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ABSTRACT
Background. Understanding the disease pathogenesis of the novel coronavirus,
denoted SARS-CoV-2, is critical to the development of anti-SARS-CoV-2 therapeutics.
The global propagation of the viral disease, denoted COVID-19 (‘‘coronavirus disease
2019’’), has unified the scientific community in searching for possible inhibitory small
molecules or polypeptides. A holistic understanding of the SARS-CoV-2 vs. human
inter-species interactome promises to identify putative protein-protein interactions
(PPI) that may be considered targets for the development of inhibitory therapeutics.
Methods. We leverage two state-of-the-art, sequence-based PPI predictors (PIPE4
& SPRINT) capable of generating the comprehensive SARS-CoV-2 vs. human in-
teractome, comprising approximately 285,000 pairwise predictions. Three prediction
schemas (all, proximal, RP-PPI ) are leveraged to obtain our highest-confidence subset
of PPIs and human proteins predicted to interact with each of the 14 SARS-CoV-2
proteins considered in this study. Notably, the use of the Reciprocal Perspective (RP)
framework demonstrates improved predictive performance inmultiple cross-validation
experiments.
Results. The all schema identified 279 high-confidence putative interactions involving
225 human proteins, the proximal schema identified 129 high-confidence putative
interactions involving 126 human proteins, and the RP-PPI schema identified 539
high-confidence putative interactions involving 494 human proteins. The intersection
of the three sets of predictions comprise the seven highest-confidence PPIs. Notably,
the Spike-ACE2 interaction was the highest ranked for both the PIPE4 and SPRINT
predictors with the all and proximal schemas, corroborating existing evidence for this
PPI. Several other predicted PPIs are biologically relevant within the context of the
original SARS-CoV virus. Furthermore, the PIPE-Sites algorithm was used to identify
the putative subsequence that might mediate each interaction and thereby inform the
design of inhibitory polypeptides intended to disrupt the corresponding host-pathogen
interactions.
Conclusion. We publicly released the comprehensive sets of PPI predictions and their
corresponding PIPE-Sites landscapes in the following DataVerse repository: https:
//www.doi.org/10.5683/SP2/JZ77XA. The information provided represents theoretical
modeling only and caution should be exercised in its use. It is intended as a resource
for the scientific community at large in furthering our understanding of SARS-CoV-2.
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INTRODUCTION
The novel coronavirus (CoV) pandemic has galvanized the research community into
the investigation of the SARS-CoV-2 virus and the COVID-19 disease it manifests in
humans (Guarner, 2020). Research has progressed with unprecedented speed in large part
due to the rapid determination of the SARS-CoV-2 genome and proteome. These data
enable the research community to collectively contribute to the study and understanding
of SARS-CoV-2 and its disease pathogenesis. Given the emergence of three human
coronaviruses (HCoVs) causative of severe disease of epidemic or pandemic proportions
within the last two decades, we must expand our fundamental understanding of these
viruses to rapidly identify putative therapeutic targets, facilitate complimentary research,
and inform public discussions for the present and any future outbreaks of HCoVs.

Coronaviruses share many similarities to the influenza viruses in that they are
both enveloped, single-stranded, and helical RNA-viruses among the Group IV viral
families (Baltimore, 1971). The four coronaviruses known to commonly infect humans
are believed to have evolved such that they maximize proliferation within a population.
This evolved strategy involves sickening, but not ultimately killing, their hosts. By contrast,
the two prior novel coronavirus outbreaks (SARS and MERS) arose in humans after
cross-species jumps from animals, as was H5N1 (the avian influenza). These latter diseases
were highly fatal to humans, with relatively few mild or asymptomatic cases. A greater
proportion of mild or asymptomatic cases would have resulted in wide-spread disease,
however, SARS and MERS each ultimately killed fewer than 1,000 people (World Health
Organization, 2020; World Health Organization, 2011).

All known HCoVs arise from zoonotic origins (i.e., from other animal species). The
wide diversity of CoVs within the animal kingdom stem from the genetic alterations to
CoV genomes through acquisition of mutations and a high frequency of recombination
between different CoV genomes (Makino et al., 1986; Van Der Most et al., 1992). Such
genetic modifications occurring in animal CoVs may facilitate a ‘‘host jump’’ and are the
primary reason for inter-species and animal-to-human transmission (Cui, Li & Shi, 2019).
The HCoVs that are endemic to the human population are causative agents of more mild
disease (e.g., common cold) and there is less urgency to identify the animal reservoirs of
these viruses.

CoVs are enveloped viruses with a mostly spherical membrane approximately 120
nm in diameter and comprised of 4–5 structural proteins. The single-stranded RNA
genome is encapsulated by the Nucleocapsid (N) protein, which functions to package the
viral genome into CoV particles during assembly (Chang et al., 2006). The Membrane (M)
protein plays a central role in assembly of the viral particles, largely by promotingmembrane
curvature (Neuman et al., 2011). The Envelope (E) protein is multi-functional, playing key
roles in viral assembly and maintenance, such as mediating ion-channel activity (Schoeman
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& Fielding, 2019). The largemembrane projections are trimers of the Spike (S) glycoprotein,
responsible for attachment and entry into target cells. Additional smaller 8 nm projections
are inherent to lineage A βCoVs, due to the presence of hemagglutinin esterase (HE)
dimers.

It is of critical importance that the cellular entry mechanism and viral replication
pathways of SARS-CoV-2 and the role of accessory proteins be rapidly elucidated to
develop anti-viral therapies to mitigate the spread and infectivity of the virus in the present
pandemic.

Promisingly, many computational approaches have been rapidly deployed to increase
our understanding of SARS-CoV-2, including protein function, three-dimensional (3D)
protein structures, and possible target regions for small inhibitory molecules (Senior et
al., 2020; Smith & Smith, 2020). Given that the Spike protein from the original SARS
coronavirus, SARS-CoV, is known to interact with the human Angiotensin-Converting
Enzyme 2 (ACE2), current efforts are focused to better characterize the SARS-CoV-2 Spike
protein and its putative interaction with the ACE2 protein.

Similar efforts are being made to understand the functional and evolutionary
characteristics of the SARS-CoV-2 proteome, including the determination of evolutionary
conserved functional regions between related viruses to inform the use of anti-viral
therapeutics (Cui et al., 2020). Given the unique infectivity characteristics of this novel
coronavirus, the need for effective anti-viral therapeutics is pressing. The long viral
incubation period, during which an individual is simultaneously contagious and
asymptomatic, has resulted in rapid global proliferation. Leveraging what is known from
the original SARS-CoV outbreak and related viral families (previously introduced) this
work contributes predicted protein-protein interaction (PPI) networks to guide researchers
and form the basis of testable hypotheses warranting wet-lab confirmation.

We hope to contribute to the scientific effort using the latest version of our sequence-
based protein-protein interaction (PPI) predictor, PIPE4 (Dick et al., 2020) in combination
with another state-of-the-art PPI predictor, denoted Scoring PRotein INTeractions
(SPRINT) (Li & Ilie, 2017). Additionally, we leverage the Reciprocal Perspective (RP)
cascaded classification method to further refine predictions (Dick & Green, 2018). We
leverage a multi-schema methodology in order to identify a high-confidence subset of
putative interactors. The three predicted interactomes were leveraged in combination
to produce candidate targets for experimental validation and to subsequently guide
the development of inhibitory polypeptides. Finally, the PIPE-Sites algorithm was used
to predict the sub-sequence regions with a high likelihood of mediating the physical
interaction between two given pairs (Amos-Binks et al., 2011).

Our sequence-based PPI prediction method (PIPE) was previously used during the
2015 Zika virus outbreak to identify putative human-Zika PPIs with the goal of informing
rational drug discovery (Kazmirchuk et al., 2017). In the present study, of the ∼285,000
host-virus pairs, we leverage three prediction schema and two independent PPI predictors
to select a highly conservative set of predicted interactions for each of the 14 SARS-
CoV-2 proteins considered in this study resulting in the identification of several putative
human protein targets. We have publicly released these predictions and related meta-data
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for use by the broader scientific community in the following DataVerse repository:
https://www.doi.org/10.5683/SP2/JZ77XA (Dick, Biggar & Green, 2020).

METHODS
The multi-schema methodology leveraged in this work follows from and expands upon
a previous study of the Zika virus (Kazmirchuk et al., 2017) where we defined two initial
prediction schemas from which to train the PPI predictors. First, the all schema, contains
the maximum available number of known virus-human PPIs regardless of the evolutionary
distance between those viruses and the target virus (i.e., SARS-CoV-2). This schema groups
all viruses into a ‘‘viral’’ collection to serve as a proxy for SARS-CoV-2. The second schema,
denoted proximal, is a subset of the all schema, where only the PPIs from evolutionarily
related viruses are considered. In a third schema, denoted RP-PPI, both the all and proximal
datasets are leveraged to apply the Reciprocal Perspective cascaded PPI predictor developed
by Dick & Green (2018). Specifically, the proximal PPIs are used to train the PIPE4 and
SPRINT method generating the comprehensive prediction matrix (CPM) representing
all possible pairs between the remaining all schema pairs and human. From this CPM,
the RP features (as described in Dick & Green (2018)) were extracted and used to train
a downstream model to generate refined predictions between SARS-CoV-2 and human
protein pairs.

In the three schemas, as part of an independent evaluation, we remove the previously
known SARS-CoV Spike vs. ACE2 interaction to serve as a positive control among the set of
predicted interactions. We retained the other four known interactions between SARS-CoV
and human within the PPI training set.

The dataset of experimentally elucidated human-virus PPIs was obtained from the
VirusMentha database (Calderone, Licata & Cesareni, 2015). These 10,693 known PPIs are
used to train the PPI predictors and infer new putative interactions between human proteins
and the SARS-CoV-2 proteome. For the all schema, the proteomes of the 43 viral families
were collected from Uniprot and are summarized in the Supplementary Materials. To
generate a complimentary predicted interactome using the proximal schema, we tabulate
the 689 training PPI and the Group IV viral families over which they are distributed
(Table 1). Finally, the human reference proteome (UP000005640) was obtained from
Uniprot, retaining only the high-quality ‘‘Reviewed’’ Swiss-Prot proteins.

The SARS-CoV-2 Proteome
The proteome of SARS-CoV-2 was obtained from the Uniprot pre-release available at
SARS-CoV-2 Pre-Release, (Swiss Institute of Bioinformatics, 2020), with the disclaimer
that these data would become part of a future UniProt release and may be subject to
further changes. While other SARS-CoV-2 proteins are reported among other sequence
repositories, we restricted our study to these highest-confidence proteins available at the
time. The 14 SARS-CoV-2 proteins and their function are tabulated in Table 2. Notably,
the Spike glycoprotein (Accession: P0DTC2) is of special interest to this and related work,
since its SARS-CoV homolog is known to interact with the human ACE2 protein and is
presently the target of a recent mRNA-based vaccine candidate.
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Table 1 Group IV Viral Families and their Number of PPIs used in the Proximal Prediction Schema.

Virus Family Number of PPIs Capsid Type Capsid Symmetry Nucleic Acid Type Examples

Flaviviridae 569 Enveloped Icosahedral Single-Stranded Hepatitis C virus, Zika virus
Togaviridae 56 Enveloped Icosahedral Single-Stranded Rubella virus, Alphavirus
Arteriviridae 56 Enveloped Icosahedral Single-Stranded Arterivirus
Coronaviridae 5 Enveloped Helical Single-Stranded Coronavirus
Hepeviridae 3 Naked Icosahedral Single-Stranded Hepatitis E virus
Astroviridae 0 Naked Icosahedral Single-Stranded Astrovirus
Calciviridae 0 Naked Icosahedral Single-Stranded Norwalk virus
Picornaviridae 0 Naked Icosahedral Single-Stranded Enterovirus, Hepatovirus

Table 2 The 14 Proteins in the SARS-CoV-2 Proteome Considered in this Study.

Uniprot Acc. Gene Name Protein Name Protein Function

P0DTD1 R1A_WCPV Replicase polyprotein 1a (R1a) Viral transcription/replication
P0DTC1 R1AB_WCPV Replicase polyprotein 1ab (R1ab) Viral transcription/replication
P0DTC2 SPIKE_WCPV Spike glycoprotein (S) Attachement and entry
P0DTC3 AP3A_WCPV Protein 3a (ORF3a) ESCRT-independent budding
P0DTC4 VEMP_WCPV Envelope small membrane protein (E) ESCRT-independent budding
P0DTC5 VME1_WCPV Membrane protein (M) Virion morphegenesis
P0DTC6 NS6_WCPV Non-structural protein 6 (ORF6) Unknown; possibly host-virus modulation
P0DTC7 NS7A_WCPV Protein 7a (ORF7a) Unknown; possibly host-virus modulation
P0DTD8 NS7B_WCPV Protein 7b (ORF7b) Unknown; possibly host-virus modulation
P0DTC8 NS8_WCPV Non-structural protein 8 (ORF8) Unknown; possibly host-virus modulation
P0DTC9 NCAP_WCPV Nucleoprotein (N) Viral genome packaging
P0DTD3 Y14_WCPV Uncharacterized protein 14 (ORF8) Unknown; possibly host-virus modulation
P0DTD2 ORF9B_WCPV Protein 9b (ORF9b) Unknown; possibly host-virus modulation
A0A663DJA2 A0A663DJA2_9BETC Hypothetical ORF10 protein Presumably not expressed

Computational Protein–Protein Interaction Predictors
The computational prediction of PPIs is a diverse field which encompasses multiple
paradigms (e.g., sequence-, structure-, evolution-, and network-basedmethods). Sequence-
based predictors rely solely upon primary sequence data, making them amenable to the
investigation of proteome-wide networks. Furthermore, these methods tend to be highly
efficient, where individual PPIs can be predicted in a fraction of a second.

The Protein–Protein Interaction Prediction Engine (PIPE4)
PIPE is a sequence-based method of PPI prediction that operates by examining sequence
windows on each of the query proteins. If the pair of sequence windows shares significant
similarity with a pair of proteins previously known to interact, then evidence for the
putative PPI is increased. A similarity-weighted (SW) scoring function uses normalization
to account for frequently occurring sequences, not related to PPIs. Given sufficient
evidence, a PPI is predicted. PIPE has previously been validated on numerous species for
both intra-species and inter-species PPI prediction tasks (Schoenrock et al., 2011; Pitre et
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al., 2006; Pitre et al., 2012). Furthermore, the distribution of evidence along the length of
each query protein forms a 2D landscape that can indicate the site of interaction (discussed
later) (Amos-Binks et al., 2011).

The fourth version of the Protein-protein Interaction Prediction Engine (PIPE4)
was recently adapted to improve predictive performance for understudied organisms
(Dick et al., 2020). That is, species for which the proteome is known, but the number of
experimentally validated intra-specific PPIs is insufficient to train a model to generate the
comprehensive interactome. To circumvent this, the PIPE4 algorithm leverages the known
PPIs of evolutionarily similar and well-studied organisms, serving as a proxy training set.
Using an approach denoted as cross-species PPI prediction, the experimentally validated
PPIs from the proxy species are used to train the PPI predictor which is then applied to the
proteome of the understudied target organism. Due to the limited availability of known
SARS-CoV-2 PPIs, we here use the PPIs from a collection of well-studied and evolutionarily
similar proxy viruses to generate these cross-species predictions as depicted in Fig. 1.

The PIPE4 algorithm is particularly well-suited to cross- and inter-species PPI prediction
schemas, given that the SW-scoring function appropriately normalizes the prevalence of
sequence windows within each training and target species proteome (Dick et al., 2020).

Scoring PRotein INTeractions (SPRINT)
The SPRINT predictor is conceptually similar to PIPE; SPRINT aggregates evidence
from previously known PPI interactions, depending on window similarity with the query
protein pair, to inform its prediction scores (Li & Ilie, 2017). SPRINT leverages a spaced
seed approach for determining protein window sequence similarity, where only specific
positions in the two windows must be identical as defined by the bits of the spaced seeds.
Furthermore, protein sequences are encoded using five bits per amino acid, enabling the
use of highly efficient (SIMD) bitwise operations to rapidly compute protein window
similarities and, thereby, score predictions (Li & Ilie, 2017). The present version of the
SPRINT algorithm is not explicitly designed to handle inter- and cross-species prediction,
nor to predict the specific subsequence site of interaction between a given pair of proteins.
Nonetheless, it is among the only PPI predictors capable of predicting comprehensive
interactomes in a timelymanner andwas demonstrated to outperform other PPI predictors,
including the PIPE2 algorithm (Li & Ilie, 2017).

Determining an Appropriate Per-Protein Decision Threshold
For each of the 14 SARS-CoV-2 proteins, we predicted their interaction with each of
the 20,366 human proteins resulting in 285,124 unique predictions, forming what we
denote the comprehensive prediction matrix (CPM), using each of the two predictors
considered. While each method, through a form of cross-validation, might determinate
a highly-conservative global decision threshold, we know from our work in Dick & Green
(2018) that such thresholds are sub-optimal. Furthermore, there are insufficient known
PPI exemplars between human and SARS-CoV-2 from which to optimize such a threshold.
Consequently, for the first time, we employ an RP-inspiredmethod to adaptively determine
local decision thresholds on a per-protein basis based on the distribution of prediction
scores involving each protein.
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Figure 1 Overview of the three prediction strategies to generate the SARS-CoV-2 vs. human interac-
tome. The three schemas depict how known PPIs are leveraged to train a prediction model to generate
predictions for SARS-CoV-2.

Full-size DOI: 10.7717/peerj.11117/fig-1

From the prediction of all possible pairs, we obtain a CPM. We can then plot the rank-
ordered distribution of the putative interaction scores involving each of the individual
SARS-CoV-2 proteins separately in decreasing rank order by score, forming a one-to-all
(O2A) score curve. This presents an opportunity to develop protein-specific local decision
thresholds, where only those interactions scoring significantly above baseline are reported.
These one-to-all score curves are based on the underlying assumption that we expect
true SARS-CoV-2 vs. human PPIs to be rare, such that the vast majority of prediction
scores should fall below the decision threshold. Furthermore, for the RP-PPI schema,
we additionally examine the reciprocal perspective, examining one-to-all curves for each
human protein and applying analogous decision logic to determine human-protein-specific
decision thresholds (Dick & Green, 2018).

Thus, for each O2A score curve, a score threshold delineating the ‘‘high-scoring’’ pairs
from the baseline was identified and used to determine the high-confidence predicted
interactions. In the absence of known PPIs between SARS-CoV-2 and human, it is difficult
to determine a suitable global decision threshold. By instead examining the morphology of
the O2A score curves for both perspectives, we can qualitatively identify high-scoring pairs.
This process can be further automated through the identification of the baseline/knee
for each view under the assumption that true PPIs are rare and high-scoring, while
non-interacting pairs tend to generate scores residing below the knee in the baseline.

We automated the selection of this operational decision threshold for the 14 SARS-
CoV-2 proteins using the Kneedle algorithm (Satopaa et al., 2011), applied to its top-1000
predictions, using a sensitivity parameter of 2.0. An example visual illustration of the highly
conservative selection of high-confidence interactions is depicted in Fig. 2 and the cut-off
scores for each protein are tabulated in the Supplementary Materials.

We identified the common set of predicted pairs above each locally defined knee
from both the PIPE4 and SPRINT methods (their intersection) for each schema. For
example, the all schema, resulted in a set of 225 putative human protein targets among
279 intersection pairs. The predicted pairs from each schema were considered to be the
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Full-size DOI: 10.7717/peerj.11117/fig-2

predicted interactome andwere subsequently analyzed by PIPE-Sites; GO-term enrichment
analysis was performed using the identified human proteins. The results of each schema’s
interactomewere also combined into higher-confidence sets by taking their set intersections
and were visualized as a network.

Predicting PPI site of interaction using PIPE-Sites & the new
similarity weighted landscape
The PIPE4 algorithm generates its prediction for a given pair of proteins based on a
two-dimensional landscape of scores, where the score at location x,y , the number of
sequence window similarity ‘‘hits’’, represents the weight of evidence from the xth and
yth subsequence of the human and SARS-CoV-2 proteins, respectively. The PIPE-Sites
algorithm examines this landscape and deduces which subsequences from each protein are
likely to correspond to the site of interaction (Amos-Binks et al., 2011). Such information
can guide subsequent detailed investigations to determine the physical binding site which
may form the target for novel interventions to disrupt the PPI.

The list of PPIs generated from both methods can be used to inform the design of
anti-SARS-CoV-2 therapeutics by using peptide sequences from the predicted PPI site,
which we refer to as the PPI-Site. We define the PPI-Site as the peptide sequence that
is responsible for mediating a given PPI, which is here estimated using the PIPE-Sites
method. A conceptual overview of the PIPE4 landscape matrix and PIPE-Site prediction is
illustrated in the Supplementary Materials.

Additionally, we introduce for the first time the Similarity Weighted landscape which
is derived from the original PIPE4 landscape with the following modification: the ‘‘hits’’
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representing the weight of evidence from the xth and yth subsequence of the human and
SARS-CoV-2 proteins, respectively, are normalized by a cross-species variant of the SW
normalization factor in Dick et al. (2020) which normalizes window frequency only in
species for which there are available PPI training data. This suppresses the effect of highly
prevalent windows that are not associated with interactions and amplifies the effect of
windows that are relatively rare, yet are frequently occurring in known interactions within
the proteomes of species for which training data are available. Specifically, the high-scoring
‘‘hot-spots’’ in the SW landscape are putative subsequences possibly mediating interactions
between two proteins. For clarity, we syntactically distinguish the interface residues from a
predicted PPI-Site. Since we are looking at sequence similarity across many proteins, the
PPI-Site is a proxy for measuring sequence conservation. Therefore, we are identifying the
subsequence that has been conserved to support the interaction site, which may include
scaffolding residues distal to the actual interface.

The reciprocal perspective cascaded classifier: combination of multiple
experts
In previous work, we demonstrated that the use of the Reciprocal Perspective PPI cascaded
classifier (RP-PPI) produced statistically significant improvement in performance (Dick
& Green, 2018). Moreover, we here propose the RP-PPI method, as a cascaded machine
learning algorithm, can be leveraged to combine features from multiple expert models.
Here, for the first time, we jointly combine the features derived from the PIPE and SPRINT
models and demonstrate the resulting improvement in performance as part of the RP-PPI
schema. Furthermore, following from the work of Kyrollos et al. (2020), we implement the
cascaded model as an eXtreme Gradient Boosting (XGBoost) regression model (Chen &
Guestrin, 2016) instead of the Random Forest classifier originally proposed inDick & Green
(2018).

To evaluate the performance increase of the combined classifier, we perform Leave-
One-Family-Out cross-validation (LOFOCV), and plot the average Receiver Operating
Characteristic (ROC) curve with confidence intervals of one standard deviation. Given
certain families had relatively few PPIs, we omitted those with fewer than 50 PPIs from this
analysis (a negligible number of pairs were left out). The determination that the combined
use of PIPE4 and SPRINT features from their respectively predicted CPMs does, in fact,
result in improved performance. We then performed extensive hyper-parameter tuning,
evaluated via 10-fold cross-validation, to obtain the most performant model to generate
our SARS-CoV-2 vs. human predictions. Varying maximum tree depth ([3,4,5,...,18]),
number of estimators ([50,75,100,...,600]), and the learning rate (9 values considered),
we trained and evaluated 29,700 models to arrive to the final model that was used to
generate the comprehensive set of prediction as part of the RP-PPI schema.

Gene Ontology (GO) enrichment analysis
To determine which human cellular pathways may be targeted by SARS-CoV-2, PANTHER
Gene Ontology (GO) Slim enrichment analysis was applied to each of the predicted
interactomes from each schema independently: the 225 human proteins predicted to
interact with SARS-COV-2 proteins in the all schema, the 123 human proteins in the

Dick et al. (2021), PeerJ, DOI 10.7717/peerj.11117 9/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.11117


proximal schema, and the 494 human proteins in the RP-PPI schema. The molecular
function, biological pathway, and cellular pathway p-values were determined with the
Fisher’s Exact test implemented in the PANTHER GO software (Mi et al., 2019). The
p-values were corrected for multiple testing using the False Discovery Rate (FDR) method
described in Mi et al. (2019) and significant terms were identified at a threshold of 0.05
and ordered terms by fold enrichment applying variable thresholds.

RESULTS & DISCUSSION
It is of critical importance that the global research community focus its efforts on the
rapid understanding the SARS-CoV-2 virus and the pathogenesis of COVID-19 in order to
develop anti-viral therapeutics and additional vaccine targets. Research into Coronaviridae
biology sharply declined post-SARS-CoV and it is the hope of this work to compliment
subsequent primary research in both short-term therapeutic development and long-
term COVID-19 symptomology. Fortunately, the prior decades of research into related
viral families provide a wealth of data with which to guide current and future studies.
For example, the elucidation of the SARS-CoV vs. human inter-species interactome in
2011 using the high-throughput (though false positive-prone) yeast-two hybrid method
highlighted cyclophilins as a target for pan-coronavirus inhibitors (Pfefferle et al., 2011).
Previous knowledge of related coronaviruses within the Coronaviridae family provide
training samples from which we can identify a number of new high-confidence PPIs that
contribute to our understanding of the COVID-19 disease pathogenesis and which may
represent targets for novel inhibitory therapeutics.

It is known that the SARS-CoV Spike protein binds to the human ACE2 receptor
(Glowacka et al., 2010). Upon entry into the respiratory or gastrointestinal tracts,
coronaviruses establish themselves by entering and infecting lumenal macrophages and
epithelial cells. The viral cell entry program is orchestrated by the spike protein that binds
to the human cellular receptors and, thereby, mediates virus-cell membrane fusions.

While the putative interaction between the SARS-CoV-2 Spike protein and human
ACE2 receptor is a current focus of the research community, it is also valuable to develop
a more holistic understanding of the possibly numerous SARS-CoV-2 vs. human PPIs.
Consequently, additional viral-human interactions might be targeted and disrupted with
the use of small inhibitory peptides or molecules. To this end, we leveraged sequence-
based predictors to score all possible interactions between the SARS-CoV-2 and human
proteomes. To identify our highest-confidence set of predictions for the SARS-CoV-2 vs.
human interactome, we prepared three training, prediction, and evaluation schemas and
combined their predictions to produce a set of candidate interactions for wet-lab validation
and the potential design of inhibitory peptides.

Predictions from the All and Proximal schemas
As part of the first two schemas (all and proximal), for each of the 14 viral proteins, we sorted
the 20,366 scores (for each human protein) into a monotonically decreasing rank-order
which enabled the identification of the subset of high-scoring putative interactors with
each viral protein. An example from the all schema is depicted in Figs. 2A, 2D.
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Rather than apply a globally defined decision threshold (i.e., top- k or minimum
threshold), we automatically detected a highly conservative ‘‘knee’’ for each curve (the
point of greatest rate of change parameterized by a sensitivity value) to delineate those rare
high-scoring pairs from the remaining baseline (Figs. 2B, 2E). For example, within the all
schema, the union of the n= 1,209 predicted PIPE4 and SPRINT high-confidence putative
PPIs comprises only∼0.42% of all possible pairs, and their intersection of n= 279 putative
pairs comprises a highly conservative subset < 0.098%. These data are tabulated in the
Supplementary Table, plotted in Fig. 2, and illustrated in Fig. 3A. Taking the combinatorial
intersection of the high-confidence predictions from each schema resulted in the highest
confidence set of predictions with n= 7 predicted pairs (Fig. 3).

Predictions from the RP-PPI Schema
Following from the experimental design of the all and proximal schemas, the independent
predictions from the RP-PIPE4 model and the RP-SPRINT models would have been
combined into a single intersection set. However, for the first time, we jointly combined
the RP features derived from the PIPE4 O2As with those derived from the SPRINT O2As
to train and evaluate a ‘‘combination of multiple experts’’ RP-PPI model. The joint
model (using default hyperparameter settings) demonstrated an improvement over the
RP-predictor model alone. Interestingly, as illustrated in Fig. S3 the improvement does
not appear to be symmetric: the improvement of performance when SPRINT features are
joined with the PIPE4 features (Fig. S3: A, blue & grey) is greater than when the PIPE4
features are joined with SPRINT features (Fig. S3: B, blue & grey).

Having established that the combination of experts RP-PPI approach produces improved
models, we performed extensive hyperparameter tuning to determine model parameters
(550 estimators, maximum tree depth of 17, learning rate of 0.1). Each experiment was
evaluated via 10-fold cross-validation with performance measured using the F1 score.
Following the training and evaluation of 29,700 models, we identified the best performing
model parameters as having a learning rate of 0.1, a maximum tree-depth of 17, and 550
estimators (Fig. S4).

To better understand the features focused upon by the RP-PPI model, we plot the
relative feature importance, measured by average information gain in Fig. S5.

Many of the original features from the work of Dick & Green (2018) are leveraged in
addition to new ‘‘statistics-type’’ features where a given pairs’ score is measured in standard
deviations away from the identified baseline of a given one-to-all score curve. Notably,
baseline scores and ranks for Element A (the SARS-CoV-2 protein) of both methods are
among the most distinguishing features (top-4).

With the RP-PPI model, the comprehensive set of human–SARS-CoV-2 pairs were
scored to produce 14 one-to-all curves. As above, knee-detection was used to identify the
highest confidence subset comprising n= 539 pairs, as depicted in Fig. 3C.

We provide the hit and SW landscapes and predicted PIPE-Sites for each of the predicted
interactions for each SARS-CoV-2 proteins of each schema. We highlight those 279 pairs
within the predicted all interactome, the 129 pairs within the predicted proximal schema,
and the 539 pairs within the predicted RP-PPI schema. All data are published in the

Dick et al. (2021), PeerJ, DOI 10.7717/peerj.11117 11/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.11117#supp-4
http://dx.doi.org/10.7717/peerj.11117#supp-4
http://dx.doi.org/10.7717/peerj.11117#supp-4
http://dx.doi.org/10.7717/peerj.11117#supp-5
http://dx.doi.org/10.7717/peerj.11117#supp-6
http://dx.doi.org/10.7717/peerj.11117


615129135 750

879

129

B: Proximal Schema

C: RP-PPI Schema

539

PIPE4
SPRINT

230279422

A: All Schema

1209

652

279

D: High-Confidence Intersections

129 539

|A
∩
B| |B ∩ C|

|A
∩
C|

|A
∩ B
∩
C|
n = 26

n = 7

279

n = 12

n = 10

Figure 3 Venn Diagram of the human proteins predicted to interact with SARS-CoV-2 proteins. (A),
(B), and (C) depict the number of predicted pairs for each of the schema’s putative interactomes. In (D),
those interactomes are combined further by taking their intersections with the highest confidence subset
comprising n= 7 pairs.

Full-size DOI: 10.7717/peerj.11117/fig-3

following DataVerse repository, for broader use by the scientific community (Dick, Biggar
& Green, 2020).

We later discuss the biological relevance of our set of highest-confidence predictions and
how thesemay be leveraged to develop anti-SARS-CoV-2 therapeutics.We further consider
these interactions in the context of corroborating evidence from scientific literature and
illustrate two particular phases of the viral life cylce that might be targeted.

Putative interaction to target with anti-SARS-CoV-2 therapeutics
The genomes of SARS-CoV-2 and other coronaviruses encode for numerous proteins
of diverse functions. The proteolytic cleavage products of the two polyproteins (i.e.,
non-structural proteins) play essential roles in viral replication but also participate in
viral pathogenesis. Similarly, though the structural proteins (e.g., S, E, M, and N) are
inherently involved in viral structure and virus-host interactions, such proteins further
pathogenesis through interaction with numerous proteins within signaling pathways and,
further, accessory proteins are not essential for viral replication; such proteins differ greatly
between coronavirus species (Narayanan, Huang & Makino, 2008).

To guide the broader research community in expanding the basic understanding of
the involvement of SARS-CoV-2 proteins in the underlying pathogenesis of COVID-
19, we have visualized the predicted interactomes and incorporated relevant biological
information into these networks (Fig. 4). Based on biological process Gene Ontology
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ship is depicted in Fig. 11. Created using Cytoscape (Shannon et al., 2003).
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(GO)-terms for each protein within the intersections of the three schemas, individual
proteins were manually curated into single descriptors of biological roles, such as those
describing viral entry modes, vesicular transport and related processes, types of immune
responses, and signaling pathways related to immune responses. Associating proteins with
single descriptors is not ideal as numerous proteins possess a broad range of functions. We
therefore encourage investigators to assess biological functions of the predicted interactors
on an individual basis. In Fig. 5 we illustrate the life cycle of CoVs and highlight the mode
of future peptide inhibitors potentially derived from this work.

The spike protein vs. ACE2 interaction
The PIPE4 and SPRINT predictors scored the SARS-CoV-2 Spike protein vs. human
ACE2 protein as the top-ranking prediction in their respective one-to-all score curves
(P0DTC2-Q9BYF1) (PIPE4 SW score of 2.159, SPRINT score of 29.3515) within the all
schema and relatively high-scoring within the other two schemas. As previously noted,
this was achieved despite the removal of the known SARS-CoV Spike-ACE2 PPI within
the training dataset as part of an independent experiment to determine whether or not
the SARS-CoV Spike-ACE2 PPI would have a large effect on scoring this prediction. We
further visualize the putative subsequence region of interaction between these proteins in
Fig. 6.

Multiple interactions among the high-confidence predictions are biologically relevant
when considering known human coronavirus biology. Most notably, predicted within
the intersection of the All and Proximal schemas was the Spike-ACE2 interaction. It is
now well-established that SARS-CoV-2 utilizes ACE2 as the main fusion receptor for cell
entry (Hoffmann et al., 2020). Furthermore, the Spike proteins of SARS-CoV and human
coronavirus NL63 interact with ACE2 to facilitate cell entry (Li et al., 2003; Hofmann et
al., 2005). Although the Spike-ACE2 interaction was excluded from our training data,
our computational methodology independently predicted the main PPI that permits
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Figure 5 Life cycle of CoVs and the mode of future peptide inhibitors (PI) Derived from this Study. (I)
SARS-CoV-2 attaches to the cell surface via interaction of the spike (S) protein with the host ACE2 recep-
tor. (II) The CoV and host membranes coalesce either at the cell surface or within endosomes, releasing
the CoV genome into the cytoplasm. (III) Host ribosomes use the CoV genome as a template and trans-
late polyproteins 1a and 1ab. (IV) The polyproteins mature into individual non-structural proteins (NSPs)
1-16 via autoproteolytic processing. (V) Multiple NSPs form a viral replicase complex, which performs
negative-strand synthesis of genomeic and subgenomic RNA negative-strand templates. (VI) The viral
replicase synthesizes nascent plus-strands of the full-length CoV genome and subgenomic RNAs encod-
ing structural (S, E, M, N) and accessory proteins (not shown). (VII) S, Membrane (M), and Envelope (E)
proteins are translated at the endoplasmic reticulum (ER) and inserted into the ER membrane. The Nu-
cleocapsid (N) protein is translated within the cytoplasm. (VIII) The N protein encapsulates the nascent
CoV genome and interacts with the other structural proteins within the ER-Golgi intermediate compart-
ment (ERGIC). (IX) Mature CoV particles are formed within vesicles upon budding into the lumen of the
ERGIC. (X) CoV particles are released upon exocytosis. Besides the validated S-ACE2 interaction, other
notable predicted protein-protein interactions are indicated by dashed arrows. This figure was made in
c©BioRender - biorender.com.

Full-size DOI: 10.7717/peerj.11117/fig-5
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Figure 6 The PIPE-sites landscape between the SARS-CoV-2 Spike protein and human ACE2 protein.
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sualize the high-scoring subsequence regions, (B & C) apply a numerical ‘‘capped threshold’’ where any
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ing the regions of potential interest. A threshold of 3.0 is applied in B and a threshold of 1.0 in C. See the
Supplemental Information for guidance on the interpretation of these landscapes.

Full-size DOI: 10.7717/peerj.11117/fig-6

SARS-CoV-2 cell entry; therefore this, and similar computational pipelines, hold promise
for screening candidate modes of entry of future viruses. Thus, other interactions within
these high-confidence intersections of the schemas may be biologically relevant and worthy
of further investigation. Besides the Spike-ACE2 interaction, two other high-confidence
interactors of Spike were found to be collectrin (CLTRN) and ACE. CLTRN is a homolog
of ACE2, lacking the extracellular catalytic domain, sharing 47.8% identity with C-terminal
regions of ACE2 (Zhang et al., 2001). Furthermore, ACE is homologous to ACE2, sharing
42% identity between catalytic domains (Donoghue et al., 2000). This finding corroborates
related research reporting that SARS-CoV-2 can infect human respiratory epithelial cells
through interaction with the human ACE2 receptor (Letko, Marzi & Munster, 2020).

Certainly, if the SARS-CoV-2 and SARS-CoV Spike proteins share sufficient sequence
and structural similarity, it can be expected that anti-virals designed against SARS-CoV
may also be effective against SARS-CoV-2. We investigate this sequence similarity by
performing a BLASTp alignment of the two sequences. Interestingly, only 76% identity was
observed (Fig. 7) suggesting that the SARS-CoV-2 spike protein might have evolved to be
sufficiently different from its SARS-CoV variant to render existing anti-virals ineffective.
Given that the Spike protein is the main point of interface with the host, we can expect that
it would be rapidly evolving. The SARS-CoV-2 variant likely shares a similar mechanism of
action where the recombinant SARS-CoV-2 spike protein downregulates ACE2 expression
and thereby promotes lung injury (Glowacka et al., 2010).

Consequently, the elucidation of the Spike-ACE2 binding interface is needed to design
novel therapeutics. To that end, we used the PIPE-Sites algorithm to predict the three
most likely putative interaction interfaces between the Spike (P0DTC2) and ACE2
(Q9BYF1) proteins (Fig. 6). Note that all predicted subsequence offsets are 0-indexed.
With a maximum landscape peak of 6, the PIPE-Sites algorithm identified three putative
interaction interfaces:
1. P0DTC2: [86–109]; Q9BYF1: [738–816]
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Figure 7 Dot plot of the BLASTp alignment of the SARS-CoV and SARS-CoV-2 Spike protein. The
alignment of the two proteins results in amax score of 2039, a total score of 2039, 100% coverage, an E-
value of 0.0, and 76.04% identity. Specifically: 971/1277 (76%) identities, 1109/1277 (86%) positives, and
26/1277 (2%) gaps. Arrows indicate gaps within the alignment and the zoomed-in region highlights the six
mismatches around residue 420.

Full-size DOI: 10.7717/peerj.11117/fig-7

2. P0DTC2: [795–816]; Q9BYF1: Entire sequence
3. P0DTC2: [960–981]; Q9BYF1: Entire sequence
Interestingly, the PIPE-Sites score landscape in Fig. 6 exhibits a number of horizontal

bands indicative of subsequence regions along the Spike protein that correspond to a
relatively high likelihood of interaction. While the PIPE-Sites algorithm only identifies
three putative regions, these bands suggest additional regions of interest.

The highest-scoring predicted PIPE-Site interface corresponds to the Spike [86–109]
subsequence and the ACE2 [738–816] subsequence, which resides within the intracellular
cytoplasmic domain of ACE2. However, upon closer inspection of other ‘‘hot spot’’ regions
within the landscape, we note several that reside within the extracellular N-terminal region
of ACE2 (i.e., residues ∼[30-84] & [353-357]). In particular, we note the three following
regions of interest:

Visually high-scoring region: P0DTC2: near residue 1224; Q9BYF1: [15–23]
Within ACE2 residues [30-84]: P0DTC2: near residue 420; Q9BYF1: [80-84]
Within ACE2 residues [353-537]: P0DTC2: near residue 420; Q9BYF1: [355-357]

Most interestingly, certain of these region along the Spike protein appears to coincide
with mismatched or gap regions along the dot plot comparing the SARS-CoV vs. SARS-
CoV-2 alignment depicted in Fig. 7). For example, upon closer investigation of the
alignment around residue 420, we note six mismatches. Their proximity to a candidate
region of interaction certainly warrant additional experimental investigation (Fig. 7).
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While numerous inhibitory strategies exist, including the use of small molecules or small
interfering RNAs, this research is most directly amenable to the design of small inhibitory
peptides that inhibit virus infection by preventing Spike protein-mediated receptor binding
and blocking viral fusion and entry (Fig. 5). Unfortunately, much like small peptides and
interfering RNAs, peptide-based solutions are disadvantaged by their low antiviral potency.

HLA class I/II histocompatibility antigen
Among the 225 human proteins identified in the all schema, six Human Leukocyte Antigen
(HLA) class I/II histocompatibility antigens were predicted to interact with P0DTC3, the
SARS-CoV-2 Protein 3a (ORF3a):

• P13747: HLA-E HLA-6.2 HLAE
• P01911: HLA-DRB1
• P17693: HLA-G HLA-6.0 HLAG
• P04439: HLA-A HLAA
• P10321: HLA-C HLAC
• P30511: HLA-F HLA-5.4 HLAF

The visualization of the predicted site of interaction for the six HLA interactions
highlight a consistent subsequence region of the SARS-CoV-2 protein 3a between amino
acids [202–222] (Fig. 8). Literature review reveals that one of the open reading frames
(ORFs) of the SARS-CoV virus, the ORF3a, encodes the variant 274 AA-long Protein 3a. A
previous study used sequence analysis that suggested that the ORF3a aligned to a calcium
pump present in Plasmodium falciparum and glutamine synthetase found in Leptospira
interrogans. This sequence similarity between the three organisms was found to be limited
only to amino acid residues [209–264], which form the cytoplasmic domain of ORF3a. This
subsequence region was predicted to be involved in calcium binding and then confirmed
in vitro (Minakshi et al., 2014).

Given the important role that calcium plays as part of virion structure formation, virus
entry, viral gene expression, virion maturation, and release, these regions of Protein 3a
are of possible interest for disruption of SARS-CoV-2. Specifically, the design of a small
inhibitory peptide targeting this subsequence region of Protein 3a might disrupt the viral
life cycle.

Heterogeneous Nuclear Ribonuclear Proteins (hnRNPs)
The Nucleocapsid (abbreviated N or NCAP) protein was predicted to interact with four
heterogeneous nuclear ribonuclear proteins (hnRNPs) within the intersection of the three
schemas. PPIs between the NCAP protein and those involved in RNA related processes are
not surprising, especially considering that NCAP protein of coronaviruses plays a role in
viral RNA genome packaging as it is capable of binding single-stranded RNA (Huang et al.,
2004). Notably, theNprotein of SARS-CoV-2was predicted to interact with hnRNPA1 (i.e.,
ROA1). This interaction has previously been validated in the context of SARS-CoV NCAP
protein and was found to be a high affinity interaction (Luo et al., 2005). Additionally, this
physical interaction is also inherent to a mouse coronavirus species (i.e., mouse hepatitis
virus, MHV) (Wang & Zhang, 1999). The role of hnRNP A1 as a host cell factor in MHV
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Figure 8 Landscapes of the six predicted HLA interactors with SARS-CoV-2 Protein 3a. The three red
rectangles represent the predicted PIPE-Sites regions. They’re ‘‘shifted’’ relative to the highlighted cells due
to the algorithm’s use of a window of 20 amino acids in length that extends both to the left (along the x-
axis) and upwards (along the y-axis). This implementation may also result in the predicted site extending
past the coloured matrix, either to the right or above. The PIPE-Sites may overlap when numerous hits ap-
pear within close proximity, as is the case when a ‘‘band of hits appears in the matrix. See the supplemen-
tary material for guidance on the interpretation of these landscapes.

Full-size DOI: 10.7717/peerj.11117/fig-8

coronavirus biology is not clear, as initially it was shown that this protein functions in
MHV RNA synthesis in the cytoplasm, however involvement in these roles (e.g., RNA
genome replication and discontinuous transcription) were later contradicted (Shi et al.,
2000; Shen & Masters, 2001). Furthermore, multiple hnRNPs were shown to be upregulated
in SARS-CoV infected cells (Jiang et al., 2005). The function of hnRNPs in SARS-CoV-2
pathogenesis may relate to previous findings that suggest a role for such proteins in viral
RNA synthesis, and therefore these NCAP-hnRNP interactions may present as druggable
targets. To that end, Fig. 9 illustrates both the hit and SW landscapes which may serve to
identify putative subsequences that may mediate the virus-host interactions.

Small Ubiquitin-related Modifier (SUMO) Proteins
Lastly, several small ubiquitin-relatedmodifier (SUMO) proteins were predicted interactors
within the high confidence intersections. Notably, SUMOproteins were primarily predicted
to interact with the NCAP protein. Although interactions are contextually different than
post-translational modifications, the SARS-CoV NCAP was previously shown to both
interact with an E2 enzyme involved in SUMOylation as well as undergo SUMOylation at
the lysine-62 residue (Fan et al., 2006; Li et al., 2005). SUMOylation of NCAP at lysine-62
promotes homo-oligomerization and this residue may be involved in the disruption of
host cell division (Li et al., 2005). Whether this SUMOylation occurs within the context of
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SARS-CoV-2 and the significance of this remains to be explored; however, based on the
previous findings, this interaction should be further investigated.

GO-Term analysis of human proteins among the predicted
interactomes
For each of the schemas, the human proteins within the respective intersections of the
PIPE4 and SPRINT predicted interactions were used to run a number of GO-term analyses
to better understand the functional role of the human proteins involved. To this end,
the GO-Slim Panther Classification System was used to run over/under-representation
analysis of the predicted sets of human proteins as compared to the reference human
proteome. A Fisher’s Exact test with correction for False Discovery Rate was used to extract
a list of the most enriched GO-terms among the human proteins for which GO-term data
were available. To limit the number of functions, variable thresholds for fold enrichment
were applied. For example, among the tables for the all schema, the Molecular Functions
exhibiting a fold enrichment greater than 3 are reported; the Biological Processes exhibiting
a fold enrichment greater than 50 are reported; and the Cellular Components exhibiting a
fold enrichment greater than 15 are reported. The fold enrichment cut-offs were selected
to limit the size of the tables; the complete tables are available in the appendix of the
Supplemental Information and at at public repository, Dick, Biggar & Green (2020).

While this current analysis combines all predicted human interactors together, a more
revealing analysis might investigate the resultant GO-terms on a per-viral-protein basis
to identify those human pathways and biological processes most sensibly targeted by
SARS-CoV-2. This analysis is left to future work.

We encourage the scientific community to delve into the findings of this study. For
example, of the GO-terms observed from the all schema alone, the highly over-represented
biological processes in Supplementary Materials table 4 are interesting. Notably, the top-9
GO-terms have a 96.98 fold enrichment given that the predicted set of human interactors
contain all of the proteins from theH. sapiens reference (i.e., the number of proteins present
in the reference are also in the sample: 2/2, 8/8, and 3/3 among the top-3, respectively).
We specifically highlight the ‘‘antigen processing and presentation of exogenous peptide
antigen via MHC class Ib’’ (GO:0002477) and the ‘‘calcium ion transport from cytosol to
endoplasmic reticulum’’ (GO:1903515). Moreover, the top-ranking cellular component
GO-terms (Supplementary Materials tab5) show notable over-representation of ‘‘MHC
class Ib protein complex’’ (GO:0032398), ‘‘MHC class I protein complex’’ (GO:0042612),
and numerous proteasome complex terms. While only a shallow analysis is presented here,
a more involved investigation into these predicted interactions promises to reveal putative
targets for novel inhibitory peptides.

A literature curated subset of candidate human protein targets
In the work of Gordon et al. (2020), n= 332 pairs between the m= 26 SARS-CoV-2
proteins and m= 332 human proteins (i.e., each human protein was involved in exactly
one pair) were uncovered. While our highest-confidence interactomes do not predict any
of these pairs (i.e., there is, unfortunately, no overlap between the n= 322 pairs in the
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work of Gordon et al. (2020) and the n= 907 union-of-three-interactome pairs, A∪B∪C),
we emphasize that the work of Gordon et al. (2020) considered m= 26 proteins of the
SARS-CoV-2 proteome while this work comprises only anm= 14 subset of those proteins.

As the m= 332 human proteins identified in the work of Gordon et al. (2020) are
of putative interest to the scientific community in an effort to counter the COVID19
pandemic, for convenience, from the union of the three high-confidence interactomes (i.e.,
A∪B∪C , notation from Fig. 3D) we extracted any predicted interactions involving one
of the m= 332 human proteins resulting in the m= 14 putative pairs. This set of protein
pairs may represent a focused subset of candidate pairs for subsequent investigation. This
small network is depicted in Fig. 10.
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Finally, even if no overlap between Gordon et al. and our predicted interactomes exists,
there is, indeed, an overlap of the GO-terms represented by the proteins of both sets.
Notably, we identify 220 shared GO-terms between our sets indicative of a large functional
overlap including such terms as viral process (GO:0016032), vesicle-mediated transport
(GO:0016192), and response to virus (GO:0009615).

Complete predicted interactomes
To better visualize the predicted interactome the complete network-based representation
is depicted in fig:networkfull. Much like the HLA proteins highlighted above, we note a
number of highly represented GO-terms around several of the proteins of interest including
those related to the immune response, various types of signalling, and the viral life cycle.
We hope that this work will guide the broader research community in their search for
putative inhibitory molecules.

CONCLUSIONS
The purpose of this work is to help guide the broader research community in the collective
pursuit to understand the SARS-CoV-2 viral pathogenesis. To that end, we assessed
285,124 protein pairs using two state-of-the-art sequence-based PPI predictors within
three prediction schemas, thereby creating the comprehensive SARS-CoV-2 vs. human
interactome. For each of the 14 SARS-CoV-2 proteins considered in this study, a highly
conservative locally defined decision threshold was determined to obtain a predicted
interactome comprising putative PPIs within the predicted intersection of the PIPE4 and
SPRINT methods. Furthermore, the PIPE-Sites algorithm was used to predict the putative
interaction interfaces to identify the subsequence regions of interest that might mediate
these interactions.

These predictions have been deposited in a public DataVerse repository for use by the
broader scientific community in the collective effort to combat the COVID-19 pandemic
(Dick, Biggar & Green, 2020). We re-emphasize that the information provided is theoretical
modelling only and caution should be exercised in its use. It is intended only as a resource
for the scientific community at large in furthering our understanding of SARS-CoV-2.
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