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ABSTRACT
Background. Lung adenocarcinoma (LUAD) is the most commonhistological lung
cancer subtype, with an overall five-year survivalrate of only 17%. In this study, we
aimed to identify autophagy-related genes (ARGs) and develop an LUAD prognostic
signature.
Methods. In this study, we obtained ARGs from three databases and downloaded gene
expression profiles from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) database. We used TCGA-LUAD (n= 490) for a training and testing
dataset, and GSE50081 (n= 127) as the external validation dataset.The least absolute
shrinkage and selection operator (LASSO) Cox and multivariate Cox regression
models were used to generate an autophagy-related signature. We performed gene set
enrichment analysis (GSEA) and immune cell analysis between the high- and low-risk
groups. A nomogram was built to guide the individual treatment for LUAD patients.
Results. We identified a total of 83 differentially expressed ARGs (DEARGs) from
the TCGA-LUAD dataset, including 33 upregulated DEARGs and 50 downregulated
DEARGs, both with thresholds of adjusted P < 0.05 and |Fold change|> 1.5. Using
LASSO and multivariate Cox regression analyses, we identified 10 ARGs that we used
to build a prognostic signature with areas under the curve (AUCs) of 0.705, 0.715,
and 0.778 at 1, 3, and 5 years, respectively. Using the risk score formula, the LUAD
patients were divided into low- or high-risk groups. Our GSEA results suggested that
the low-risk group were enriched in metabolism and immune-related pathways, while
the high-risk group was involved in tumorigenesis and tumor progression pathways.
Immune cell analysis revealed that, when compared to the high-risk group, the low-
risk group had a lower cell fraction of M0- andM1- macrophages, and higher CD4 and
PD-L1 expression levels.
Conclusion. Our identified robust signature may provide novel insight into underlying
autophagy mechanisms as well as therapeutic strategies for LUAD treatment.
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Keywords Lung adenocarcinoma, LASSO Cox regression, The Cancer Genome Atlas,
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INTRODUCTION
Lung cancer is the leading cause of deaths from malignant tumors worldwide, with an
estimated 228,820 new cases and 135,720 deaths in theUnited States in 2020 (Siegel, Miller &
Jemal, 2020). Non-small-cell lung cancer (NSCLC), one of the major histological subtypes,
accounts for approximately 80–85% of all lung cancer cases (Molina et al., 2008). NSCLC
can be further classified into three types: squamous-cell carcinoma, adenocarcinoma,
and large-cell carcinoma (Petersen, 2011). Lung adenocarcinoma (LUAD) is the most
common histological subtype, accounting for more than 40% of all lung cancer cases
(Shi et al., 2016). Despite substantial efforts devoted to LUAD diagnosis and treatment, the
overall five-year survival rate for this disease is still relatively low at 17% (Miller et al., 2019).
This poor prognosis is largely due to the lack of reliable biomarkers that could predict
patient survival in the early stages. Therefore, there is emerging interest in identifying
novel molecular biomarkers that could improve the prognosis and therapeutic strategies
for LUAD patients.

Autophagy, a protective self-cannibalization process, is thought to facilitate the
degradation and recycling of cytoplasmicmaterial in order tomaintain cellular homeostasis.
In recent years, growing evidence has supported that autophagy is linked to a variety
of cancers and pathological infectious and neurodegenerative diseases (Levine, Packer
& Codogno, 2015). However, autophagy’s definitive role in tumorigenesis onset and
progression remains inconclusive. It is currently recognized that autophagy plays a
dual role in cancer by inhibiting tumor development in the early stage and promoting
tumor progression, and even making tumor cells drug-resistant, in the advanced stage.
Previous studies have investigated the role of several autophagy-related genes (ARGs)
in the development and progression of lung cancer (Jaboin, Hwang & Lu, 2009). It was
found that high Nrf2 expression can promote NSCLC progression by activating autophagy,
which is also known to facilitate resistance to cisplatin-based therapy by activating the
AMPK/mTOR signaling pathway in lung adenocarcinoma (Wu et al., 2015). These studies
attempted to explore the role of ARGs in LUAD progression, but little effort has been
made to investigate their role in lung adenocarcinoma prognosis using global expression
patterns. Exploring the appropriate molecular autophagy biomarkers may be important in
the fight against LUAD.

In this study, we downloaded LUAD datasets from The Cancer Genome Atlas (TCGA)
and the Gene Expression Omnibus (GEO) database to establish a comprehensive signature
based on ARGs in order to predict survival outcome in LUAD patients. We screened
differentially expressed autophagy-related genes (DEARG) from the TCGA-LUAD dataset.
Subsequently, we performed GO and KEGG enrichment analyses to show the top enriched
terms across the DEARGs. Using the least absolute shrinkage and selection operator
(LASSO) and multivariate Cox regression analyses, we developed a robust autophagy
signature related to survival outcomes in both TCGA and validated GEO datasets. We
conducted gene set enrichment analysis (GSEA) and immune cell analysis to compare
the perturbed pathways and immune phenotypes between the low risk-group and high
risk-group. Finally, a prognostic nomogram was established by incorporating the risk score
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Figure 1 An overview of identification of LUAD prognostic related autophagy signature in our study.
Full-size DOI: 10.7717/peerj.11074/fig-1

and clinicopathologic factors. In summary, the autophagy signature from our study may
serve as a promising biomarker signature for monitoring the prognosis of LUAD patients.

MATERIAL AND METHODS
The flowchart and data acquisition
The workflow of this study is shown in Fig. 1. We downloaded LUAD mRNA
sequencing data (level 3) and their corresponding clinical patient data from TGGA
(https://cancergenome.nih.gov/). Only the samples with complete clinicopathological
information and more than 30 days of overall survival (OS) were included in this study.
We used GSE50081 from the GEO database as the external validation dataset. Overall,
490 patients were randomly assigned into a training cohort (n= 245) and a testing cohort
(n= 245) to satisfy the following criteria: (1) samples were randomly divided into training
and testing datasets; and (2) gender, age, and clinical stage distributions between the two
groups looked similar (Table 1). In addition, another 127 samples fromGSE50081were used
as the validation dataset. This study was conducted in accordance with TCGA publication
guidelines (http://cancergenome.nih.gov/publications/publicationguidelines).
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Table 1 Summary of TCGA LUAD patient demographics and characteristics.

Character Training cohort
(n= 245)

Testing cohort
(n= 245)

No. of patients % No. of patients %

Age (mean, range) 65.0(33–88) 65.4(38-87)
Gender
Male 118(48.2) 135(55.1)
Female 126(51.4) 110(44.9)
Stage
I 122(49.8) 141(57.6)
II 63(25.7) 52(21.2)
III 43(17.6) 36(14.7)
IV 14(5.7) 11(4.5)

ARG set curation
ARGs were curated from the Human Autophagy Database (HADb, http://www.autophagy.
lu/index.html), REACTOME AUTOPHAGY in the Molecular Signatures Database v6.2
(MSigDB, http://software.broadinstitute.org/gsea/msigdb), and genes with ‘‘autophagy’’
term relevance scores >=7 from the GeneCards website (https://www.genecards.org/).
After eliminating the overlapping genes, these three gene sets were combined and integrated
into an autophagy-associated gene set. The ARG list was comprised of 366 genes when
finally constructed.

ARG differential expression analysis
We downloaded all the genes of the LUAD samples from TCGA database in FPKM
format, which we then converted to TPM format using the formula: TPM = 106

×FPKM/sum(FPKM). All expression profiles were converted to [log2(TPM + 1)]. We
used the ‘‘Limma’’ package (Ritchie et al., 2015) in R software to identify the differentially
expressed genes (DEGs) between tumor and normal tissue. The Benjamini–Hochberg
method was used to adjust p values, and we considered adjusted P < 0.05 and fold change
(FC) > 1.5 as the cutoff criterion for DEG identification. The intersection of DEGs and
ARGs was considered the set of significant DEARGs for further analysis. Additionally, we
performed volcano plot and heatmap analysis to screen the common DEARGs across the
datasets.

Kyoto Encyclopedia of Genes and Genomes and gene ontology anal-
ysis
We analyzed the function of significant DEARGs using the Kyoto Encyclopedia of Genes
and Genomes (KEGG), gene ontology (GO) functional enrichment analyses (Ashburner
et al., 2000), and the Database for Annotation, Visualization, and Integrated Discovery
(DAVID, http://david.ncifcrf.gov/; Jiao et al., 2012). A P value of <0.05 was considered
statistically significant.
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Prognostic model construction and performance assessment
We first conducted univariate Cox proportional hazard regression to identify the DEARGs
that were significantly associated with overall survival (P value < 0.05) in the training
cohort using the survival package (http://bioconductor.org/packages/survival/) in R. The
LASSO Cox regression method (Sauerbrei, Royston & Binder, 2007) was then employed
to select optimal gene combination variables, and then the ‘‘glmnet’’ package in R was
used to construct the risk signature. Only genes with non-zero coefficients in the LASSO
model were put into the multivariate Cox regression model to calculate the risk score. The
prognostic model formula was as follows: Risk score = (expr gene1 × β1) + (expr gene2
× β2) + ··· + (expr gene n × βn), where ‘‘expr’’ represents the gene i expression value and
‘‘ βi’’ represents the estimated regression gene i coefficient.

Using themedian risk score value as a cutoff, we divided the LUAD patients into low-risk
and high-risk groups. We employed the Kaplan–Meier (K-M) survival curves to show the
OS differences between the high-risk and low-risk groups. We used the area under the
curve (AUC) of the time-dependent receiver operating characteristic (ROC) curve and
the R package survivalROC to evaluate the risk signature’s efficiency. These analyses were
conducted in the TCGA testing dataset and GEO datasets.

GSEA
GSEA (version 3.0, http://www.broadinstitute.org/gsea/index.jsp) was used to evaluate
the biological pathways or gene sets that differed significantly between the high-risk and
low-risk groups. The parameters were as follows: max gene set size of 500, min size of 15,
number of permutations of 1,000, and enriched gene sets with a nominal P value < 0.05
were considered significant.

Immune cell analysis
CIBERSORT (Newman et al., 2015), a deconvolution algorithm, was employed to estimate
the relative abundance of immune-infiltrating cell composition in tissues based on their
expression profiles. We submitted the LUAD gene expression dataset to the CIBERSORT
website (http://cibersort.stanford.edu/) and used LM22 (22 immune cell types) as the
signature gene file. The program was implemented with 1,000 permutations. Next, the
output values generated by CIBERSORT were defined as immune cell infiltration fractions
per sample. The output results were used to compare immune cell infiltration fractions
across low-risk and high-risk patients.

Nomogram construction and validation
A prognostic nomogram was constructed to combine ARG signatures and other
clinicopathological factors using the ‘‘rms’’ package (https://cran.r-project.org/web/
packages/rms/index.html) in R. To evaluate the accuracy of the nomogram, we applied
calibration curves and K-M analysis to compare the concordance between the predicted
survival and observed survival.
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Figure 2 Differential expression of autophagy-related genes(ARGs) in TCGA-LUAD. The differential
expression of ARGs in LUAD (n = 490) compared with normal Lung tissues (n = 59) was shown in the
volcano plot and heatmap plot. (A) In the volcano plot, red dots represent upregulated DEARGs, and blue
dots represent downregulated DEARGs, and the gray dots represent the ARGs which are not differentially
expressed. (B) The heatmap plot demonstrates differentially expressed genes between LUAD and normal
Lung tissues. Red color is high expressed and blue color is low expressed.

Full-size DOI: 10.7717/peerj.11074/fig-2

Statistical analysis
All statistical analyses in our study were conducted using R language (version 3.5.1,
https://www.r-project.org/). Boxplots and violin plots were generated using the ‘‘ggplot2’’
package in R language. P < 0.05 was considered significant.

RESULTS
Identification of autophagy-related risk signature in the LUAD train-
ing cohort
We analyzed the expression of 366 ARGs in 490 LUAD and 59 normal lung tissue samples
using the ‘‘limma’’ package in R software. In total, we identified 83 DEARGs from the
LUAD samples, including 33 upregulated DEARGs and 50 downregulated DEARGs with
a cutoff criteria of adjusted P < 0.05, |FC|> 1.5. The volcano plot and heatmap for these
83 DEARGs in normal and tumor tissues are displayed in Fig. 2. Additionally, to better
explore the biological interpretation of theseDEARGs,we performed functional enrichment
pathway analyses. According to the GO enrichment analysis results, we found that these
DEARGs were primarily involved in autophagy, protein binding, and autophagosome
related to biological process (BP), molecular function (MF), and cellular component
(CC) terms (Figs. 3A–3C). Moreover, KEGG enrichment analysis also indicated that these
genes primarily participated in cancer pathways, protein processing in the endoplasmic
reticulum, as well as the TNF signaling pathway (Fig. 3D).

Identifying prognostic risk DEARGs in the LUAD training set
Next, we performed univariate Cox proportional hazards regression analysis to identify
prognostic DEARGs in the LUAD training set using the coxph function of the survival
package in R (Zhang, 2002). We found a total of 20 DEARGs that were significantly

Duan et al. (2021), PeerJ, DOI 10.7717/peerj.11074 6/22

https://peerj.com
https://doi.org/10.7717/peerj.11074/fig-2
https://www.r-project.org/
http://dx.doi.org/10.7717/peerj.11074


●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

regulation of extrinsic apoptotic signaling pathway via death domain receptors

negative regulation of extrinsic apoptotic signaling pathway via death domain receptors

cellular response to organic cyclic compound

cellular response to drug

extrinsic apoptotic signaling pathway in absence of ligand

positive regulation of autophagy

autophagosome assembly

apoptotic signaling pathway

cellular response to mechanical stimulus

cellular response to oxidative stress

macroautophagy

regulation of apoptotic process

mitophagy

activation of cysteine−type endopeptidase activity involved in apoptotic process

protein phosphorylation

regulation of autophagy

negative regulation of apoptotic process

autophagy

positive regulation of apoptotic process

apoptotic process

0.05 0.10 0.15 0.20 0.25
GeneRatio

Count
●

●

●

●
●

4

8

12

16

20

4

6

8

10

12

Enrichment of GO BP Pathway

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

IPAF inflammasome complex

CD95 death−inducing signaling complex

pre−autophagosomal structure membrane

inclusion body

death−inducing signaling complex

integral component of mitochondrial outer membrane

autophagosome membrane

endosome membrane

late endosome membrane

lysosome

neuron projection

autophagosome

protein complex

mitochondrial outer membrane

cytoplasmic vesicle

endoplasmic reticulum

mitochondrion

nucleus

cytoplasm

cytosol

0.0 0.2 0.4
GeneRatio

Count

●

●

●
●

10

20

30

40

2.5

5.0

7.5

10.0

12.5

Enrichment of GO CC Pathway

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

cysteine−type endopeptidase activity involved in execution phase of apoptosis

death receptor binding

syntaxin−1 binding

Hsp70 protein binding

tubulin binding

protease binding

histone deacetylase binding

integrin binding

ion channel binding

glycoprotein binding

chaperone binding

protein complex binding

microtubule binding

kinase activity

ubiquitin protein ligase binding

receptor binding

protein serine/threonine kinase activity

protein kinase activity

identical protein binding

protein binding

0.0 0.2 0.4 0.6
GeneRatio

Count

●

●
●

20

40

60

2

4

6

8

Enrichment of GO MF Pathway

●

●

●

●

●

●

●

●

●

●

●

Regulation of autophagy

mTOR signaling pathway

p53 signaling pathway

HIF−1 signaling pathway

Apoptosis

ErbB signaling pathway

NOD−like receptor signaling pathway

FoxO signaling pathway

TNF signaling pathway

Protein processing in endoplasmic reticulum

Pathways in cancer

0.04 0.08 0.12 0.16
GeneRatio

Count
●

●

●

●
●
●

4

6

8

10

12

14

2

3

4

5

Enrichment of KEGG Pathway

-log10(Pvalue)
-log10(Pvalue)

-log10(Pvalue) -log10(Pvalue)

A B

C D

Figure 3 Functional KEGG and GO analysis for Differentially expressed autophagy genes. The vertical
axis represents GO or KEGG pathway annotations. The horizontal axis GeneRatio represents the ratio of
the numbers of differential autophagy genes enriched in the pathway to the total number of genes in the
pathway (A) The top 20 significant terms of CC. (B) The top 20 significant terms of BP. (C) The top 20
significant terms of MF. (D) The top 11 significant terms of KEGG pathways. BP, biological process; CC,
cellular component; MF, molecular function.
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associated with OS (P <= 0.05, Table 2). Moreover, LASSO Cox regression was
subsequently used to avoid overfitting problems in the risk signature. Ten key autophagy-
related genes (BAK1, DAPK2, ERO1A, GAPDH, IL1B, ITGA6, NLRC4, NUPR1,
SERPINA1, and TOMM40) were retained when the optimal lambda value was achieved
(Figs. 4A–4B). Finally, an autophagy-related signature was established using multivariate
Cox regression and the following risk score formula for each patient was as follows:

Risk score= 0.49915× (expression value of BAK1)+ (−0.10340)

×(expression value of DAPK2)+0.36101× (expression value of ERO1A)

+0.15103× (expression value of GAPDH)+ (−0.26998)

×(expression value of IL1B)+0.02068× (expression value of ITGA6)

+(−0.08339)× (expression value of NLRC4)+ (−0.19307)
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Table 2 Top 20 DEARGs significantly associated with the OS of patients with LUAD (P < 0.05).

Gene HR HR lower
95% CI

HR lower
95% CI

P-value

ERO1A 1.56196 1.25909 1.93768 0.00006
DAPK2 0.60780 0.45809 0.80643 0.00030
GAPDH 1.59982 1.24115 2.06213 0.00031
BAK1 1.78522 1.26329 2.52278 0.00087
BIRC5 1.28311 1.08715 1.51439 0.00253
RNASE1 0.81448 0.70417 0.94206 0.00607
ITGA6 1.23424 1.05888 1.43864 0.00948
NLRC4 0.66828 0.48535 0.92017 0.01102
TOMM40 1.41904 1.09157 1.84476 0.01241
DLC1 0.81861 0.69603 0.96277 0.01490
ATIC 1.57720 1.07702 2.30968 0.01705
EIF4EBP1 1.26109 1.04204 1.52619 0.01857
FADD 1.58377 1.06979 2.34469 0.01960
CISD2 1.64453 1.06527 2.53878 0.02558
TP53INP2 1.29654 1.02516 1.63975 0.02876
NUPR1 0.82506 0.69025 0.98620 0.03631
SERPINA1 0.88466 0.78856 0.99248 0.03919
HSPB8 0.82499 0.68862 0.98836 0.03945
IL1B 0.82574 0.68334 0.99781 0.04346
DRAM1 0.83223 0.69074 1.00270 0.05087
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Figure 4 Identification of autophagy-related signature associated overall survival (OS) by LASSO cox
regression. (A) LASSO coefficient of 10 prognostic DEARGs by 10-fold cross-validation. (B) Partial likeli-
hood deviance with corresponding log (λ) values at the minimal deviance of the model.
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×(expression value of NUPR1)+ (−0.05327)× (expression value of SERPINA1)

+0.02443× (expression value of TOMM40).
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Figure 5 OS-related prognostic model of LUAD patients in TCGA training set. (A–C) The prognostic
model distribution of risk score, survival status, and the heatmap of autophagy-related signature. (A) Risk
score distribution curves; (B) the survival time and status of LUAD patient; (C) a heatmap which displays
the normalized z-score of TPM values for 10 genes in autophagy-related signature. Red indicates higher
expression and blue indicates lower expression. (D) Kaplan-Meier curves of the prognostic predictors for
high-risk and low-risk patients with LUAD. (E) Time-dependent ROC curves for evaluating the accuracy
of the risk scores.

Full-size DOI: 10.7717/peerj.11074/fig-5

Risk scores for each patient were calculated, and the patients in the training set were
divided into high-risk (n= 122) and low-risk groups (n= 123), according to the median
risk score cutoff. In the training set, we determined the risk score distribution, OS status,
and the corresponding expression profiles of 10 ARGs (Figs. 5A–5C). The heatmap showed
that patients in the high-risk group tended to have higher expression patterns of risky
ARGs (ERO1A, TOMM40, GAPDH, ITGA6, and BAK1). On the other hand, patients in
the low-risk group tended to have higher expression patterns of protective autophagy genes
(NLRC4, IL1B, DAPK2, SERPINA1, and NUPR1) (Fig. 5C). Moreover, the K-M survival
curve and the log-rank test exhibited that patients in the high-risk group had a significantly
shorter OS time than those in the low-risk group (median time = 2.15 years vs. 2.91 years,
respectively, p< 0.001; Fig. 5D). Additionally, we evaluated the predictive performance
of the risk signature model with these prognostic biomarkers using time-dependent ROC
curves. The area under the ROC curves for one, three, and five-year OS predictions of the
risk scores were 0.705, 0.715, and 0.778 (Fig. 5E), respectively.
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Figure 6 OS-related prognostic model of LUAD patients in TCGA testing set. (A–C) The prognostic
model distribution of risk score, survival status, and the heatmap of autophagy-related signature. (A) Risk
score distribution curves; (B) the survival time and status of LUAD patients; (C) a heatmap which displays
the normalized z-score of TPM values for 10 genes in autophagy-related signature. Red indicates higher
expression and blue indicates lower expression. (D) Kaplan-Meier curves of the prognostic predictors for
high-risk and low-risk patients with LUAD. (E) Time-dependent ROC curves for evaluating the accuracy
of the risk scores.

Full-size DOI: 10.7717/peerj.11074/fig-6

Validation of the autophagy signature in TCGA and GEO datasets
To confirm our findings, we performed additional testing and used external validation
datasets to assess the predictive performance of the 10-gene autophagy signature. First,
we validated our autophagy-related signature using a TCGA testing set as an internal
validation series. A total of 245 LUAD samples were collected and used to assess the risk
signature’s performance. Using the same risk score cutoff, we classified the patients into
high-risk (n= 126) and low-risk (n= 119) groups in the internal testing set. In accordance
with our previous findings, the distribution of risk score, OS status, and ARG expression
were similar as those in the training set (Figs. 6A–6C). Moreover, patients with higher risk
scores had significantly shorter median OS than those with lower risk scores (log-rank test
P < 0.001; Fig. 6D). The AUCs for one, three, and five-year OS predictions for the risk
scores were 0.747, 0.739, and 0.634, respectively, which results were similar to the training
set (Fig. 6E).
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Figure 7 OS-related prognostic model of LUAD patients in GSE50081 set. (A–C) The prognostic
model distribution of risk score, survival status, and the heatmap of autophagy-related signature. (A) Risk
score distribution curves; (B) the survival time and status of LUAD patients; (C) a heatmap which displays
the normalized z-score of TPM values for 10 genes in autophagy-related signature. Red indicates higher
expression and blue indicates lower expression. (D) Kaplan-Meier curves of the prognostic predictors for
high-risk and low-risk patients with LUAD. (E) Time-dependent ROC curves for evaluating the accuracy
of the risk scores.

Full-size DOI: 10.7717/peerj.11074/fig-7

We further validated our autophagy signature using another independent data set
obtained from GSE50081. The distribution of risk score, OS status, and ARG expression
in the testing dataset are shown in Figs. 7A–7C. The results confirmed our model’s ability
to predict survival. The 10-autophagy-related signature model could effectively predict the
OS in patients from the GSE50081 dataset (log-rank test P =< 0.0001; Fig. 7D). The AUC
values for the one, three, and five-year OSmodels were 0.732, 0.736, and 0.762, respectively
(Fig. 7E). These results confirmed that the autophagy-related signature could accurately
predict the OS of LUAD patients.

GSEA of high-risk and low-risk LUAD patient characteristics
We carried out GSEA to explore the high-risk and low-risk groups’ biological processes
and signaling pathways associated with the autophagy signature. We compared the gene
expression profiles of high-risk and low-risk LUAD patients that were classified by the
10-autophagy-related gene signature in both the training set and testing set. The GSEA
results revealed that the genes in the low-risk group were closely associated with several
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Figure 8 The GSEA analysis results in TCGA LUAD. (A) ‘‘Arachidonic acid metabolism’’, (B) ‘‘Surfac-
tant metabolism’’, (C) ‘‘CD22 mediated BCR regulation’’, (D) ‘‘Cell cycle’’, (E) ‘‘Spliceosome’’, (F) ‘‘Nu-
cleotide excision repair’’.

Full-size DOI: 10.7717/peerj.11074/fig-8

metabolism and immune-related pathways, including arachidonic acidmetabolism (NES=
1.65, P = 0.014), surfactant metabolism (NES= 1.63, P = 0.028), and the CD22-mediated
BCR regulation pathway (NES = 1.58, P = 0.010). Genes in the high risk-group were
enriched in several tumor progression pathways, including cell cycle (NES = −2.16,
P = 0), spliceosomes (NES = −2.10, P = 0), and nucleotide excision repair (NES =- 2.09,
P = 0). The GSEA results are shown in Fig. 8.

Distinct immune phenotype characterization of high-risk and low-risk
LUAD patients
To further analyze the association between the ARGs and the tumor immune
microenvironment, we used CIBERSORT software to estimate the infiltration fraction
across the 22 distinct immune cell types in LUAD patients. The distribution of the 22
immune cell types in each individual are shown in Fig. 9A. The relative proportions of
the 22 immune cell types were found to be weakly to moderately correlated (Fig. 9B).
Additionally, we intensively investigated the potential differences between the low-risk and
high-risk groups. In the high-risk group, we observed that the relative fraction of M0- and
M1-macrophages andT cell CD4+memory activatedwere significantly increased, while the
relative fraction of Myeloid dendritic cells, Mast cells activated, and T cell CD4+ memory
resting were significantly decreased (Fig. 9C). However, we also found no significant
differences in CD8 T cell infiltration between these two groups (Fig. 9C). To investigate the
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Figure 9 Immune profiling between high-risk and low-risk patients with LUAD. (A) The relative pro-
portions of 22 immune infiltrating cell in patients with TCGA LUAD. (B) Correlation matrix for relative
proportions of the 22 immune cell types. (C) Box plots of immune cell infiltration proportion between
high- and low-risk groups. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

Full-size DOI: 10.7717/peerj.11074/fig-9

immune status of the LUAD tumors, we selected immune checkpoints (PD-L1) and other
immune-related genes (including CD4, CD47, CD244, CSF1R, and IL1RN) to explore the
differences between the high-risk and low-risk groups. Compared to the high-risk group,
we found that CD4, CD244, PD-L1, CSF1R, and CD47 were significantly overexpressed
in low-risk patients (P < 0.05, Figs. 10A–10F). Moreover, classic immune checkpoints
such as PDCD1(PD-1), CTLA-4, HAVCR2(Tim-3), LAG3, and TIGIT were also compared
between the high-risk and low-risk groups, but no significant differences were found
(Fig. S1). Taken together, these data implied that the autophagy signature may serve as an
indicator of LUAD immune status.

Nomogram construction and validation
A prognostic nomogram can quantitatively predict an individual’s risk by integrating
autophagy signature risk scores and clinicopathologic features. The training and testing
dataset, both from TCGA, were combined to construct nomograms for validation. We
constructed a nomogram to predict OS by incorporating the risk scores with age, gender,
and tumor, node, metastasis (TNM) stage. Each variable was assigned points in proportion
to its risk contribution to survival, and the C-index to evaluate the OS of the model
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was 0.721(Fig. 11A). The calibration curves suggested agreement between the actual and
predicted OS (Figs. 11B–11D).

DISCUSSION
LUAD remains the most common and aggressive type of lung cancer worldwide. The
TNM classification system is routinely used for cancer staging and LUAD prognosis
(Woodard, Jones & Jablons, 2016). However, heterogeneous prognostic outcomes and
different treatment responses still exist for patients at the same stage. Therefore, reliable
and accurate molecular biomarkers or models for LUAD prognosis are urgently required.
Autophagy is a protective process that plays a crucial role in responding to cellular stress
and maintaining cellular homeostasis. It is involved in and regulated by a series of genes
that are closely related to various cellular degradation processes and biochemical reactions.
In recent years, cumulative evidence has indicated that autophagy acts as a ‘‘double-edged
sword’’ by suppressing tumors at the initial stage while causing tumor progression, and
consequently drug resistance, in the later stages. Several studies about autophagy-related
prognostic signatures in colorectal cancer (Zhou et al., 2019), NSCLC (Liu et al., 2019; Zhu,
Wang & Hu, 2020), serous ovarian cancer (An et al., 2018), and prostate cancer (Hu et al.,
2020) have provided abundant support of the link between autophagy and tumorigenesis.
However, there have been no systematic analyses of autophagy-based signatures for LUAD.
This is the first systematic analysis of ARGs associated with the OS of LUAD patients using
large clinical datasets.

Duan et al. (2021), PeerJ, DOI 10.7717/peerj.11074 14/22

https://peerj.com
https://doi.org/10.7717/peerj.11074/fig-10
http://dx.doi.org/10.7717/peerj.11074


●

●
●

0.82 0.84 0.86 0.88 0.90 0.92 0.94

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Nomogram−Predicted Probability of 1−Year OS in LUAD

Ac
tu

al
 1

−Y
ea

r O
S 

(p
ro

po
rti

on
)

●

●

●

0.4 0.5 0.6 0.7

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Nomogram−Predicted Probability of 3−Year OS in LUAD

Ac
tu

al
 3

−Y
ea

r O
S 

(p
ro

po
rti

on
)

●

●

●

0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Nomogram−Predicted Probability of 5−Year OS in LUAD

Ac
tu

al
 5

−Y
ea

r O
S 

(p
ro

po
rti

on
)

B

Points
0 1 2 3 4 5 6 7 8 9 10

Age
30 50 70 90

Gender
male

female

Stage
Stage I Stage III

Stage II Stage IV

RiskScore
0 2 4 6 8 10 12 14 16 18 20 22 24

Total Points
0 1 2 3 4 5 6 7 8 9 10 11 12 13

1−year survival
0.95 0.9 0.85 0.8 0.750.7 0.6 0.5

3−year survival
0.8 0.750.7 0.6 0.5

5−year survival
0.6 0.5

A

C D

Figure 11 Nomogram for predicting the 1-,3-, 5-year survival with risk score. (A) Prognostic nomo-
gram for LUAD patients in TCGA; (B-D) Calibration curves for the nomogram at 1-,3-,5-year.

Full-size DOI: 10.7717/peerj.11074/fig-11

In this study, we used two datasets (TCGA and GEO) to explore the associations between
ARGs and LUAD prognosis.

First, we screened differentially expressed autophagy-related genes from TCGA LUAD
dataset and identified 83 DEARGs, 33 of which were upregulated and 50 that were
downregulated. GO and KEGG enrichment analyses were conducted to confirm that
the top enriched terms were involved in the cancer autophagy process. In addition,
KEGG analysis showed enrichment in the cancer pathways, protein processing in the
endoplasmic reticulum, and the TNF signaling pathway, which suggested that autophagy
gene dysregulation may participate in cancer biological processes. Using LASSO and
multivariate Cox regression analyses, we found that BAK1, DAPK2, ERO1A, GAPDH,
IL1B, ITGA6, NLRC4, NUPR1, SERPINA1, and TOMM40 were significantly associated
with OS of LUAD patients. BAK1 belongs to the BCL2 protein family and plays a key
role in the mitochondrial apoptotic process. A study on NSCLC showed that miR-
150 downregulation can induce cell proliferation inhibition and apoptosis by targeting
BAK1 in vitro. Endoplasmic reticulum oxidoreductase 1 alpha (ERO1A) is the major
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regulator of protein disulfide isomerase (PDI) (Kim et al., 2018). It has been found
that co-expression of PDI and ERO1A were independent adverse prognostic factors in
NSCLC. NUPR1, also known as p8 and a candidate of metastasis 1 (Sandi et al., 2011),
is a transcriptional coregulator that plays regulatory roles in various types of malignant
tumors, including pancreatic cancer, multiple myeloma, and bladder cancer (Emma et al.,
2016; Ito et al., 2005; Veerla et al., 2008; Zeng et al., 2018). Moreover, NUPR1 expression
shows a significant association with OS for NSCLC patients (Mu et al., 2018). The robust
autophagy gene prognostic model was established in the training dataset, and validated
in the TCGA internal testing dataset. The autophagy signature could classify patients into
high-risk and low-risk groups using the median risk score, and patients with high-risk
scores had significantly shorter OS than those in the low-risk group. Moreover, another
external independent GSE50081 dataset was successfully validated, which indicated a
good reproducibility for the signature. Therefore, this autophagy signature may serve
as a prognostic biomarker that could potentially be used for clinical application in the
future. Our GSEA results suggested that the low-risk group tended to be enriched in the
metabolism and immune-related pathways, while the high risk-group was involved in
tumorigenesis and tumor progression, and exhibited a strong difference at the pathway
level. We also found that LUAD patients in these two groups had distinct immune states. In
our study, we noticed that the high-risk group had significantly elevated levels of M0- and
M1-macrophages and T cell CD4+memory activated but decreased expressions of CD4 and
PD-L1 when compared with the low-risk group. It has been generally accepted that M0, M1
macrophages can produce anti-tumor/pro-inflammatory cytokines, such as reactive oxygen
species (ROS) and nitric oxide (NO), to inhibit tumor growth and progression (De Santa
et al., 2019). However, M0, M1 macrophage infiltration could also lead to adverse tumor
prognosis. For example, a recent study demonstrated that M1 macrophage recruitment
correlated strongly with worse OS outcomes in the SHH subgroup of medulloblastoma
(Lee et al., 2018). One possible explanation for higher M0, M1 macrophage infiltration in
the high-risk group is that autophagy can regulate the tumor immune microenvironment.
DAPK2 mediates the formation of autophagic vesicles, which act as a key autophagy
regulator (Ber et al., 2015). DAPK2 downregulation can reduce autophagy (Shiloh et al.,
2018; Soussi et al., 2015) and could be as a good indicator of autophagic activity. In this
study, we observed that DAPK2 expression was downregulated in the high-risk group,
suggesting that the autophagic activity was attenuated. It has been reported that cells
with attenuated autophagy tend to have higher levels of ROS (Kongara & Karantza, 2012).
However, excessive ROS accumulation could activate inflammatory factors such as NF κB,
AP-1, and NLRP3 inflammasome, which promote the expression of pro-inflammatory
chemokines and cytokines (Harijith, Ebenezer & Natarajan, 2014). Additionally, induced
ROS production may trigger the induction of M1-like pro-inflammatory macrophages
and regulation of M1 macrophage polarization (Tan et al., 2016). Therefore, autophagy
could mediate immune microenvironment reprogramming by altering ROS levels, which
affect macrophage polarization. However, due to the complexity of the autophagy and
immune response (Jiang et al., 2019), our data provided several implications. Additionally,
we developed a nomogram to predict individual prognoses by integrating risk scores and
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other clinicopathologic features. The nomogram’s performance was established using the
whole TCGA-LUAD cohort. The nomogram could provide an accurate OS prediction for
LUAD patients.

However, several limitations of this study need to be noted. First, the potential molecular
mechanism of the key autophagy genes is not fully understood, and the expressions could
be further verified using in vitro or vivo experiments. Second, other LUAD prognostic
factors including tumor size, smoking, and lymph node metastasis should be considered.
Third, the immune cell fraction in the tumor microenvironment (TME) was quantified
using bulk RNA-seq data, and should be validated using more precise methods such as
flow cytometry or in situ immunohistochemical imaging (Petitprez et al., 2018).

CONCLUSION
In conclusion, our study developed a robust 10-autophagy-related gene signature that
could accurately predict OS of LUAD patients. We hope that this prognostic signature
could benefit LUAD patients and provide new insights into the underlying mechanisms of
this disease.
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