of organisms belonging to the Streptococcus genus and specific
Streptococcus species (Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus
pyogenes, Streptococcus mutans and Streptococcus mitis), amplifying taxon-specific rpoB
genes from known mock communities.

MATERIALS AND METHODS
Implementation
PhyloPrimer runs on a remote server provided from the University of Bristol. The current
server has 48 CPUs (64-bit Intel(R) Xeon(R) CPU E5-2680 v3 at 2.50 GHz). Only 4
PhyloPrimer processes at one time are allowed on the server, the excess processes enter
a queue. On average, the oligo design requires 40–50 min whereas the oligo check
requires 5–10 min. The web interface was implemented in HTML and JavaScript.
PhyloPrimer is coded in Perl, JavaScript, HTML, CSS and MySQL. Two JavaScript
packages were used: a modified version of PhyloCanvas v 1.7.3 (http://phylocanvas.org)
and CanvasJS v 2.3.2 (https://canvasjs.com). The user can access PhyloPrimer through a
web platform at https://www.cerealsdb.uk.net/cerealgenomics/phyloprimer. PhyloPrimer
was tested and implemented using the Safari, Firefox, Chrome browsers. The website
uses General Data Protection Regulation (GDPR) cookie acceptance box on the first
use. All the PhyloPrimer scripts are also available through the PhyloPrimer GitHub page
(https://github.com/gvMicroarctic/PhyloPrimer).

General workflow and dynamic selection
The PhyloPrimer web platform is structured with sequential web pages that can be
categorized into four different groups: (i) the home page, (ii) the input pages, (iii) the
oligo pages and (iv) the result page. From the home page, the user can select one of the
three different input pages available for uploading the data (e.g., DNA sequences, DNA
alignments and Newick trees) where each page corresponds to a different modality to use
PhyloPrimer. Once the data are uploaded, the user is redirected to the oligo pages where
there are different parameter settings to design either primer assays, primer and probe
assays or single oligos. Once the user submits these parameters, the oligo design and the
oligo check are performed on the web server. As soon as PhyloPrimer has finished the
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Figure 1 PhyloPrimer structure indicating the web pages and the server-side processes.
Full-size DOI: 10.7717/peerj.11120/fig-1

analyses, the user receives an email with a link to the result page where the user can explore
the designed oligos and choose the ones which will be used for future work (Fig. 1).

PhyloPrimer can be used in three different modalities. It can be used to design oligos
from DNA sequences interactively selected from a dynamic phylogenetic tree (Dynamic
Selection; Fig. 2A), to design oligos from preselected DNA sequences (Premade Selection;
Fig. 2B) and to check predesigned oligos (Oligo Check; Fig. 2C). The Dynamic Selection
modality is the strength of PhyloPrimer and was developed to facilitate the selection and
retrieval of NCBI sequences for the oligo design. The processes reported in the rest of the
manuscript describe this modality and details on the others can be found in the manual at
https://github.com/gvMicroarctic/PhyloPrimer.

The user can upload one or more sequences representing the same DNA portion (e.g.,
same gene or gene fragment belonging to different organisms). PhyloPrimer then runs
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Full-size DOI: 10.7717/peerj.11120/fig-2

Varliero et al. (2021), PeerJ, DOI 10.7717/peerj.11120 6/24

https://peerj.com
https://doi.org/10.7717/peerj.11120/fig-2
http://dx.doi.org/10.7717/peerj.11120


MegaBLAST (Morgulis et al., 2008; Baxevanis, 2020) against the database DB1 (details
in section "Databases"). The user can set up three BLAST parameters: the e-value (the
probability of finding a match by chance), the identity percentage (the percentage of
bases shared between the query and the subject sequence), and coverage percentage (the
percentage of bases of the query sequence that are covered by the subject sequence). If
more than four matching sequences were found in the database, PhyloPrimer runs a
MAFFT alignment (Katoh & Standley, 2013) and then constructs a phylogenetic tree with
FastTree (Price, Dehal & Arkin, 2009). The user can explore the dynamic tree and look at
the sequence information connected to each retrieved GenBank entry (e.g., taxonomy).
The user can then select, in the tree, the sequences that must be used for the consensus
calculation and therefore the oligo calculation (Fig. 3A).

Consensus calculation and primer specificity
PhyloPrimer uses a consensus approach for the oligo design or, in other words, it designs
the oligos from a consensus sequence. After the user selects the adequate sequences from
the dynamic tree, PhyloPrimer calculates two consensus sequences. The positive consensus
is the consensus calculated from the selected sequences, and the one used for the oligo
design. The negative consensus is calculated from the sequences that were not selected
from the tree and is used to increase the oligo specificity to the target organisms looking
at the base difference between the two consensus sequences (Fig. 3B). After the consensus
construction, Phyloprimer compares the two sequences and finds the differing positions.
To create taxon-specific oligos, PhyloPrimer uses this information when scoring the oligos
with the aim to retrieve the best ones to be visualized in the dynamic result page (Fig. 3C). To
guarantee a high level of oligo-specificity, PhyloPrimer also runs an in silico BLAST search
where oligos that are specific for the targeted organisms are selected. The user can specify
if the oligos must be species-, genus-, family-, order-, class-, phylum- or domain-specific.
PhyloPrimer picks which are the organisms of interest from the phylogenetic tree selections.

Oligo design and scoring system
The consensus sequence can be uploaded to PhyloPrimer by the user through the Premade
Selection page or it can be calculated by PhyloPrimer itself. The software constructs the
consensus with the DNA sequences or alignments uploaded through the Premade Selection
page or with the sequences that were selected by the user on the dynamic tree (Dynamic
Selection mode). In order for PhyloPrimer to find suitable oligos, the consensus must
have one or more conserved regions, DNA regions that are in common among all the
selected/uploaded sequences. If no conserved regions are present, the consensus sequence
will be represented by long stretches of degenerate bases and the software will not be
able to design any oligo from it. There can be different reasons for this: (i) the sequence
selection was too broad for the target gene family, (ii) the selected sequences did not include
only sequences from the same gene family, (iii) the sequences represented different DNA
regions of the same gene or (iv) the studied gene family is very divergent. In general, it is
more likely to have a conserved region in the consensus when working with closely related
sequences, for example, when developing oligos for a specific species rather than for an
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entire gene family. However, when the aim is to develop oligos at gene level, the presence of
a conserved gene region between different organisms highly depends on the gene sequence.
It is essential to know the gene family object of the study and to check the consensus
sequence that PhyloPrimer reports. In case the consensus presents a lot of degeneracy, it
will be necessary to adjust the maximum number of degenerate bases allowed inside the
oligo sequence in the oligo design pages. If this does not help, the design of different oligos
for different cluster of organisms should be considered.

In PhyloPrimer the conserved region of the consensus sequence is determined by the
maximum number of degenerate bases that is allowed inside the oligo sequences. For
instance, if the user sets the maximum degenerate base value to 1, PhyloPrimer will discard
all the oligos that have more than 1 degenerate base in the sequence or, in other words,
won’t consider the areas of the consensus that have an incidence of degenerate bases higher
than 1 base every oligo length (between 18–22 bp by default).

PhyloPrimer will start the oligo design only once the positive consensus has been
obtained. For each possible oligo length, the software extracts from the consensus sequence
all the possible subsequences of that length (Fig. 4A). This first step creates the starting
pool of oligos that the following steps will check and discard if not respecting all the design
parameters. The first check step discards by default the oligos that are not unique in the
consensus sequence, that have homopolymer repetition longer than 3 bases, dinucleotide
repetition longer than 6 bases, a GC content lower than 40% or higher than 60%, and will
check and discard the oligos that do not have between 2 and 4 Gs/Cs in the last 5 bases of
3′ oligo end (GC clamp). PhyloPrimer will also check if the oligos have a higher number of
degenerate bases than the limit and that only the correct degenerate bases are present (all
except from N by default). The default number of degenerate bases is set by PhyloPrimer
in relation to how many degenerate bases were found inside the consensus sequence but
can be changed by the user (Fig. 4B).

PhyloPrimer then calculates the reverse complement of all the oligos and considers the
original oligos as putative forward primers and the oligo reverse complements as putative
reverse primers (Fig. 4C). All the forward and reverse primers are progressively checked
to have a valid melting temperature (between 54 ◦C and 64 ◦C by default) and, in case the
presence of degenerate bases is allowed, not to have degenerate bases in the last 5 bases
of the 5′ oligo end and last 2 bases of the 3′ end oligo tails (by default). The software also
checks for the presence of self-dimer and hairpin secondary structures and discards any
oligos with a secondary structure associated to a1G value lower than -5 and -3 kcal mol−1,
respectively (Fig. 4D). Primers meeting the above criteria are then considered as suitable
primer pairs (Fig. 4E). The primer pairs are first selected considering the distance between
their 5′ ends on the consensus (between 200 and 600 bases by default). The primer pairs are
then discarded if the melting temperature difference between forward and reverse primers
is higher than 5 ◦C or the annealing temperature does not range between 50 ◦C and 60 ◦C
(Fig. 4F).

At this point, all the remaining primer pairs have all the requirements that were set by
the user through the oligo pages. All the following steps aim to retrieve the best primer
pairs that will be visualized in the result page. This is achieved by assigning points to each
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database DB2

L

Figure 4 Primer design workflow.Oligo design, check and scoring processes are indicated. One aster-
isk (*): 250 if no negative consensus was present, no differing bases between the two consensus sequences
were present or no differences were taken in consideration in the scoring system. Two asterisks (**): de-
pending on the visualization criteria that were selected, +20 and−40 points are assigned if the different
oligos BLAST searched against DB2 entries belonged to genera, families, orders, classes, phyla and do-
mains that were selected from the phylogenetic tree.

Full-size DOI: 10.7717/peerj.11120/fig-4
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primer pair as follows: 1 point is assigned to the primer pair if the melting temperature
of the forward and reverse primers differ by less than 1 ◦C, for each secondary structure 1
point is assigned if the 1G value is higher than −1 kcal mol−1. Moreover, 20 points are
assigned if a base polymorphic between the positive and the negative consensus is present
in the last1G base of the 3′ end and 10 points if it is present in the penultimate base.
Two points are also assigned for each additional base difference between the positive and
the negative consensus (Fig. 4G). The best 1,000 primer pairs are selected, checked for
cross-dimer formation and discarded if the 1G values are lower than −5 kcal mol−1 (Fig.
4H).

PhyloPrimer selects the first 500 primer pairs that scored the highest points according to
the scoring system (Fig. 4I). The oligos belonging to those first 500 primer pairs are BLAST
searched against DB2 (details in section "Databases"). PhyloPrimer then screens the BLAST
results and retrieves the database sequences that matched both to the forward and reverse
primers and uses them to perform a global alignment with Bowtie (Langmead, 2010).
PhyloPrimer then checks the alignment results and considers only the database sequences
that were matched by both the forward and the reverse primers of a primer pairs. If
that sequence belongs to one of the species that were selected from the dynamic tree,
PhyloPrimer assigns 10 points to the primer pair, if the species was not among the selected
species it deducts 40 points, and every time there is a new correct species PhyloPrimer
adds 20 points to the total. By default, PhyloPrimer does not assign more points to primers
that belong to the same genus (or higher ranks) of the selected tree entries. But if these
visualization parameters are checked, PhyloPrimer will assign 20 points to the entries that
belong to the same taxonomy and deduct 40 to those that do not. This is for facilitating
the design of oligos that are specific to a genus (or higher taxonomic group) rather than
only specific to certain species. In case an additional file was uploaded by the user for an
additional BLAST check, PhyloPrimer will also BLAST all the oligos against that database
but the outcome will not be the object of the scoring system (Fig. 4J).

The described scoring criteria are all active by default but any of those can be deselected
by the user on the Oligo Design page. PhyloPrimer then selects the first 100 primer pairs
and these primer pairs will be the ones showed in the last Result Page. When degenerate
bases are present inside the oligo sequences, the melting temperature and the GC content
are calculated as the mean of these values in each of the possible oligo (Fig. 4L).

The design process for primer pair/probe assays and single oligos is very similar to that
described above and is described fully in the software manual.

Melting temperature and 1G secondary structures
PhyloPrimer calculates oligo melting temperatures (Tm) and secondary structure Gibbs
free energies (1G) with the nearest-neighbor (NN) model for nucleic acids. This model
predicts the thermodynamic behavior of a DNA molecule using the thermodynamic
parameters of each nucleotide pair composing the molecule itself. Both the Tm and the1G
calculation rely on the use of the thermodynamics parameters enthalpy (1H) and entropy
(1S). These parameters were derived from calorimetry and spectroscopic experiments
of DNA duplexes for nucleotide base pair motives (SantaLucia & Hicks, 2004), internal

Varliero et al. (2021), PeerJ, DOI 10.7717/peerj.11120 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.11120


mismatches (Allawi & Santalucia, 1997; Allawi & SantaLucia, 1998a; Allawi & SantaLucia,
1998b; Allawi & SantaLucia, 1998c; Peyret et al., 1999), dangling ends (Bommarito, Peyret
& SantaLucia, 2000) and hairpin terminal mismatches (unpublished data). The latter were
retrieved from the UNAFold database (Markham & Zuker, 2008). The 1H and 1S are
considered temperature independent when working with nucleic acids and are reported
for 1 M Na+ conditions.

The melting temperature (Tm) of a DNA molecule is the temperature in which half of
the DNA is paired with its complement and half is single-stranded. The correct calculation
of this parameter is essential to the correct calculation of the PCR annealing temperature,
and it is pivotal for the qPCR probe when wanting to differentiate amplicon expression
levels. PhyloPrimer calculates Tm with the formula reported in SantaLucia & Hicks (2004).
The annealing temperature, Ta, is calculated as the lowest melting temperature (if more
than one oligo is present) minus 5. This is an indicative calculation as the optimal annealing
temperature can considerably vary in relation to the polymerase that is used during the
PCR.

The1G, or Gibbs free energy, estimates if a reaction can occur spontaneously (1G lower
than 0, exergonic reaction) or not (1G higher than 0, endergonic reaction) and therefore
indicates how stable a particular DNA structure is at a certain temperature. In this case,1G
represents the quantity of energy needed to fully break a secondary structure. The lower it is
(more negative), the more stable and likely to occur the secondary structure will be and the
more energy will be required to break it. 1G is defined as equal to the enthalpy minus the
product of the temperature times the entropy (Gibbs free energy equation). PhyloPrimer
calculates the 1G for three different secondary structure formations: self-dimers (i.e.,
dimers formed within the oligo itself), cross-dimers (i.e., dimers formed between different
oligos) and hairpin loops (i.e., hairpin-like secondary structures formed within the oligo
itself). For each of these different structures, different rules must be applied to 1H and
1S calculation which are then used to apply the Gibbs free energy equation (SantaLucia &
Hicks, 2004).

Melting temperature and 1G values obtained in this way (SantaLucia & Hicks, 2004;
Gibbs free energy equation) are valid only in 1 M Na+ condition. Because the PCR
conditions can span a wide range of different conditions, salt correction formulas must
be applied to correct the obtained values (Owczarzy et al., 2004; Owczarzy et al., 2008).
Depending on the polymerase used and the PCR protocol, Mg2+ and monovalent ions can
vary considerably and rarely the 1 M Na+ condition is respected. Therefore, PhyloPrimer
performs salt-correction correction with the parameters reported and customized in the
oligo pages therefore calibrating the corrections on the user specific PCR conditions.

When dealing with degenerate oligos, PhyloPrimer calculates melting temperature and
1G values for all the possible oligos. The final Tm is the average of all the calculated Tm

whereas the final 1G is the lowest 1G. More information on the Tm calculation, 1G
calculation and correction formulas, together with all the thermodynamic parameters, can
be found in the manual.
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Databases
PhyloPrimer uses external nucleotide sequence databases in two points of the pipeline. The
first point is when it BLAST searches the sequences uploaded in the Dynamic Selection
mode to retrieve similar sequences and construct a dynamic phylogenetic tree (DB1),
and the second when it checks the oligo specificity through in silico PCR (DB2). DB1 is
constituted by protein, rRNA, tRNA and tmRNA coding regions annotated from GenBank
prokaryotic genomes (Sayers et al., 2019). Nucleotide sequences from a maximum of
50 different genome assemblies or complete genomes are reported per organism for a
total of 78,710 bacterial genomes and 3,247 archaeal genomes. DB2 is the nucleotide
database (ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nt.gz) which contains partially non-
redundant nucleotide sequences from the GenBank, EMBL and DDBJ databases. The
sequence taxonomy of DB1 and DB2 relies on GenBank genome taxonomy (Benson et
al., 2018). The two databases can be downloaded from the PhyloPrimer GitHUB page
(https://github.com/gvMicroarctic/PhyloPrimer). DB1 and DB2 were last updated in April
2021 and are updated every two months. At the moment of the publication they contained
289,757,008 (DB1) and 68,965,867 (DB2) entries. The databases cannot be substituted.
However, the user can upload extra sequences for the in silico check; in this case PhyloPrimer
will check the taxon-specificity of the oligos against both the DB2 sequences and the user
uploaded sequences.

PhyloPrimer test
The primer pairs were designed to amplify all the organisms related to the genus
Streptococcus (PP1), and five Streptococcus species: Streptococcus agalactiae (PP2),
Streptococcus pneumoniae (PP3), Streptococcus pyogenes (PP4), Streptococcus mutans (PP5)
and Streptococcus mitis (PP6) (Table 1). The primer designwas performedwith PhyloPrimer
(Dynamic Selection mode) where six rpoB gene sequences were uploaded for the tree
construction (Data S1): one for each Streptococcus species in themock communities and one
sequence belonging to S. dysgalactiae which was shown to be highly related to S. pyogenes
(Jensen & Kilian, 2012). The primers were designed with default parameters with exception
of melting and annealing temperature (60−75 ◦C), monovalent ion concentration (0
mM), magnesium ion concentration (2.5 mM), oligo concentration (0.6 µM) and dNTP
concentration (1.2 µM) which were modified accordingly to the specifics of the polymerase
used for the PCR. Furthermore, in order to be sure the DNA was amplifiable in all the
mock communities, the primers 341F and 518R were also used to amplify the 16S rRNA
gene as a positive control (Table 1) (Muyzer, De Waal & Uitterlinden, 1993).

The primers were tested with four mock communities: Metagenomic Control Material
for Pathogen Detection (ATCC R© MSA-4000), 10 Strain Staggered Mix Genomic Material
(ATCC R© MSA-1001), Skin Microbiome Genomic Mix (ATCC R© MSA-1005) and
ZymoBIOMICS Microbial Community DNA Standard (D6306, Zymo Research). These
communities comprise several organisms, present with different abundances and ranging
in microbial diversity. In the following tests they will be called community A, B, C and D,
respectively (Table 2).
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Table 1 Primer specifics. All the primers were designed with PhyloPrimer web platform except the 16S
rRNA primers which were designed byMuyzer, De Waal & Uitterlinden (1993).

Primers Primer sequences

Forward Reverse

16S rRNA CCTACGGGAGGCAGCAG GGCACAGCCTGACGTTGCAT
PP1 TTGACWCGTGACCGTGCTGG GGCACAGCCTGACGTTGCAT
PP2 GCGTCGCGAAGATGGTTCT ACCTCAGCACCAATGCGGATGA
PP3 AGCTTGCTTGTRGCTCGCTT CTCAGTCACAACGGCTGCATCG
PP4 CAGTTGCACAGGCCAATTCGA GTGAGCCATCTTGACGACGGAT
PP5 GCGAGCGTCTTGTCAAGGAT ACCACCAAGCGGCTGTTGA
PP6 ACATGCAACGTCAGGCTGT AGTACGAGCAGCCATACCAAGG

Primers Target organisms Amplicon
size (bp)*

16S rRNA Bacteria 200
PP1 Streptococcus spp. 470
PP2 Streptococcus agalactiae 410
PP3 Streptococcus pneumoniae 270
PP4 Streptococcus pyogenes 380
PP5 Streptococcus mutans 870
PP6 Streptococcus mitis 1000

Notes.
*PhyloPrimer predicted amplicon length

Each mock community DNA was used as template for the PCR amplification using
the primers 16S rRNA and the PhyloPrimer developed primer pairs (PP1, PP2, PP3, PP4,
PP5 and PP6). The 25 µL PCR solution consisted in 12.5 µL for 2X KAPA HiFi HotStart
ReadyMix polymerase (KAPA BIOSYSTEMS), 1.5 µL of 5 µM forward primer, 1.5 µL of
5 µM reverse primer, between 1–3 µL of template DNA (corresponding to 4 ng of DNA)
and nuclease-free water up to volume. A negative control where the template DNA was
substituted with nuclease-free water was included for every primer pair.

The PCR was performed using an Eppendorf Mastercycler nexus X2 thermal cycler
(Eppendorf) with the following conditions: 95 ◦C for 3 min, 25 cycles of 98 ◦C for 20 s,
64 ◦C for 15 s and 72 ◦C for 20 s, and a final extension of 72 ◦C for 1 min. The annealing
temperature of 64 ◦Cwas used for all the primer pairs PP1, PP2, PP4, PP5 and PP6, whereas
we used 65 ◦C for PP3 and 62 ◦C for the 16S rRNA primers.

For each sample, 6 µL of PCR product was then run with 2 µL of gel loading buffer
(NEB) on 1.5% w/v horizontal agarose gel (0.5 mg) ethidium bromide ml−1 in 1x TEA
buffer (Tris acetate EDTA) and run for 30 min at 120 mV (Bio-Rad PowerPac 300, Bio-Rad
Laboratories). Gel pictures were visualized under UV light and captured with GelDoc-ItTS2
Imager (UVP). No bands were shown in any of the negative control lanes. GelPilot 100 bp
Plus Ladder (Qiagen) was run for amplicon size comparison.

The non-specific amplicon band obtained in community A with the primer pair PP6 was
sequenced with the nanopore technology. The library preparation was performed using
the SQK-LSK109 kit (Oxford Nanopore Technologies, Oxford, UK). The sequencing was
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Table 2 Mockmicrobial composition. Composition for the communities A, B, C and D where commu-
nity A corresponds to ATCC R© MSA-4000, B to ATCC R© MSA-1001, C to ATCC R© MSA-1005 and D to
the ZymoBIOMICS community.

Species Relative abundance (%)

A B C D

Acinetobacter baumannii 0.10 – – –
Acinetobacter johnsonii – – 16.70 –
Bacillus cereus – 4.48 – –
Bacillus subtilis – – – 12.00
Bifidobacterium adolescentis – 0.04 – –
Clostridium beijerinckii – 0.45 – –
Corynebacterium striatum – – 16.70 –
Cryptococcus neoformans – – – 2.00
Cutibacterium acnes – – 16.70 –
Deinococcus radiodurans – 0.04 – –
Enterococcus faecalis 0.70 0.04 – 12.00
Escherichia coli 1.40 4.48 – 12.00
Klebsiella pneumoniae 14.40 – – –
Lactobacillus fermentum – – – 12.00
Lactobacillus gasseri – 0.45 – –
Listeria monocytogenes – – – 12.00
Micrococcus luteus – – 16.70 –
Neisseria meningitidis 28.90 – – –
Pseudomonas aeruginosa 0.30 – – 12.00
Rhodobacter sphaeroides – 44.78 – –
Saccharomyces cerevisiae – – – 2.00
Salmonella enterica – – – 12.00
Staphylococcus aureus 15.10 – – 12.00
Staphylococcus epidermidis – 44.78 16.70 –
Streptococcus agalactiae 2.90 – – –
Streptococcus mitis – – 16.70 –
Streptococcus mutans – 0.45 – –
Streptococcus pneumoniae 28.90 – – –
Streptococcus pyogenes 7.20 – – –

performed using a flow cell FLO-MIN106 with a MinION device and can be found in the
European Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB42474.
The sequences were basecalled using Guppy v 3.2.2 (Oxford Nanopore Technologies).
Sequences were then taxonomy assigned by BLAST search against genomes contained in
community A. The list of the genomes used to create the BLAST database can be found in
Table S1.

RESULTS AND DISCUSSION
The development of taxonomic specific primers is essential to many environmental and
biomedical biomonitoring and detection studies (e.g.,Ai et al., 2019;Dos Santos et al., 2020;
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Liu et al., 2003; Song et al., 2000) where the recent COVID-19 pandemic is a perfect example
of how important is the design of species-specific primers to detect a specific organism
of interest (Park et al., 2020). We developed PhyloPrimer, an automated platform that
integrates a new pipeline which aims to design taxonomic-specific oligos and tests them
for secondary structures and target specificity.

The 16S rRNA gene was amplified in all the four communities showing that all the DNA
communities had amplifiable microbial DNA (Fig. 5). The primer pair PP1 which was
specific for the Streptococcus genus produced amplicons of the expected size (about 500
bp) in all the communities except from community D where no Streptococcus species were
present (Table 2). Primers PP2, PP3 and PP4 which targeted respectively S. agalactiae, S.
pneumoniae and S. pyogenes showed PCR products only in community A which was the
only community that contained these organisms. The amplicon size also reflected that
predicted by PhyloPrimer being around 410, 270 and 380 bp for primer PP2, PP3 and
PP4, respectively. The primer pair PP5 only amplified community B which was the only
one containing S. mutans. Finally, the primer pair PP6, specific for S. mitis, showed bands
(around 1,000 bp) in both community A and C. Community A did not contain S. mitis
and therefore species specificity was not achieved with this primer pair. This non-specific
band is due to the amplification of the other Streptococcus species present in community
A (Fig. 5 and Table 2). Of the 268,551 amplified sequences that matched to genomes
present in community A, in fact, more than 99% of the sequences was assigned to the
genus Streptococcus. Of these, 66% of the sequence was assigned to S. pneumoniae, 33% to
S. pyogenes, and 1% to S. agalactiae.

Organisms belonging to the species S. mitis have been previously observed to not form
a well-isolated phylogenetic cluster (Whatmore et al., 2000). In particular, S. mitis has
been shown to be closely related to S. pneumoniae (Kawamura et al., 1995). The close
similarity between these two species can be observed from PhyloPrimer tree where S.
mitis and S. pneumoniae organisms do not show well-separated phylogenetic clusters
(https://www.cerealsdb.uk.net/cerealgenomics/cgi-bin/tree_paper.cgi). Therefore the non-
specificity of the primer pair PP6 is caused by the scarce differentiation of S. mitis from
the other Streptococcus species where, in particular, the non-specific band observed in
community A could be due to the amplification of S. pneumoniae (Fig. 5). This result
is confirmed by the PhyloPrimer in silico taxonomic test where all the designed primer
pairs targeting S. mitis also targeted S. pneumoniae. Furthermore, the positive consensus
sequence calculated for S. mitis only had a total of 8 differing bases with the negative
consensus (Fig. S1); and no differing bases at all between positive and negative consensus
within either its forward or reverse primer sequences (i.e., PP6) whereases all the other
selected primer pairs (i.e., PP1, PP2, PP3, PP4 and PP5) had differing bases (Fig. S2). It was
therefore not possible to design a species specific rpoB primer pair for S. mitis as primers
could not be made to target any of the eight known bases unique to this species, due to
design constraints.

PhyloPrimer performed well with different organism and gene settings and showed
overall good results when tested on the mock communities. There are several oligo design
software, such as MPrimer (Shen et al., 2010), PrimerDesign-M (Yoon & Leitner, 2015),
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Figure 5 Agarose gel pictures of the PCR products amplified with the 16S rRNA and the PhyloPrimer
designed primer (PP1, PP2, PP3, PP4, PP5 and PP6) on the mock communities A, B, C and D. The white
star marks the non-specific band found in community A for the primer PP6. All the other primer pairs
amplified only the expected communities and no false negatives occurred.

Full-size DOI: 10.7717/peerj.11120/fig-5
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MRPrimerW (Kim et al., 2016) and Oli2go (Hendling et al., 2018), that are similar to
PhyloPrimer at different stages of the pipeline: homolog screening, secondary structure
check and oligo scoring. While others implement the use of a positive and negative
consensus sequence for oligo design, such as in the case of Morphocatcher (Shirshikov,
Pekov & Miroshnikov, 2019) and Uniqprimer (Karim et al., 2019), PhyloPrimer automizes
all the steps, fromhomologous sequence selection to oligo scoring, providing a user-friendly
oligo design platform.

The software also comes with some limitations. For example, the database used for the
tree construction contains only microbial sequences, which lack the added complexity
of lengthy intron-containing eukaryotic genes. DB1 is also constituted by coding-region
sequences and therefore PhyloPrimer cannot build a phylogenetic tree with intergenic
regions. Also, PhyloPrimer does not design degenerate oligos specifically. PhyloPrimer
uses a consensus approach and it designs the oligos from a consensus sequence calculated
from a DNA alignment. Therefore it will not introduce degeneracy on purpose and will
design oligos containing degenerate bases only if present in the consensus sequence and if
necessary to the design of suitable oligos.

CONCLUSION
We developed PhyloPrimer, a semi-automated and user-friendly pipeline to go from
sequence selection to oligo design, and in silico tested oligos. This tool aims to help with
oligo design of complex environmental communities speeding up and providing a solid
and reproducible pipeline for the oligo design and in silico tests. We demonstrated the
relevance of this approach which showed good results in terms of oligo-specificity when
tested on microbial mock communities.
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