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ABSTRACT
Cattle-yak, a hybrid offspring of yak (Bos grunniens) and cattle (Bos taurus), inhabit
the Qinghai-Tibet Plateau at an altitude of more than 3,000 m and obtain nutrients
predominantly through grazing on natural pastures. Severe shortages of pasture in the
cold season leads to reductions in the weight and disease resistance of grazing cattle-
yak, which then affects their production performance. This study aimed to investigate
the effect of supplementary feeding during the cold season on the rumen microbial
community of cattle-yak. Six cattle-yak (bulls) were randomly divided into two
groups—‘‘grazing + supplementary feeding’’ (G+S) (n= 3) and grazing (G) (n= 3)—
and rumen microbial community structure (based on 16S rRNA sequencing), volatile
fatty acids (VFAs), and ruminal epithelial sodium ion-dependent glucose transporter
1 (SGLT1) expression were assessed. There were significant differences in the flora of
the two groups at various taxonomic classification levels. For example, Bacteroidetes,
Rikenellaceae, and Rikenellaceae_RC9_gut_group were significantly higher in the G+S
group than in the G group (P < 0.05), while Firmicutes and Christensenellaceae_R-
7_group were significantly lower in the G+S group than in the G group (P < 0.05).
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous
Groups (COG) analyses revealed that functions related to carbohydratemetabolism and
energy productionwere significantly enriched in theG+S group (P < 0.05). In addition,
the concentration of total VFAs, along with concentrations of acetate, propionate, and
butyrate, were significantly higher in the G+S group than in the G group (P < 0.05).
Furthermore, SGLT1 expression in ruminal epithelial tissue was significantly lower in
the G+S group (P < 0.01). Supplementary feeding of cattle-yak after grazing in the cold
season altered the microbial community structure and VFA contents in the rumen of
the animals, and decreased ruminal epithelial SGLT1 expression. This indicated that
supplementary feeding after grazing aids rumen function, improves adaptability of
cattle-yak to the harsh environment of the Qinghai-Tibet Plateau, and enhances ability
of the animals to overwinter.

Subjects Agricultural Science, Microbiology, Veterinary Medicine, Zoology, Nutrition
Keywords Cattle-yak, Cold season, Supplementary feeding, Rumen microbes, VFAs

How to cite this article Sha Y, Hu J, Shi B, Dingkao R, Wang J, Li S, Zhang W, Luo Y, Liu X. 2021. Supplementary feeding of
cattle-yak in the cold season alters rumen microbes, volatile fatty acids, and expression of SGLT1 in the rumen epithelium. PeerJ 9:e11048
http://doi.org/10.7717/peerj.11048

https://peerj.com
mailto:liuxiu@gsau.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.11048
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.11048


INTRODUCTION
The mammalian digestive system is colonized by complex microorganisms. In particular,
the rumen contains numerous microorganisms, such as bacteria, fungi, archaea, and
protozoa, which participate in plant cell-wall hydrolysis and digestion of fibrous materials
in the rumen. These materials are converted into absorbable compounds, such as bacterial
proteins and volatile fatty acids (VFAs) (Nagaraja, 2016; Yu et al., 2020). Among them,
VFAs are the main energy source of ruminant hosts, providing 70–80% of the energy
requirements (Russell & Rychlik, 2001). VFAs are predominantly absorbed through the
rumen epithelium to the blood via VFA transporters (Yohe et al., 2019). The rumen
epithelium, a unique niche for interactions between the host and microorganisms, not only
represents a physical barrier to the contents of the lumen but also affects net utilization
of nutrients throughout the body (Lin et al., 2019;Malmuthuge & Guan, 2017). Glucose in
the rumen is decomposed into VFAs by commensal microorganisms, but some glucose is
transported directly to the blood via sodium ion-dependent glucose transporter 1 (SGLT1)
(Aschenbach et al., 2000a). In this way, the energy consumed in the rumen fermentation
process is saved and the glucose is directly transported to the blood to supply energy for
the body (Aschenbach et al., 2000b; Aschenbach, Borau & Gabel, 2002). Many studies have
demonstrated a symbiotic relationship between intestinal microflora and the host. For
example, changes in diet and physiology of the host can result in changes in gut microbes
(Sun et al., 2016).

The cattle-yak is a hybrid offspring of yak (Bos grunniens) and cattle (Bos taurus), and
has obvious heterosis (Wiener, Han & Long, 2011). The cattle-yak provides herders with
meat, fur, fuel (animal dung as fuel), and other factors, and is an important component
of animal husbandry in the Qinghai-Tibet Plateau. Like the yak, the cattle-yak lives at
high-altitude and mainly obtains nutrients by grazing on natural pastures. The unique
geographic environment of the alpine steppe area of the Qinghai-Tibet Plateau means
each year is divided into a cold season and a warm season, which correspond to the grass
period and hay period (when the grassland vegetation changes), respectively (Liu et al.,
2020). In the hay period, grazing livestock such as yak and cattle-yak can only obtain
nutrients by consuming hay, which seriously affects their production performance and
results in various problems such as weight loss and lack of disease resistance (Sun, Angerer
& Hou, 2015; Xin et al., 2011). Supplementary feeding of high-altitude mammals after
grazing in the cold season can improve the physical condition, immunity, and fertility
of the animals, allowing them to successfully survive winter (Jing et al., 2018; Jing et al.,
2017). However, there are limited reports on changes in the rumen microbial community,
rumen VFAs, and related gene expression in the rumen tissues of the plateau cattle-yak
after supplementary feeding combined with grazing in the cold season. We hypothesized
that after supplemental feeding of cattle-yak in the harsh environment of the cold season,
the microbial community, fermentation product VFAs, and gene expression in the rumen
epithelium would undergo a series of changes. This study aimed to test this hypothesis
by comparing rumen microorganisms, VFAs, and SGLT1 gene expression in cattle-yak
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that grazed only (G) with those that were also fed supplementary feed (G+S) in the cold
season.

MATERIALS & METHODS
Ethics approval and sampling
All experimental protocols were approved by the Livestock Care Committee of Gansu
Agricultural University (GAU-LC-2020-055), and the experiment was conducted with
the consent of the herdsman (Jie Gazang). Six cattle-yak (bulls) were selected from
the cattle-yak (Gannan yak ♀ × Jersey cattle ♂) of a single herder in Gannan Tibetan
Autonomous Prefecture, Gansu Province (359 ± 3.58 kg; 2-3 years old). In the same
cowshed, the animals were randomly divided into a ‘‘grazing + supplementary feeding’’
group (G+S; n= 3) and a grazing control group (G; n= 3), separated by fences. The two
groups grazed in the same pasture during the day. At 6 PM, cattle-yaks of the G+S group
were given access to supplementary feed of grass (Highland barley grass and Oat grass)
+ highland barley (concentrate) in a ratio of 3:7 concentrate to forage. Supplementary
feeding was for a period of five months (from November to March of the following year).
After the supplementary feeding period ended, the cattle-yak were slaughtered. Rumen
organs were removed immediately after slaughter and contents of the rumen abdominal
sac were collected. Fifty milliliters of rumen contents were obtained from each cattle-yak,
filtered through four layers of sterile gauze, divided into three sterile cryogenic tubes,
and immediately stored in liquid nitrogen for subsequent 16S rRNA gene analysis and
determination of VFA concentrations. In addition, rumen epithelial tissue samples were
acquired by dissecting a small piece of rumen abdominal sac, quickly removing rumen
contents by rinsing with phosphate-buffered saline (PBS), then separating the epithelial
tissue with blunt scissors. The tissue was immediately placed in liquid nitrogen and stored
for subsequent RNA extraction to assess SGLT1 expression.

DNA extraction and high-throughput sequencing
A MN NucleoSpin 96 Soil kit (Macherey-Nagel, Germany) was used to extract microbial
DNA from the rumen content samples, and the DNA concentration and purity were
detected by NanoPhotometer (N60, Germany). All DNA samples were stored at −80 ◦C
until subsequent processing. For analysis of the community structure of the rumen
microorganisms, theV3-V4 region of the 16S rRNA gene was amplified from the DNA
sample by PCR using universal primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and
806R (5′- GGACTACHVGGGTWTCTAAT-3′). The PCR comprised a pre-denaturation
step at 95 ◦C for 3 min, 40 cycles of denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for
30 s, and extension at 72 ◦C for 30 s, followed by a final extension at 72 ◦C for 7 min. The
library obtained by this PCR amplification process was sequenced on an Illumina MiSeq
platform (Illumina, San Diego, CA, USA), and bioinformatics analysis was performed
using BMKCloud (http://www.biocloud.net).

Determination of rumen VFAs
Concentrations of VFAs were determined using a gas chromatograph (GC-2010 Plus;
Shimadzu, Kyoto, Japan) with an AT-free fatty acid phase (FFAP) chromatographic
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Table 1 Primer sequences for mRNA expression analysis.

Gene Primer sequence (5′–3′) Length
(bp)

Temperature
(◦C)

GenBank
accession
number

F: GTTTGCCTATGGAACCGGGA
SGLT1

R: TGCAATGGGCTTGGTGAAGA
148 60 NM_174606.2

F: CGCAAGTACTCCGTGTGGAT
β-actin

R: TAACGCAGCTAACAGTCCGC
146 60 NM_173979.3

Notes.
SGLT1, sodium ion-dependent glucose transporter 1.

column (30 m × 0.32 mm × 0.25 m). The internal standard method was employed
using 2-ethyl butyric acid (2EB) as the internal standard. The detector temperature of the
chromatograph was 260 ◦C, the temperature of the injection port was 250 ◦C, and the
chromatographic column heating procedure comprised maintenance of temperature at
60 ◦C for 1 min, increase to 115 ◦C at 5 ◦C/min (without maintenance), and then increase
to 180 ◦C at 15 ◦C/min.

mRNA expression analysis
RNA isolater reagent (Vazyme, Nanjing, China, 7E371D9) was used to extract RNA
from ruminal epithelial tissues. Concentration and purity of the extracted RNA were
measured using an ultra-micro spectrophotometer (NanoDrop 2000; Thermo Scientific).
cDNA synthesis was performed using a reverse transcription kit containing gDNA wiper
(R323-01). Primer 5.0 software was used to design the gene primers (Table 1). A Q6
real-time fluorescence quantitative PCR system (Applied Biosystems) was used to quantify
expression of SGLT1 and the internal reference gene (β-actin). The reaction conditions
comprised a pre-denaturation step at 95 ◦C for 30 s, followed by 40 cycles of 95 ◦C for 10 s
and 60 ◦C for 30 s. The dissolution curve analysis conditions were 95 ◦C for 15 s, 60 ◦ C for
60 s, and 95 ◦C for 15 s. The 20-µl reaction system contained 2×ChamQ Universal SYBR
qPCR Master Mix (Q711-02), the cDNA template, and the upstream and downstream
primers. The data analysis was performed using the 2−11CT method (Livak & Schmittgen,
2001).

Bioinformatics analysis
Raw data returned by the IlluminaMiSeq platformwere subjected tomerging of paired-end
reads (FLASH v1.2.7), filtering (Trimmomatic v0.33), and removal of chimeras (UCHIME
v4.2) to obtain optimized sequences (tags). UCLUST in QIIME (version 1.8.0) software
was used to cluster tags and obtain operational taxonomic units (OTUs) at the 97%
similarity level. OTUs were annotated based on the SILVA bacterial taxonomy database.
Taxonomic analysis was subsequently performed at different taxonomic levels (phylum,
class, order, family, and genus) to obtain community structure maps and species clustering
heatmaps. Species diversity within taxa was analyzed using the α-diversity indices ACE,
Chao1, Shannon, and Simpson, and rarefaction curves were plotted (Wang et al., 2012).
β-diversity analysis was employed to compare differences in species diversity (microbial

Sha et al. (2021), PeerJ, DOI 10.7717/peerj.11048 4/16

https://peerj.com
http://www.ncbi.nlm.nih.gov/nuccore/NM_174606.2
http://www.ncbi.nlm.nih.gov/nuccore/NM_173979.3
http://dx.doi.org/10.7717/peerj.11048


Table 2 Effect of supplementary feeding after grazing on diversity index.

Group Number of
OTUs

ACE Chao1 Simpson Shannon Coverage

G+S 498 501.85 505.06 0.04 4.33 0.10
G 499 500.16 500.07 0.05 4.49 0.10
P value 0.53 0.48 0.69 0.51 0.51 0.69

Notes.
G, grazing; G+S, grazing + supplementary feeding.
Chao1 and Ace indices measure species abundance; Shannon and Simpson indices measure species diversity; Coverage index
represents OTU coverage.

composition and community structure) between groups. PICRUSt software was used to
predict metagenomic functional profiles of the microbial communities in each group
(identified by 16S rRNA gene sequencing) based on both the Kyoto Encyclopedia of Genes
and Genomes (KEGG) and Clusters of Orthologous Groups (COG) databases.

Statistical analysis
Significance analysis of between-group differences (linear discriminant analysis effect
size (LefSe) analysis) was used to explore potential biomarkers with statistical differences
between the two groups (Segata et al., 2011). Metastats software was used to perform t -tests
on the between-group differences in species relative abundance (White, Nagarajan & Pop,
2009) and obtain P values, which were corrected to obtain q values. Species that exhibited
significant differences in relative abundance between the two groups (according to the q
values) could then be identified. SPSS software v24.0 (SPSS, Inc., Chicago, Illinois) was
used to analyze the data. Independent-sample t -tests were used to analyze the differences
in rumen VFAs and SGLT1 expression between the G+S and G groups in the cold seasons.
Spearman correlation analysis was used to analyze the correlation between VFA levels and
SGLT1 expression. P values of 0.05 (two-tailed) and 0.01 (two-tailed) indicated significant
differences, respectively.

RESULTS
16S rRNA sequencing and rumen bacterial diversity
A total of 160,213 pairs of reads were obtained by 16S rRNA gene sequencing (paired-end),
and 127,677 clean tags were generated after merging of paired-end reads and filtering. Each
sample generated at least 63,772 clean tags and a mean of 63,839 clean tags (with a mean
sequence length of 412 bp). Tags were clustered at a similarity level of 97% using USEARCH
software and 502 OTUs were obtained. There were 498 OTUs in the G+S group and 499 in
the G group, with 3 and 4 unique OTUs in the G+S and G groups, respectively (Fig. S1A).
Rarefaction curves (Fig. S1B) indicate the species diversity and species richness in both
groups. Limited new OTUs were observed after approximately 20,000 reads, indicating
that the sequencing coverage was sufficient. There were no significant differences in the
α-diversity indices between the two groups (P > 0.05) (Table 2).
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G+S G G+S GG+S G

A B C

Figure 1 Rumenmicrobial species composition of cattle-yak in grazing group and supplementary
feeding group under different taxonomic classification levels. (A) Phylum; (B) Family; (C) Genus. Each
bar represents the average relative abundance of each bacterial taxon within a group. G: grazing; G + S:
grazing + supplementary feeding.

Full-size DOI: 10.7717/peerj.11048/fig-1

Microbial community structure in the rumen
Eleven phyla were detected (Data S1), with Firmicutes, Bacteroidetes, and Actinobacteria
dominating both groups. The sum of the relative abundances of Firmicutes and
Bacteroidetes accounted for >94% of all taxa in both groups. The relative abundance
of Firmicutes was significantly lower in the G+S group than in the G group (P < 0.05), but
the relative abundance of Bacteroidetes was significantly higher (P < 0.05) (Fig. 1A).
In addition, the Firmicutes/Bacteroidetes ratio was significantly lower in the G+S
group (1.2035) than in the G group (4.3650; P < 0.05). At the family level (Fig. 1B),
Christensenellaceae and Ruminococcaceae were the dominant families, and the relative
abundance of Rikenellaceae was significantly higher in the G+S group than in the
G group (P < 0.05). At the genus level (Fig. 1C), 123 bacterial taxa were detected
(Date S1), with Christensenellaceae_R-7_group, Rikenellaceae_RC9_gut_group, and
Ruminococcaceae_NK4A214_group being dominant. Among them, the relative abundance
of Christensenellaceae_R-7_group was significantly lower in the G+S group than in the
G group (P < 0.05), while the relative abundance of Rikenellaceae_RC9_gut_group was
significantly higher (P < 0.05).

Metagenomic functional profile predictions of the microbial
communities
PICRUSt software predicted the gene families related to the microbes identified by 16S
rRNA gene sequencing, and 43 KEGG gene families and 25 COG gene families were
identified (Data S2). Among the 43 KEGG gene families, >60% were associated with
metabolism, with the largest proportion being related to carbohydrate metabolism. The
function of carbohydrate metabolism was significantly less common in the G+S group
than in the G group (P < 0.05) (Fig. 2). However, the function of glycan biosynthesis
and metabolism was significantly more common in the G+S group than in the G group.
Second, Global and Overview Maps, Amino acid metabolism and Energy metabolism
accounted for the largest proportion, and the functions of Amino acid metabolism and
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G+S G

G+S G

A

B

Figure 2 PICRUSt functional predictions based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Clusters of Orthologous Groups (COG) databases. (A) KEGG database; (B) COG databases.
Bars on the left indicate the abundance ratio for each function in the two sets of samples; the graph on the
right shows the percentage of difference in functional abundance within the 95% confidence interval; and
P values are displayed on the far right of each panel. G: grazing; G + S: grazing + supplementary feeding.

Full-size DOI: 10.7717/peerj.11048/fig-2

Energy metabolism were significantly higher in the G+S group than in the G group.
Among the 25 COG gene families, transcription was the most frequent. In addition, the
most abundant functional categories of Carbohydrate transport and metabolism, Amino
acid transport and metabolism, and Energy production and conversion were significantly
different between the two groups of cattle-yak. Carbohydrate transport and Amino acid
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Table 3 Effects of supplementary feeding after grazing on rumen fermentation parameters and SGLT1
gene expression.

Ruminal VFAs (mmol/L) G+S G P

Acetate 47.97± 3.26 36.75± 0.39 0.004
Propionate 17.94± 0.71 15.47± 0.09 0.004
Butyrate 7.30± 0.00 6.46± 0.10 0.000
Isobutyrate 1.41± 0.03 1.32± 0.02 0.011
Isovalerate 2.44± 0.14 2.53± 0.07 0.406
Valerate 1.47± 0.11 1.29± 0.04 0.064
Total VFA 78.54± 3.68 63.82± 0.71 0.002
Acetate/propionate ratio 2.67± 0.08 2.38± 0.01 0.003
Gene expression
SGLT1 1.08± 0.10 5.56± 0.61 0.005

Notes.
G, grazing; G+S, grazing + supplementary feeding; SGLT1, sodium ion-dependent glucose transporter 1; VFA, volatile
fatty acid.

transport and metabolism were significantly higher in the G group than in the G+S group.
However, Energy production and conversion was significantly lower in the G group than
in the G+S group, which is consistent with the KEGG functional analysis.

Rumen VFAs and ruminal epithelial SGLT1 expression
The total concentration of VFAs was significantly higher in the G+S group than in the G
group (P < 0.01). Acetate, propionate, butyrate, and isobutyrate concentrations were also
significantly higher in the G+S group than in the G group (P < 0.01), but there were no
significant differences between the two groups in the other VFAs (valerate and isovalerate)
(P > 0.05). Furthermore, the acetate/propionate ratio was significantly higher in the G+S
group than in the G group (P < 0.01) (Table 3). Ruminal epithelial SGLT1 expression was
significantly lower in the G+S group than in the G group (P < 0.01). Correlation analysis
revealed that VFAs had a definite association with the SGLT1 gene; isobutyrate, butyrate,
and valerate were significantly negatively correlated with SGLT1 expression (P < 0.05),
while isovalerate had a low correlation with SGLT1 expression (Fig. 3).

DISCUSSION
The rumen microbial community structure of ruminants is affected by numerous factors
such as feed variety, diet composition, seasonal changes, and feedingmanagement (Yamano
et al., 2019; Li et al., 2019). The current study analyzedmicrobial communities in the rumen
of cattle-yak using 16S rRNA gene sequencing and revealed that supplementary feeding
after grazing had little effect on the α-diversity index of microorganisms. This indicates
that supplementary feeding after grazing did not change the microbial community diversity
of the rumen, even though there were changes in the community composition and relative
abundances of specific microorganisms. At the phylum level, Firmicutes, Bacteroidetes,
and Actinobacteria were dominant in both groups of cattle-yak. Firmicutes possess many
genes encoding energy metabolism-related enzymes that break down various substances
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Figure 3 Correlation matrix between VFAs and SGLT1 gene. Asterisks indicate significance of corre-
lation at the 0.05 (*) and 0.01 (**) levels (both two-tailed). SGLT1: sodium ion-dependent glucose trans-
porter 1.

Full-size DOI: 10.7717/peerj.11048/fig-3

and aid host digestion and absorption of nutrients (Kaakoush, 2015). Bacteroidetes can
degrade carbohydrates and proteins (Nuriel-Ohayon, Neuman & Koren, 2016; Fernando et
al., 2010; Jami, White & Mizrahi, 2014), and a high Firmicutes/Bacteroides ratio can help
hosts effectively absorb energy-related nutrients and maintain their metabolic balance in
low-temperature environments (Ley et al., 2006; Fernando et al., 2010;Murphy et al., 2010).
In the current study, cattle-yak in the G+S group were affected by dietary composition
(mainly roughage, supplementedwith non-cellulose concentrate), which caused an increase
in the content of Bacteroidetes and the ratio of Firmicutes/Bacteroides (Fernando et al.,
2010), and consequently the G+S cattle-yak could absorb energy-related nutrients more
effectively and maintain their metabolic balance in the low-temperature environment
(Murphy et al., 2010; Jami, White & Mizrahi, 2014).

At the family level, there were some differences in the microbiota between the two
groups of cattle-yak. Christensenellaceae and Ruminococcaceae, which are beneficial flora,
were the predominant bacterial families in this study. Waters & Ley (2019) found that
Christensenellaceae is an important family of the phylum Firmicutes and is instrumental
to human health. Rikenellaceae, a crucial polysaccharide-degrading family, displayed the
highest abundance in the G+S group. This may be related to the supplement feeding of
concentrate, and by degrading more polysaccharides, extra energy is generated for the
host (Laursen et al., 2017). At the genus level, Christensenellaceae_R-7_group belongs to
the phylum Firmicutes (Waters & Ley, 2019) and mainly decomposes fibrous substances
(Evans et al., 2011). Cattle-yak in the G group mainly fed on dry grass (high fiber), which
may account for the highest relative abundance of Firmicutes and Christensenellaceae_R-
7_group in this group. Rikenellaceae_RC9_gut_group is involved in degrading plant-derived
polysaccharides (Seshadri et al., 2018), and its relative abundance increases with increased
dietary fiber content (Qiu et al., 2019). In the current study, the relative abundance of
Rikenellaceae_RC9_gut likely increased in the G+S group because cattle-yak in this group
consumed more concentrate (mainly roughage with non-cellulose concentrate added).
Some studies have reported that Rikenellaceae_RC9_gut_group is related to the primary or
secondary degradation of carbohydrates (Pitta et al., 2010; Ramos et al., 2018). Therefore,
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appropriate supplementary feeding after grazing in the cold season is speculated to promote
degradation of carbohydrates in the feed, which allow the cattle-yak to copemore effectively
with the harsh cold season.

PICRUSt software was used to predict microbial gene family functions. Cattle-yaks in G
group consumed some dried herbagewith high fiber content, thus these animals need a large
quantity of microorganisms to degrade the carbohydrates with high cellulose content (Sun,
Angerer & Hou, 2015), and this leads to enrichment of carbohydrate metabolism. In the
KEGGanalysis, the function of glycan biosynthesis andmetabolismwas enriched in theG+S
group. This was most likely because cattle-yaks in the G+S group consumed concentrate,
which allows increased sugar production. In addition, energy-relatedmetabolic enrichment
was found in both KEGG and COG functional databases due to the addition of certain
concentrates to meet specific energy requirements in the G+S group. Concurrently, amino
acid metabolism was enriched in the G+S group. This suggests that after supplementation
with certain concentrates, amino acid metabolism might also provide some energy for the
host.

Research has demonstrated that >70% of VFAs are absorbed by the rumen epithelium,
and these are the main energy source for ruminants (Malmuthuge, Griebel & Guan, 2015;
Russell & Rychlik, 2001). In this study, the G+S group of cattle-yaks had the highest
concentrations of total VFA, acetate, propionate, and butyrate. Supplementary feeding with
an appropriate amount of concentrate (which increases the soluble carbohydrate content
of the diet) was previously shown to lead to more ruminal VFA production by microbial
fermentation, thereby providing energy to the host (Qiu et al., 2019). In addition, a diet
focused on cellulose reduced the total production of VFAs in the rumen, whereas feeding
a certain amount of non-fibrous material increased propionate production (Polyorach,
Wanapat & Cherdthong, 2014; Liu et al., 2019). These findings are consistent with the
results of the current study. The diet of cattle-yak in the G+S group was supplemented
with non-cellulose concentrate, resulting in increased propionate content, while cattle-yak
in the G group had long-term intake of hay, which decreased the total VFA production.
Furthermore, the acetate/propionate ratio is correlated with feed energy use efficiency
(Baldwin, 1998). This ratio was lower in cattle-yaks of group G than those of group G+S
because group G had long-term intake of forage with high fiber content, which enabled
the cattle-yaks in this group to use energy more efficiently.

Nutrients are not only absorbed via the rumen epithelium in the form of VFAs; some
glucose is directly absorbed by SGLT1 (Aschenbach, Borau & Gabel, 2002; Aschenbach et
al., 2000a). The relative energy associated with glucose rather than VFAs is much higher
in ruminants (which rely almost entirely on gluconeogenesis to meet their glucose needs)
than in monogastric species (Reynolds, Harmon & Cecava, 1994). Direct absorption of
glucose via SGLT1 reduces the metabolic expenditure associated with gluconeogenesis in
animals (Aschenbach et al., 2000b). In this study, expression of SGLT1was lower in the G+S
group than in the G group. A possible explanation is that to meet the energy needs of the
cattle-yak in the G group, nutrients were absorbed in the form of VFAs and glucose was
also directly absorbed via SGLT1 (Aschenbach et al., 2000a); this would aid the cattle-yak
in coping with the harsh cold season. Finally, correlation analysis demonstrated a negative
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association of SGLT1 expression with VFAs. This indicated that ruminants absorb energy
in the form of VFAs but can also absorb glucose via SGLT1 to obtain energy. When VFA
concentrations decrease and energy supply is insufficient, SGLT1 gene expression increases
and energy is obtained directly by absorbing glucose, thus saving the energy required for
fermentation.

CONCLUSIONS
Intestinal microorganisms are an intrinsic part of the host lifecycle and influence animal
phenotypes. Supplementary feeding in the cold season can improve thewelfare of cattle-yak,
which enhances production performance, disease resistance, and wintering ability. In this
study, the rumenmicrobial flora of cattle-yaks exposed to twodifferent grazing regimeswere
determined, and the interaction between cattle-yak rumen microbes and their metabolites
and nutrient absorption-related genes of the host and their regulatory mechanisms were
explored. Supplementary feeding in the cold season significantly increased the abundance of
microbial flora and the VFA contents in the rumen of cattle-yak. There were also significant
differences in the expression of SGLT1 in rumen epithelial tissue. Microbial function
prediction revealed that carbohydrate metabolism and energy production functions were
significantly enriched following supplementary feeding, and this interaction may play a
specific regulatory role in the process of energy production. Therefore, supplementary
feeding after returning to grazing in the cold season can help cattle-yaks better adapt to the
harsh environment in the Qinghai-Tibet Plateau, which improves their wintering ability
and welfare. Data from this study also provide a basis for future research on cattle-yak cold
adaptation evolution in the Qinghai-Tibet Plateau.
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