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ABSTRACT
This study evaluated and improved the ability of the Community Land Model version
5.0 (CLM5.0) in simulating the diurnal land surface temperature (LST) cycle for
the whole Tibetan Plateau (TP) by comparing it with Moderate Resolution Imaging
Spectroradiometer satellite observations. During daytime, the model underestimated
the LST on sparsely vegetated areas in summer, whereas cold biases occurred over
the whole TP in winter. The lower simulated daytime LST resulted from weaker
heat transfer resistances and greater soil thermal conductivity in the model, which
generated a stronger heat flux transferred to the deep soil. During nighttime, CLM5.0
overestimated LST for thewhole TP in both two seasons. Thesewarmbiasesweremainly
due to the greater soil thermal inertia, which is also related to greater soil thermal
conductivity and wetter surface soil layer in the model. We employed the sensible
heat roughness length scheme from Zeng, Wang & Wang (2012), the recommended soil
thermal conductivity scheme from Dai et al. (2019), and the modified soil evaporation
resistance parameterization, which was appropriate for the TP soil texture, to improve
simulated daytime and nighttime LST, evapotranspiration, and surface (0–10 cm) soil
moisture. In addition, the model produced lower daytime LST in winter because of
overestimation of the snow cover fraction and an inaccurate atmospheric forcing dataset
in the northwestern TP. In summary, this study reveals the reasons for biases when
simulating LST variation, improves the simulations of turbulent fluxes and LST, and
further shows that satellite-based observations can help enhance the land surface model
parameterization and unobservable land surface processes on the TP.
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INTRODUCTION
The warming rate of the Tibetan Plateau (TP), known as Earth’s ‘‘Third Pole’’ (Qiu, 2008),
has been significantly higher than the global average in the background of global warming
in the past few decades (You et al., 2020). The unique and complex land surface processes of
the TP strongly affect the interactions between the land surface and the atmosphere, which
profoundly influence the formation and evolution of the Asian monsoon systems due to
the mechanical and thermal forcing of the unique TP-topography (Duan et al., 2011; Fallah
et al., 2016; Wang et al., 2019; Xue, Ma & Li, 2017). Thus, better understanding the land
surface processes of the TP and more realistic descriptions of TP surface energy and water
budgets are key parts of the study of TP land-atmosphere interactions (Fu et al., 2020; Gao
et al., 2017; Lu et al., 2020; Wang et al., 2016). Land surface temperature (LST) determines
the emission of surface longwave radiation, modulates sensible and latent heat fluxes
according to the difference between LST and overlying atmospheric temperature (Wang et
al., 2014), and affects the heat transfer between land surface and deep soil (Nogueira et al.,
2020). These crucial processes describe the surface energy state, which is closely related to
LST, which is an integrated variable that represents the energy and water exchanges between
the land surface and the atmosphere (Deng et al., 2018; Jin & Dickinson, 2010; Johannsen et
al., 2019; Nogueira et al., 2020). Hence, accurately understanding and characterizing LST
of the TP are top priorities in improving the prediction of surface energy budget there
(Babel, 2013; Gao et al., 2019; Jin & Mullens, 2012; Shi et al., 2019).

Previous studies about the LST of the TP used ground-based and satellite remote sensing
observations. LST is not a regularly observed variable at meteorological stations (Wang
et al., 2014), and these observations, with short data records, can be only acquired from
limited stations of the TP, which are mainly located in the central and eastern parts.
Thus, they cannot fully represent land surface states of the TP (Li et al., 2018; Oku et al.,
2006; Qing-bai & Mao-cang, 2005; Zheng et al., 2015). LST derived from satellite remote
sensing usually covers the entire TP, providing indispensable observed evidence over
this data-sparse region. More specifically, LST products from the Moderate-Resolution
Imaging Spectroradiometer (MODIS) are some of the best quality data (Phan & Kappas,
2018; Wan et al., 2017; Wan, 2008; Wang et al., 2007), with high temporal frequency (four
daily satellite overpasses) and spatial resolution (500 m), and have been trustworthily
employed as a surrogate for or a supplementary source to LST changes since 2000 (Jin
& Mullens, 2012; Li et al., 2019a; Zhang et al., 2014; Zhong et al., 2010). However, it is
difficult to fully understand the physical processes and mechanisms of LST changes and to
quantitatively analyze the contributions of various elements to the TP land surface energy
and water changes only by relying on remote sensing data (Chang et al., 2020; Ji, Yuan &
Li, 2020). Therefore, additional tools are needed to conduct an in-depth investigation of
LST variability on the TP.

Land surface models (LSMs) are a valuable tool used to produce long-term LST
records in continuous spatiotemporal scales. LSMs are based on physical mechanism
and parameterization schemes, providing the possibility to further understand the
mechanisms related to LST changes (Hu et al., 2020; Orth et al., 2017; Trigo et al., 2015).
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LSMs usually generate LSTs that significant deviate from observations due to simplistic
model representations of land surface heterogeneities, such as land surface cover type,
soil properties, and soil moisture (Johannsen et al., 2019; Li et al., 2019a; Nogueira et
al., 2020; Trigo et al., 2015; Wang et al., 2014). Many simulation results showed that the
underestimation of LST and overestimation of sensible heat flux on bare-ground or
sparsely vegetated surface during daytime are notable deficiencies in Noah LSM and
Community Land Model version 3.5 (CLM3.5) (Zeng, Wang & Wang, 2012; Zheng et al.,
2014). Misrepresentations of the green vegetation cover fraction in the Common Land
Model (CoLM) and Carbon Hydrology Tiled ECMWF Scheme for Surface Exchanges over
Land (CHTESSEL) produced warm and cold biases on dense vegetated surface during
daytime, respectively (Li et al., 2019a; Nogueira et al., 2020).

Daytime errors of simulated LST and surface energy balance by LSMs have been
effectively evaluated and modified. A new sensible heat roughness length scheme was
developed on the basis of observations on bare ground (Chen et al., 2011; Yang et al.,
2002), and simulations of LST and surface energy budget for arid area of China were
improved in Noah LSM (Chen et al., 2011). Wang et al. (2014) compared LST from the
CLM4.0 with in situ measurements and MODIS over the global scale and bare-ground
surface, and reported that the modified ground surface sensible heat roughness length
formulation (Zeng, Wang & Wang, 2012) reduced the model’s cold biases during daytime.
Li et al. (2019a) adopted fractional vegetation cover schemes on the basis of the leaf area
index (LAI) and a remotely sensed clumping index in CoLM, and significantly reduced
the daytime warm LST bias over the TP’s grassland. Nogueira et al. (2020) improved
the representation of vegetation over Iberia in CHTESSEL by combining the land cover
with the LAI and a fraction of vegetation cover, and successfully completely removed
the summer daytime cold LST bias. A few studies focused on nighttime LST processes
with field observations, and found that simulated nighttime LST from CLM and Noah
LSM was unrealistic under stable atmospheric stratification conditions (Zeng, Wang &
Wang, 2012; Zheng et al., 2015). Obvious warm nighttime biases were dominant over most
global land areas, especially in arid and semi-arid regions (Trigo et al., 2015; Wang et al.,
2014). Unfortunately, these efforts had a negligible effect on the simulated nighttime LST
errors (Wang et al., 2014; Zheng et al., 2015), although more striking warming trends were
observed in nighttime than in the daytime on the TP (Duan &Wu, 2006; Jin & Mullens,
2012).

The objectives of this studywere to (1) evaluate the diurnal LST cycle simulations in CLM
version 5.0 (CLM5.0) on the TP using MODIS satellite products, (2) understand factors
affecting LST errors in CLM5.0 simulations, and (3) systematically improve the ability of
CLM5.0 simulations of diurnal LST cycle on the TP by introducing the ground sensible
heat roughness length formulation from Zeng, Wang & Wang (2012), the recommended
soil thermal conductivity scheme from Dai et al. (2019), which considers volumetric
fractions of soil organic matter and soil gravel, and the modified soil evaporation resistance
parameterization, which is appropriate for soil texture on the TP. In this paper, ‘Materials
& Methods’ introduces the ground sensible heat roughness length, soil evaporation
resistance, and soil thermal conductivity parameterization schemes in CLM5.0, and the
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LST calculation; describes the physical parameterization modifications to the CLM5.0;
and provides information about the datasets and the design of the model’s numerical
experiments. ‘Results’ presents the LST, evapotranspiration, and soil moisture simulation
results, and compares them with observations that are further discussed in ‘Discussion’.

MATERIALS & METHODS
Model description
In this study, we used CLM5.0 (Lawrence et al., 2018) as the land surface model, which is
the latest version developed by the National Center for Atmospheric Research and serves
as the land surface model in the Community Earth System Model version 2.0. CLM5.0 is a
‘‘big-leaf’’ model that conceptualizes the vegetation canopy as a single layer, the snowpack
is simulated with up to five layers depending on snow depth, and soil can be divided into an
arbitrary number of layers (ten layers in this study). Compared with earlier versions of the
model, CLM5.0 includes new soil evaporation resistance parameterization by introducing
the concept of the dry surface layer (Swenson & Lawrence, 2014). In CLM5.0, each grid
cell is split into different land units, including vegetated surfaces, lake, urban, glacier, and
cropland. Each land-unit can be further split into several different columns. Each column is
divided into multiple plant functional types (PFTs) (Bonan et al., 2002) or crop functional
types. The spatial distribution and seasonal climatology of those PFTs for CLM5.0 are
derived from MODIS satellite land surface data products (Lawrence & Chase, 2007). This
sub-grid structure can help more accurately resolve the surface heterogeneity in complex
terrain regions (Ma et al., 2019b).

In this study, we mainly focused on three parameterizations in CLM5.0: ground
sensible heat roughness length (z0h,g ), soil evaporation resistance (rsoil), and soil thermal
conductivity (λ), because our results indicated that these parameterizations strongly
impact LST (discussed in detail in ‘Results’). Previous studies also reported similar findings
(Chen et al., 2018; Pablos et al., 2016; Trigo et al., 2015; Wang et al., 2014; Zeng, Wang &
Wang, 2012). Ground sensible heat roughness length (z0h,g ) is of importance for the
reliable calculation of the sensible heat flux from ground, which is a function of ground
momentum roughness length (z0m,g ):

z0h,g = z0m,g ∗e−a(u∗z0m,g /ν)
b

(1)

where z0m,g = 0.01 for soil and glacier, z0m,g = 0.0024 for snow-covered surfaces (m); u∗
is the friction velocity, ν= 1.5∗10−5 m2 s−1 is the molecular viscosity, a = 0.13, and b =
0.45.

rsoil is used to represent the effect of soil resistance on soil evaporation, which is
parameterized as:

rsoil =
TDSL
Dντ

(2a)

where Dν is the molecular diffusivity of water vapor in air (m2 s−2), and τdescribes the
tortuosity of the vapor flow path through the soil matrix. These two parameters are related
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to soil type (Swenson & Lawrence, 2014). TDSL is the thickness of the dry surface layer
(DSL, m) and given as:

TDSL=

Tmax ∗
θinit −θ1

θinit −θair
(θ1<θinit )

0 (θ1≥ θinit )
(2b)

where Tmax= 15 is the maximal DSL thickness (mm); θinit is the moisture value at which
the DSL initiates and is equal to 0.8 times top model soil layer porosity, θ1 is the moisture
value of the top model soil layer, and θair is the ‘‘air dry’’ soil moisture value (mm3 mm−3)
(Lawrence et al., 2018).

In CLM5.0, the soil thermal conductivity (λ) is assumed to be a weighted combination
of the saturated (λsat ) and dry (λdry) thermal conductivity (Lawrence et al., 2018):

λ=

{
Ke ∗λsat + (1−Ke)∗λdry (Sr > 10−7)
λdry (Sr ≤ 10−7)

(3a)

where Ke is the Kersten number expressed as a function of water phase and saturation
degree (Sr = θ/φ, θ is the real soil moisture, φ is the soil porosity):

Ke =

{
log10(Sr)+1 (Tsoil ≥Tf )
Sr (Tsoil <Tf )

(3b)

Dry soil thermal conductivity (λdry) is estimated using the weighted mean of the thermal
conductivities of dry mineral soil and dry soil organic matter (SOM), respectively:

λdry = (1− fom)∗λdry,m+ fom ∗λdry,om (3c)

where fom= ρom/ρom,max is the SOM fraction, ρom is the SOM density (kg m−3) acquired
from input surface data, ρom,max= 130 kg m−3 is the bulk density of peat. λdry,om= 0.05 W
m−1 K−1 is the dry SOM thermal conductivity, and λdry,m is the dry mineral soil thermal
conductivity (Wm−1 K−1), which depends on bulk density ρd= 2700 ∗(1−φ)(kg m−3) as:

λdry,m=
0.135∗ρd+64.7
2700−0.947∗ρd

(3d)

Saturated thermal conductivity (λsat ) depends on the thermal conductivities of the soil
solid, liquid water, and ice constituents:

λsat = λ
1−φ
s ∗λ

θliq
θliq+θice

∗φ

liq ∗λ
(1−

θliq
θliq+θice

)∗φ

ice (3e)

where θliq and θice are the soil liquid water and ice contents (mm3 mm−3), respectively;
λliq = 0.57 W m−1 K−1 and λice = 2.29 W m−1 K−1 are liquid water and ice thermal
conductivities, respectively; and λs is the soil solid thermal conductivity, which is calculated
using the weighted mean of thermal conductivities of mineral soil and SOM:

λs= (1− fom)∗λs,m+ fom ∗λs,om (3f)
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where λs,om= 0.25 W m−1 K−1 is the SOM thermal conductivity and λs,m isthe mineral
soil solid thermal conductivity:

λs,m=
8.80∗ (%sand)+2.92∗ (%clay)

(%sand)+ (%clay)
(3g)

where %sand and %clay represent the gravimetric fractions of sand and clay in mineral
soil, respectively, and are acquired from the input surface data.

LST calculation
LST is calculated with upward land surface longwave radiation (L↑), downward longwave
radiation (L↓), and land surface emissivity (ε) as follows (Wang et al., 2014):

LST = 4

√
L↑−(1−ε)∗L↓

ε∗σ
(4)

where σ= 5.67*10−8 W m−2 K−4 is the Stefan–Boltzmann constant. Atmospheric
downward longwave radiation L ↓ was obtained from the atmospheric forcing dataset
(see ‘Climate forcing data’). Surface upward longwave radiation L↑ is the areally-weighted
value with the fractions of all the PFTs in the grid cell of CLM5.0. Land surface emissivity
(ε) was calculated with the ground emissivity (εg ) and vegetation emissivity (εv) from
CLM5.0:

ε= εv+εg ∗ (1−εv)+εv ∗ (1−εg )∗ (1−εv) (5)

where ground emissivity εg is combined with the snow emissivity and the soil emissivity
weighted by the snow cover fraction. Vegetation emissivity εv is parameterized with the
exposed leaf and stem area indices (Lawrence et al., 2018). In this study, we used satellite
data to evaluate the calculated LST with Eq. (4).

Modifications for three parameterizations
Revision of ground sensible heat roughness length scheme
z0h,g is an important parameter used to estimate ground sensible heat flux in many existing
LSMs (Chen et al., 2011; Trigo et al., 2015; Zheng et al., 2015). Zeng, Wang & Wang (2012)
revised z0h,g parameterization in CLM3.5 for two semiarid sites, and reported significantly
improved daytime LST simulations over bare ground areas. This revision of z0h,g can be
expressed as:

ln(
z0m,g
z0h,g

)= a∗ (
u∗z0m,g
ν

)b (6)

where a = 0.36 and b = 0.5.

Modification scheme for soil thermal conductivity
Both Dai et al. (2019) and we (‘Impact of soil thermal conductivity on LST’) recognized
that the original λ parameterization in CLM5.0 produces a larger λ when compared with
in situ observations. Thus, on the basis of these conclusions and the recommendation of
Dai et al. (2019), modified soil thermal conductivity parameterization was adopted in this
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study, which mainly originated from Johansen (1977):

λ=

{
Ke ∗λsat + (1−Ke)∗λdry (Sr > 10−7)
λdry (Sr ≤ 10−7)

(7a)

where Ke is also a function of the phase of water and the saturation degree Sr , but the
exponential form of Sr was applied to express Ke to avoid the negative values (Yang et al.,
2005):

Ke =

{
exp[0.36∗(1−1/Sr)] (Tsoil ≥Tf )
Sr (Tsoil <Tf )

(7b)

the dry soil thermal conductivity λdry is calculated as:

λdry =Vm ∗λdry,m+Vom ∗λdry,om+Vg ∗λdry,g (7c)

where λdry,m is calculated using the Eq. (3d); λdry,g is the soil gravel thermal conductivity
in dry conditions, and estimated empirically as λdry,g= 0.039 ∗φ−2.2; Vm, Vom, and Vg are
the volumetric fractions of mineral soils, SOM, and gravels in soil solids, respectively. Here,
Vom and Vg were calculated on the basis of SOMmass content and gravel mass proportion
according to Chen et al. (2012):

Vom=
ρp(1−φm)mom

ρom,max(1−mom)+ρp(1−φm)mom+ (1−φm)∗
ρom,maxmg
(1−mg )

(7d)

Vg =
ρom,max(1−φm)mg

(1−mg )[ρom,max(1−mom)+ρp(1−φm)mom+ (1−φm)∗
ρom,maxmg
(1−mg )

]
(7e)

where ρp= 2700 kg m−3 is the mineral particle density. φm= 0.489–0.0012 ∗(%sand)
is the mineral soil porosity (mm3 mm−3). mom and mg are the SOM and soil gravel
mass proportions, respectively, acquired from input surface data. Saturated soil thermal
conductivity λsat is calculated as:

λsat = λ
Vm
s,m ∗λ

Vom
s,om ∗λ

Vg
g ∗λ

φ
w (7f)

where λs,m and λg are the mineral soil solid and soil gravel thermal conductivities in wet
conditions, respectively. Here, λs,m depends on quartz content Vq, which is commonly
considered to be equal to 50% of the sand content in this study (Chen et al., 2012; Luo et
al., 2017) and can be estimated with the following:

λs,m= λ
Vq
q ∗λ

1−Vq
o (7g)

where λq= 7.7 W m−1 K−1 is the quartz thermal conductivity; other non-quartz minerals
thermal conductivity is given as λo= 2.0 W m−1 K−1 for Vq>0.2 and λo= 3.0 W m−1

K−1 otherwise. λg as assigned the same value as that of the dry condition (0.039 ∗φ−2.2).
λw = 0.57 W m−1 K−1 for unfrozen water status and λw = 2.29 W m−1 K−1 for frozen
water status.
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Modification of soil evaporation resistance scheme
An underestimation of soil evaporation and a prediction of wetter surface soil are produced
by the original CLM5.0 in summer (‘Impact of soil evaporation resistance on LST’). These
biases are caused by the overestimation of soil evaporation resistance (rsoil in Eq. (2a)).
Soil evaporation resistance is positively related to the TDSL, which is parameterized as a
function of top soil layer moisture and soil type (Eq. (2b)). Here, the moisture value, θinit ,
plays an important role in determining TDSL (or soil evaporation resistance) for a given
soil type. This original moisture value (θinit ) is taken as 0.8 times soil porosity, which is
suitable for typical loam soil (34% sand, 24% clay; (Swenson & Lawrence, 2014). However,
Lehmann et al. (2018) stated that the coarser the soil texture, the lower θinitvalue for the
soil evaporation. Top surface soil contains more sand (above 60%) and less clay (below
20%) in the central and western TP (Fig. S1), which implies that the original value of θinit
(0.8 times soil porosity) is not appropriate to these sandier soils. Van de Griend & Owe
(1994) conducted a field experiment with a fine sandy loam soil (69% sand, 11% clay),
and found that zero soil surface resistance occurred at a θinit of approximately 0.15 mm3

mm−3 (about 0.37 times soil porosity). Other field observations and theoretical analysis
also demonstrated that sandier soils have a lower θinitvalue than that of clay soil (Bittelli
et al., 2008; Lehmann et al., 2018; Yamanaka & Yonetani, 1999). In addition, maximal DSL
thickness was set to 20 mm on the basis of field observations, which is suitable for both
sandy and clay soils (Yamanaka, Takeda & Shimada, 2006). Therefore, Tmax= 20 mm and
θinit = 0.37 times soil porosity were applied into CLM5.0.

Data
Climate forcing data
In our study, the China Meteorological Forcing Dataset (CMFD) (He et al., 2020) was used
to drive the CLM5.0. This dataset includes seven atmospheric variables: air temperature
(K), air pressure (Pa), specific humidity (kg kg−1), wind speed (m s−1), downward
shortwave and longwave radiation (W m−2), and precipitation rate (mm s−1). The CMFD
was produced by merging ground-based observations with several gridded datasets from
remote sensing and reanalysis data. Ground-based observations were obtained from 753
meteorological stations owned by the China Meteorological Administration (CMA). The
gridded remote sensing/reanalysis data included several data sources: Global Land Data
Assimilation System andModern Era Retrospective-Analysis for Research and Applications
data, Tropical Rainfall Measuring Mission satellite precipitation analysis data, and Global
Energy and Water Cycle Experiment-Surface Radiation Budget downward shortwave
radiation data, downward longwave radiation was calculated by using a model described in
Crawford & Duchon (1999). The CMFD record begins in January 1979 and is currently at
December 2018, with a 3-hour time step, 0.1◦ spatial resolution, and coverage of the entire
area of China. The dataset has been verified by many studies and used for hydrological
modeling, regional climate simulations validation, and land data assimilation (Li et al.,
2019a; Li et al., 2018; Tian et al., 2020; Zhu, Jin & Liu, 2020).
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Soil gravel data
A gridded soil gravel mass proportion dataset (Shangguan et al., 2013) was introduced into
CLM5.0 to more reasonably characterize the soil properties of the TP. The gridded soil
gravel mass proportion dataset was embedded in the soil characteristics dataset of China,
which was derived from 8,979 soil profiles and the soil map of China through the polygon
linkage method under the China Genetic Soil Classification framework, and covered
the entire main land of China with 30× 30 arc-second spatial resolution. The dataset
provides complete, high precision soil properties that can be used as input parameters for
LSMs, and has been widely used for regional land surface modeling (Bi et al., 2016) and
biogeochemical research (Lu et al., 2018a; Zhang et al., 2019).

Validation data
In this study, we assessed the simulated diurnal LST cycle and emissivity against the
MODIS/Aqua LST and emissivity daily level 3 global 0.05◦ Climate Modeling Grid
products (MYD11C1, Version 6) (Wan, 2013). The daytime overpass time is around
1:30 p.m. (ascending mode, local solar time), which is closer to the time when relatively
high LST values occur in the diurnal cycle. Thus, the daytime MODIS/Aqua MYD11C1
LST data were adopted as the primary validation data (Chen et al., 2011; Li et al., 2019a).
In addition, we choose the MODIS/Aqua nighttime (around 1:30 a.m., local solar time)
LST data to examine the performance of the simulated diurnal LST cycle. Many previous
studies validated the accuracy of MODIS LST and emissivity products through long-term
ground-based observations, which proved to be highly accurate (Jin & Liang, 2006; Lu et al.,
2018b;Wang et al., 2007). Then, they were applied to observational andmodeling studies on
regional and global scales, including the TP region (Chen et al., 2011; Jin & Mullens, 2012;
Li et al., 2019a; Ma et al., 2019b; Wang et al., 2014). In this study, only the highest-quality
MODIS LST data (LST mean errors less than 1 K) marked in Wan (2013) were selected
in both daytime and nighttime. Only the highest-quality retrieved individual spectral
bands highest-quality MODIS emissivity values (emissivity mean errors less than 0.01) for
wavelengths of 8.40–8.70 µm (Band 29), 10.78–11.28 µm (Band 31), and 11.77–12.27 µm
(Band 32) were integrated to calculate the broadband emissivity (8–14 µm) on the basis of
the method described in Wang & Liang (2009), which are consistent with the broadband
emissivity needed by LSMs (Ma et al., 2019b; Sobrino, Jiménez-Muñoz & Verhoef, 2005). In
addition, we interpolated the MODIS LST and calculated broadband emissivity data at a
0.05◦ spatial resolution onto 0.1◦ grids coincident with the spatial resolution of the model
output.

In this paper, the Global Land Evaporation Amsterdam Model (GLEAM) version 3.2b
dataset was chosen as the validation data for simulated evapotranspiration (ET) and soil
moisture (SM). The GLEAM dataset provides global gridded estimates of different ET
components, and surface (0–10 cm) soil moisture based on satellite observations with a
spatial resolution of 0.25◦ longitude and 0.25◦ latitude, and a daily temporal resolution
(Martens et al., 2017). GLEAM uses the Priestley and Taylor equation to calculate potential
evaporation on the basis of the satellite observations of net surface radiation and near-
surface air temperature. Estimations of potential evaporation are converted into actual
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Table 1 Soil texture, soil organic, and soil gravel content at BJ station (31.37◦N, 91.90◦E).

Soil depth (m) Sand (%) Clay (%) mom (%) mg (%)

0.0175 63.68 4.13 2.1 10
0.0451 63.68 4.13 2.1 10
0.0906 63.68 4.13 2.1 10
0.1656 63.68 4.13 1.3 10
0.2891 43.50 10.99 1.1 10
0.4930 71.94 3.58 1.5 19.03
0.8289 67.08 0.88 1.5 28.46
1.3828 64.75 1.87 1.5 28.46
2.2961 64.75 1.87 0 28.46
3.4331 64.75 1.87 0 28.46

evaporation on the basis of the evaporative stress factor. In addition, observations of surface
soil moisture were assimilated into the dataset. This dataset was successfully validated with
ground measurements of evaporation and soil moisture across global stations, showing
good performance in all vegetation types and climate conditions (Gonzalez Miralles et al.,
2011; Li et al., 2019b;Miralles et al., 2014). It was then extensively applied for evaluation of
terrestrial evaporation and soil moisture responses to climate change (Guillod et al., 2015;
Martens et al., 2018; Schumacher et al., 2019).

We collected in situ observations from the Ngari Station for Desert Environment
Observation and Research (NASDE, 33.39◦N, 79.7◦E) (Ma et al., 2008) to evaluate the
quality of the CMFD forcing data. Field observations from the BJ site (31.37◦N, 91.90◦E)
(Liu et al., 2020) on the TP were used to assess the simulated soil thermal conductivity.
Basic BJ site information, including soil texture, SOM, and soil gravel mass proportion is
listed in Table 1 (Chen et al., 2012; Pan et al., 2017). BJ provides half-hourly atmospheric
forcing data, soil temperature and soil moisture profiles observed at depths of 4 and 20
cm, and soil heat flux measured at depths of 10 and 20 cm. Here, the half-hourly 10 cm
soil thermal conductivity measurements were calculated on the basis of the Eq. (8), and we
rejected observations with an absolute value was less than 5 W m−1 K−1, which indicated
an unstable soil thermal condition (Luo et al., 2009):

λ10cm=
G10cm ∗1z
T4cm−T20cm

(8)

where G10cm is the soil heat flux measured at a depth of 10 cm,1z=0 .16 m, and T4cm,T20cm

are the soil temperature measured at depths of 4 and 20 cm, respectively.

Design of numerical experiments
A suite of numerical experiments was performed to assess the response of the simulated
LST, soil thermal properties, and turbulent fluxes to the different representations of ground
sensible heat roughness length, soil thermal conductivity, and soil evaporation resistance
parameterizations with CLM5.0. Four offline CLM5.0 simulations for the TP for 1995–2018
were conducted with the prescribed satellite-derived phenology. Here, these simulations
were conducted only for the TP in China due to the atmospheric forcing dataset CMFD
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Table 2 List of numerical experiments designed to test modifications for the CLM5.0.

Experiment z0h,g λ rsoil
CTL Original Original Original
EXP1 Equation (6) Original Original
EXP2 Equation (6) Equation (7a-7g) Original
EXP3 Equation (6) Equation (7a-7g) Tmax= 20 mm

θinit= 0.37* φ

only covering China. CLM5.0 was first run with the original parameterizations (‘Model
Description’), defined as the control run (CTL). The second simulation, which employed
revision z0h,g (described in ‘Revision of ground sensible heat roughness length scheme’),
was denoted as EXP1. The third experiment (EXP2) duplicated EXP1, but replaced the
original soil thermal conductivity scheme with the modified scheme that was described in
‘Modification scheme for soil thermal conductivity’, On the basis of EXP2, soil evaporation
resistance parameterization was improved as described in ‘Modification of soil evaporation
resistance scheme’ (EXP3). The different experimental setups are summarized in Table 2.
The spatial resolution of these four simulations was 0.1◦, the same as that of the atmospheric
forcing dataset, which reduced the error due to horizontal interpolation. Hourly model
outputs for the period of December 2002 through November 2018 were used in the
following analysis. The calculated hourly LST was interpolated to the two MODIS Aqua
satellite overpass times (local solar time 1:30 a.m. and 1:30 p.m.) and then compared with
MODIS Aqua LST. In this study, December, January, and February were defined as winter;
and June, July, and August were denoted as summer. In addition, we employed statistical
metrics such as the spatial pattern correlation coefficient (PCC), root-mean-square-error
(RMSE), and average bias to evaluate the performance of CLM5.0.

RESULTS
Evaluation of the CTL simulation
We first present the performance of CLM5.0 with the original parameterizations (CTL)
compared with MODIS LST products. Figure 1 shows the spatial distribution of the LST
biases between the CTL and MODIS Aqua data averaged over 2003-2018 during daytime
and nighttime in summer and winter, respectively. The LST biases displayed large spatial
and diurnal variations. During daytime, the model produced cold biases for almost the
entire TP region in winter (Fig. 1A), with a −8.81 K average bias and an RMSE of 9.77
K. In summer, cold biases appeared mainly on bare-ground regions (western TP and the
Qaidam Basin), whereas warm biases mainly appeared on vegetated regions (southern
TP; Fig. 1B). In addition, the average temperature bias was −1.61 K and RMSE was 5.03
K, averaged for the TP in summer. During nighttime, a warm bias covered the entire TP
for both two seasons, whereas the cold bias was less pronounced over the northwestern
TP in winter (Figs. 1C, 1D). The average nighttime LST for the TP varied from 2.27 K in
winter to 6.43 K in summer. CLM5.0 reasonably captured the spatial patterns of LST for
the TP, with PCCs greater than 0.70 for both seasons during day- and nighttime (Figs. S2
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Figure 1 Seasonal distributions of (A, B) daytime and (C, D) nighttime LST biases (unit: K) between
CTL andMODIS/Aqua (CTL-MODIS) averaged over 2003–2018 for winter and summer.

Full-size DOI: 10.7717/peerj.11040/fig-1

and S3), largely attributed to the high spatial quality of CMFD, which we used to drive
the model. Interestingly, CLM5.0 accurately simulated land surface emissivity with a small
RMSE (0.01) and average bias (<0.01) when compared to MODIS data (Fig. S4). Overall,
CLM5.0 could reasonably reproduced TP LST in winter and summer, but with large biases
in the magnitudes, indicating large rooms for improvement in TP LST simulation.

Impact of sensible heat roughness length on daytime LST
We applied the revision of z0h,g (‘Revision of ground sensible heat roughness length
scheme’) in CLM5.0, and the impact of this revision on LST for the TP is shown in Fig. 2.
The EXP1 simulation increased the daytime LST compared with that of CTL simulations
over some regions with bare-soil-underlying conditions, such as the Qaidam Basin and
western TP (Figs. 2A, 2B), and the LST increases were more significant when the bare soil
fraction increased, especially in summer (Fig. 2E). This mainly occurred due to the revision
scheme (Eq. (6)), which reduced z0h,gvalues over the same bare-ground surface, and then
decreased the sensible heat flux; therefore, it increased daytime LST, which is consistent
with the results of Wang et al. (2014). The EXP1 simulation reduced cold daytime biases
in the CTL simulation over bare ground surface: the RMSE was reduced from 9.77 to 9.60
K in winter (Fig. 2C), and from 5.03 to 4.34 K in summer (Fig. 2D), demonstrating the
important role of z0h,g over bare-ground surface. Improvements in nighttime LST in this
study with the revision of z0h,gwere negligible (Fig. S5) due to the little impact of the z0h,g
revision on nighttime sensible heat flux (Zeng, Wang & Wang, 2012).

Impact of soil thermal conductivity on LST
Two soil thermal conductivity parameterizations (‘Model Description’ and ‘Modification
scheme for soil thermal conductivity’) were applied to CLM5.0 and evaluated against the
BJ station observations, which are referred to hereafter as CLM_ORI and CLM_NEW,
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Figure 2 Seasonal distributions of (A, B) the daytime LST difference (unit: K) between EXP1 and CTL,
(C, D) EXP1 LST bias compared withMODIS/Aqua data, and (E) LST difference variations with bare
soil fraction averaged over 2003–2018 for winter and summer.

Full-size DOI: 10.7717/peerj.11040/fig-2

respectively. These two offline simulations were driven by observational half-hourly in situ
atmospheric forcing data during the summer in 2008. We compared the 10 cm soil thermal
conductivity from in situ observations with CLM_ORI and CLM_NEW simulations, as
shown in Fig. 3. CLM_ORI largely overestimated the soil thermal conductivity at the BJ site
while CLM_NEW effectively reduced the average bias with CLM_ORI from 1.11 to 0.26
W m−1 K−1. The slight overestimations in CLM_NEW may be related to the inaccurate
prediction of soil moisture (Pan et al., 2017).
Next, this modified soil thermal conductivity parameterization (‘Modification scheme

for soil thermal conductivity’) was implemented in CLM5.0 to explore the impact of
soil thermal conductivity on LST for the whole TP during day- and nighttime. Figure
4 shows the spatial distribution of day- and nighttime LST biases between EXP2 and
MODIS Aqua data averaged from 2003 through 2018 in winter and summer. The biases
presented large spatial and diurnal variations. In winter, cold biases (average bias: −5.50
K) were dominant over most of the TP during daytime, whereas warm biases appeared
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Figure 3 Hourly 10 cm soil thermal conductivity (unit: Wm−1 K−1) from simulated [CLMORI (blue
line) and CLM_NEW (red line)] and in situ observations (black line) at BJ station during summer 2008.

Full-size DOI: 10.7717/peerj.11040/fig-3

Figure 4 Seasonal distributions of the (A, B) daytime and (C, D) nighttime LST bias (unit: K) between
EXP2 andMODIS/Aqua (EXP2-MODIS) averaged over 2003-2018 for winter and summer.

Full-size DOI: 10.7717/peerj.11040/fig-4

over the western TP, and cold biases were distributed along the TP edges during nighttime
(Fig. 4C). In summer, warm biases were occurred for the whole TP during both daytime
and nighttime, with the average bias values of 2.42 and 3.05 K, respectively (Figs. 4B, 4D).
Compared to CTL, EXP2 considerably much improved the TP LST simulation during
both the daytime and nighttime for the two seasons (LST RMSE: daytime: 9.77 compared
to 7.18 K in winter, 5.03 compared to 4.76 K in summer; nighttime: 4.85 compared to
4.20 K in winter, 6.99 compared to 4.24 K in summer; Table 3). After modification, lower
soil thermal conductivity permitted less energy transfer from the land surface to deep soil
during daytime, resulting in more sustained energy on the surface, producing warming.
During the night, less energy transferred from the deep soil to the land surface, leading to
a reduction in LST. As a result, the introduction of a more realistic representation of soil
thermal conductivity into CLM5.0 significantly improved LST simulations during day-
and nighttime in the two seasons.
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Table 3 Values of LST average bias and RMSE (unit: K) between four offline CLM5.0 simulations and
MODIS/Aqua observations averaged over TP during 2003–2018 for summer and winter during daytime
and nighttime.

Statistical metrics Winter Summer

Average
bias

RMSE Average
bias

RMSE

CTL −8.81 9.77 −1.61 5.03
EXP1 −8.64 9.60 −0.68 4.34
EXP2 −5.50 7.18 2.42 4.76

Daytime
(K)

EXP3 −4.61 6.47 1.39 4.30
CTL 2.27 4.85 6.43 6.99
EXP1 2.27 4.85 6.43 6.99
EXP2 −1.42 4.20 3.05 4.24

Nighttime
(K)

EXP3 −1.40 3.80 2.25 3.40

Impact of soil evaporation resistance on LST
Next, we further evaluated and improved the performance of CLM5.0 on simulated ET
and surface SM during summer. Figure 5A plots the spatial distribution of seasonal ET
differences between EXP2 and GLEAM_ET data averaged over the summers of 2003-2018.
EXP2 underestimated summer ET for almost the entire TP, except for the Qaidam Basin
and western TP, with an average bias of −46 mm/season (although simulated summer ET
showed a similar spatial distribution patterns to those fromGLEAM_ET data; PCC= 0.86).
Such underestimation of ET leads to wetter soil in 87.6% of TP regions, with an average
bias value of 0.08 mm3 mm−3 for SM when compared with GLEAM_SM data (Fig. 5B)
because soil evaporation acted as the mainly component of ET (LAI values were generally
well below 1.0 in the central and western parts of TP; Fig. S6). In addition, we found
that summer ET was underestimated and SM was overestimated with EXP2 compared
to other remote sensing observations (Figs. S7 and S8). The underestimation of ET (soil
evaporation) and the prediction of wetter surface soil were improved by the modification
of the soil evaporation resistance scheme as described in ‘Modification of soil evaporation
resistance scheme’. We compared the ET simulated with EXP3 to that with EXP2 and
to observed GLEAM_ET data. EXP3 generated more seasonal summer ET across the TP
(red areas in Fig. S9B) than EXP2, especially in central TP. Moreover, seasonal summer
ET estimated in EXP3 agreed better with GLEAM_ET data (Fig. 5C), with a smaller ET
average bias (−18 mm/season) and larger ET PCC (0.88). The larger seasonal summer ET
(soil evaporation) from EXP3 led to less soil water content when compared with the SM
from EXP2 (blue parts in Fig. S9C), which was closer to the GLEAM_SM data (Fig. 5D),
as EXP3 produced smaller SM average bias (0.02 mm3 mm−3) and larger SM PCC (0.29
larger than EXP2).
The larger seasonal summer ET from EXP3 implied that the lower daytime LST was due

to the evaporation cooling effect when compared with daytime LST from EXP2 (Fig. S10B),
being closer to MODIS daytime LST during summer, with an RMSE of 4.30 K (Fig. 6B).
The lower SM from EXP3 corresponded to a smaller soil thermal inertia, implying less heat
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Figure 5 Seasonal distributions of the (A, C) ET (unit: mm/season) and (B, D) surface soil moisture
(unit: mm3 mm−3) biases between EXP2, EXP3, and GLEAM averaged over 2003–2018 for summer.

Full-size DOI: 10.7717/peerj.11040/fig-5

transfer from deep soil to the land surface during nighttime, producing lower nighttime
LST when compared with that from EXP2 (Fig. S10D), being closer to MODIS nighttime
LST during summer, with an RMSE of 3.40 K (Fig. 6D). In addition, the modification of
the soil evaporation resistance scheme had a negligible impact on winter ET (Fig. S9A), but
the lower soil liquid water content simulated by EXP3 in summer led to less soil ice content,
and then to lower soil thermal conductivity in winter. Thus, EXP3 predicted higher daytime
LST and lower nighttime LST during winter when compared to that of EXP2 (Figs. S10A,
S10C). Furthermore, EXP3 produced better daytime and nighttime LST in winter when
compared with MODIS observations (Figs. 6A, 6C; LST RMSE: 6.47 compared to 7.18 K
in daytime, 3.80 compared to 4.20 K in nighttime).
Table 3 summarizes the LST average bias and RMSE between the four offline CLM5.0
simulations and MODIS/Aqua observations averaged over the TP during daytime and
nighttime. Adjustments to these three schemes (ground sensible heat roughness length,
soil thermal conductivity, and soil evaporation resistance) improved the simulations of the
diurnal LST cycle for the TP during winter and summer.

DISCUSSION
In this study, the performance of CLM5.0 when simulating diurnal LST variations
was evaluated and further improved for the whole TP by introducing the ground
sensible heat roughness length formulation from Zeng, Wang & Wang (2012), the
recommended soil thermal conductivity scheme from Dai et al. (2019), which considers
the volumetric fractions of SOM and soil gravel, and a modified soil evaporation resistance
parameterization that is appropriate for the soil texture of the TP. Nevertheless, significant
systematic deviations in the LST were still existed between simulations from CLM5.0 and
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Figure 6 Seasonal distributions of the (A, B) daytime and (C, D) nighttime LST bias (unit: K) between
EXP3 andMODIS/Aqua (EXP3-MODIS) averaged over 2003–2018 for winter and summer.

Full-size DOI: 10.7717/peerj.11040/fig-6

observations fromMODIS remote sensing (Fig. 6). The above analysis and previous studies
help to initially confirm some possible reasons for these deviations.

First, the uncertainties of the satellite remote sensing LST data. A previous study
evaluated the accuracy of the MODIS LST product and found that the bias was less than
1 K, with the exception of the bare-ground land cover type (Duan et al., 2019). Figure 7
displays the results ofMODIS LST derived fromAqua observations versus the ground-based
LST for daytime (1:30 p.m.) and nighttime (1:30 a.m.) at the NASDE station for summer
and winter during 2010–2013. Only the highest-quality MODIS LST data (LST mean
errors less than 1 K) marked inWan (2013) were selected for evaluation. We found that the
MODIS/Aqua products can well-capture the values and temporal variations in daytime and
nighttime LSTs at NASDE station for both seasons, although the MODIS/Aqua products
overestimated (underestimated) the LST during summer daytime (nighttime). The errors
ofMODIS LST productsmay be caused by: (1) the spatial inconsistency, which is 0.05o (∼5,
600 m) for MODIS products and single-point for ground-based LST; (2) the uncertainty
in the determination of surface emissivity, which strongly influences the derived of LST
(Wan et al., 2002; Wang et al., 2014). The accuracy of MODIS surface emissivity retrieval
depends on the accuracy of the land cover type product, and the error in surface emissivity
was caused by the lack of global representativeness of land cover type (Duan et al., 2019).

Second, the deficiencies in the simulated CLM5.0 snow cover fraction (SCF) lead to
biases in simulated LST, especially for the cold biases during winter daytime. Figure 8 shows
the spatial distribution of the SCF from the MODIS satellite remote sensing observations,
the CLM5.0 simulated SCF, and SCF errors from CLM5.0 during winter for 2003 through
2018. The SCF over the northwestern TPwas clearly overestimated, especially in the Kunlun
and Qilian Mountains (RMSE = 31.04%, average bias = 19.92%). A higher SCF leads to
higher surface albedo, absorbing less solar radiation, and resulting in lower daytime
LST during winter (Fig. 6A). The large SCF biases from CLM5.0 simulation may have
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Figure 7 Comparison of the NASDE station LST (unit: K) between theMODIS/Aqua and in situ obser-
vations for (A, B) 1:30 p.m. and (C, D) 1:30 a.m. per day of winter and summer during 2010–2013.

Full-size DOI: 10.7717/peerj.11040/fig-7

come from: (1) the model splitting total input precipitation between snowfall and rainfall
according to empirical formulation only based on air temperature (Lawrence et al., 2018),
which may have introduced biases in the simulation of the SCF (Dai, 2008; Ding et al.,
2014; Guo et al., 2018); (2) the SCF parameterization in CLM5.0. A new scheme (Swenson
& Lawrence, 2012) has been used since CLM4.5 to capture the seasonal snow depth-SCF
evolution. However, the parameterization scheme cannot capture the effects of the very
complex terrain structures of the northwestern and southeastern TP on the SCF, and the
fixed snow accumulation factor may have also led to inaccurate SCF simulations (Swenson
& Lawrence, 2012; Wang et al., 2020).

Third, there were deficiencies in the atmospheric forcing dataset that led to biases
in the simulated LST. The CMFD benefits from merging from observations from 753
CMA operational stations, and it was the best-available atmospheric forcing dataset in
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Figure 8 Snow cover fraction (unit: %) distributions from (A)MODIS data, (B) CLM5.0 simulations,
and (C) snow cover fraction errors between CLM5.0 andMODIS data averaged over 2003–2018 for
winter.

Full-size DOI: 10.7717/peerj.11040/fig-8

China at the time (He et al., 2020). However, the distribution of these operational CMA
stations shows large spatial variations, with almost no stations are in the northwestern
TP, which increases the likelihood of large errors in the CMFD over this region (Li et al.,
2018). Figures 9A, 9B shows that the daily downward shortwave radiation from CMFD
was almost equal to NASDE observations, but the 2-m air temperature was lower than that
from NASDE. We conducted two simulations: CMFD-run and NASDE-run, which were
forced with CMFD and NASDE observational air temperature (other variables were still
obtained from CMFD), respectively. A time series of the daytime LST values is depicted
in Fig. 9C for the two simulations and observations from January through February 2011.
Large daytime cold biases occurred when the model was forced by CMFD, and LST was
improved by forcing with more accurate observational data (LST RMSE: 10.02 K for
CMFD-run and 4.00 K for NASDE-run). These atmospheric forcing data biases affected
the simulated surface energy variables. However, they are difficult to acquire for the entire
TP areas for in situ observations, even though they may improve the simulations.

CONCLUSIONS
LST is an important variable in the surface energy budget and the energy exchanges
between the land surface and atmosphere. However, the lack of a whole region’s long-term
ground-based observations for whole regions is a barrier to understanding the important
role of LST in the land surface processes of the entire TP. Thus, remote sensing observations
and LSMs are employed to produce long-term LST records in a continuous spatiotemporal
scale.
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Figure 9 Time series of (A) daily downward shortwave radiation, (B) daily air temperature from
CMFD forcing (blue line) and NASDE observations (red line); (C) daytime LST for CMFD-run (blue
line), NASDE-run (red line), and NASDE observations (black line) during January through February
2011.

Full-size DOI: 10.7717/peerj.11040/fig-9

In this work, we employed in situ observations, MODIS remoter sensing LST and
surface emissivity products, and GLEAM ET and SM products to evaluate the ability of
CLM5.0 to simulate the diurnal LST cycle for the whole TP. The results showed that the
LST biases display large spatial and diurnal variations: (1) during the daytime, cold biases
were dominant over most of the TP in winter, whereas areas with negative LST biases
were mainly observed for bare-ground regions in summer; (2) during the nighttime, areas
with positive LST biases covered the whole TP for both seasons. These large biases in LST
encouraged us to improve the ability of CLM5.0 to simulate diurnal LST variations by
modifying the computation of the surface energy balance.
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Three modifications to the model physics were investigated to resolve the above LST
deficiencies: (1) the revision of ground sensible heat roughness length (z0h,g ) from Zeng,
Wang & Wang (2012) was implemented into CLM5.0; (2) the recommended soil thermal
conductivity scheme from Dai et al. (2019), which was formulated with volumetric
SOM and soil gravel fractions; and (3) a modification of soil evaporation resistance
parameterization that was more suitable for the sandier soil of the TP. Four numerical
experiments were designed to assess the impact of these three above modifications on
model performance.

The revision of z0h,g in CLM5.0 reduced the cold biases in the daytime over bare soil
regions (Qaidam Basin and western TP), but its effects were negligible at nighttime. The
recommended soil thermal conductivity scheme obviously improved the calculation of
soil thermal conductivity compared with in situ observations (‘Impact of soil thermal
conductivity on LST’). The regional application of modified soil thermal conductivity
parameterization in CLM5.0 significantly improved the simulated LST during daytime
and nighttime. The modification of soil evaporation resistance parameterization increased
the soil evaporation, reproduced more accurate ET and SM compared with GLEAM
products, and further improved diurnal LST variations in both seasons. In summary,
the improvements in the simulated LST resulting from EXP2 and EXP3 highlight the
importance of the effects of soil texture on soil thermal properties and soil evaporation,
and further indicat the crucial role of accurate soil texture information in determining the
land surface energy and water budget.

Three factors were discussed to investigate the possible reasons associated with the
LST biases between the model simulations and MODIS observations: the uncertainties
in the satellite remote sensing LST data, the deficiencies in the simulated SCF, and the
atmospheric forcing data. It is unclear which factor is dominant. Regardless, accurate
soil texture information and more realistic soil thermal conductivity and soil evaporation
resistance parameterization schemes significantly influence the accuracy of the simulated
LST. This work showed that remotely sensed LST has the potential to be used in CLM5.0
simulations to evaluated diurnal LST variations over the entire TP, which may further help
to assess model parameters and land surface schemes.

ACKNOWLEDGEMENTS
The authors thank Dr. Yaoming Ma in the Institute of Tibetan Plateau Research, Chinese
Academy of Sciences (CAS) and Dr. Zeyong Hu in the Northwest Institute of Eco-
Environment and Resources, CAS for their help with in situ observations for NASDE
and BJ station, respectively. We thank Northwest Agriculture & Forestry University for
providing us with high-performance computing resources. Finally, we thank anonymous
reviewers for their constructive comments and suggestions to improve the quality of this
study.

Ma et al. (2021), PeerJ, DOI 10.7717/peerj.11040 21/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.11040


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was supported by the National Key R & D Program of China on monitoring,
early warning, and prevention of major natural disasters (No. 2018YFC150703) and the
National Natural Science Foundation of China (No. 91637209, No. 91737306). The funders
had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Key R & D Program of China: 2018YFC150703.
National Natural Science Foundation of China: 91637209, 91737306.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Xiaogang Ma conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.
• Jiming Jin conceived and designed the experiments, authored or reviewed drafts of the
paper, and approved the final draft.
• Lingjing Zhu and Jian Liu analyzed the data, authored or reviewed drafts of the paper,
and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Raw measurements are available in Supplementary Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.11040#supplemental-information.

REFERENCES
BabelW. 2013. Site-specific modelling of turbulent fluxes on the Tibetan Plateau. Ger-

many: Universitaet Bayreuth.
Bi H, Ma J, ZhengW, Zeng J. 2016. Comparison of soil moisture in GLDAS model

simulations and in situ observations over the Tibetan Plateau. Journal of Geophysical
Research: Atmospheres 121:2658–2678.

Bittelli M, Ventura F, Campbell GS, Snyder RL, Gallegati F, Pisa PR. 2008. Coupling
of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils.
Journal of Hydrology 362:191–205 DOI 10.1016/j.jhydrol.2008.08.014.

Ma et al. (2021), PeerJ, DOI 10.7717/peerj.11040 22/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.11040#supplemental-information
http://dx.doi.org/10.7717/peerj.11040#supplemental-information
http://dx.doi.org/10.7717/peerj.11040#supplemental-information
http://dx.doi.org/10.1016/j.jhydrol.2008.08.014
http://dx.doi.org/10.7717/peerj.11040


Bonan GB, Oleson KW, VertensteinM, Levis S, Zeng X, Dai Y, Dickinson RE, Yang
Z-L. 2002. The land surface climatology of the Community Land Model coupled
to the NCAR Community Climate Model. Journal of Climate 15:3123–3149
DOI 10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2.

Chang Y, Ding Y, Zhao Q, Zhang S. 2020. A comprehensive evaluation of 4-parameter
diurnal temperature cycle models with in situ and MODIS LST over Alpine Mead-
ows in the Tibetan Plateau. Remote Sensing 12:103.

Chen J, Wen J, Tian H, Zhang T, Yang X, Jia D, Lai X. 2018. A study of soil thermal
and hydraulic properties and parameterizations for CLM in the SRYR. Journal of
Geophysical Research: Atmospheres 123:8487–8499.

Chen Y, Yang K, He J, Qin J, Shi J, Du J, He Q. 2011. Improving land surface tempera-
ture modeling for dry land of China. Journal of Geophysical Research: Atmospheres
116.

Chen Y, Yang K, TangW, Qin J, Zhao L. 2012. Parameterizing soil organic carbon’s
impacts on soil porosity and thermal parameters for Eastern Tibet grasslands. Science
China Earth Sciences 55:1001–1011 DOI 10.1007/s11430-012-4433-0.

Crawford TM, Duchon CE. 1999. An improved parameterization for estimating effective
atmospheric emissivity for use in calculating daytime downwelling longwave
radiation. Journal of Applied Meteorology 38:474–480
DOI 10.1175/1520-0450(1999)038<0474:AIPFEE>2.0.CO;2.

Dai A. 2008. Temperature and pressure dependence of the rain–snow phase transition
over land and ocean. Geophysical Research Letters 35:L12802 DOI 10.1029/2008GL033295.

Dai Y,Wei N, Yuan H, Zhang S, ShangguanW, Liu S, Lu X, Xin Y. 2019. Evaluation
of soil thermal conductivity schemes for use in land surface modeling. Journal of
Advances in Modeling Earth Systems 11:3454–3473 DOI 10.1029/2019MS001723.

Deng Y,Wang S, Bai X, Tian Y,Wu L, Xiao J, Chen F, Qian Q. 2018. Relationship
among land surface temperature and LUCC, NDVI in typical karst area. Scientific
Reports 8:1–12 DOI 10.1038/s41598-017-17765-5.

Ding B, Yang K, Qin J, Wang L, Chen Y, He X. 2014. The dependence of precipitation
types on surface elevation and meteorological conditions and its parameterization.
Journal of Hydrology 513:154–163 DOI 10.1016/j.jhydrol.2014.03.038.

Duan A, Li F, WangM,WuG. 2011. Persistent weakening trend in the spring sensible
heat source over the Tibetan Plateau and its impact on the Asian summer monsoon.
Journal of Climate 24:5671–5682 DOI 10.1175/JCLI-D-11-00052.1.

Duan A,Wu G. 2006. Change of cloud amount and the climate warming on the Tibetan
Plateau. Geophysical Research Letters 33:L22704 DOI 10.1029/2006GL027946.

Duan S, Li Z, Li H, Göttsche F, WuH, ZhaoW, Leng P, Zhang X, Coll C. 2019. Valida-
tion of Collection 6 MODIS land surface temperature product using in situ measure-
ments. Remote Sensing of Environment 225:16–29 DOI 10.1016/j.rse.2019.02.020.

Fallah B, Cubasch U, Prömmel K, Sodoudi S. 2016. A numerical model study on the
behaviour of Asian summer monsoon and AMOC due to orographic forcing of
Tibetan Plateau. Climate Dynamics 47:1485–1495 DOI 10.1007/s00382-015-2914-5.

Ma et al. (2021), PeerJ, DOI 10.7717/peerj.11040 23/29

https://peerj.com
http://dx.doi.org/10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2
http://dx.doi.org/10.1007/s11430-012-4433-0
http://dx.doi.org/10.1175/1520-0450(1999)038<0474:AIPFEE>2.0.CO;2
http://dx.doi.org/10.1029/2008GL033295
http://dx.doi.org/10.1029/2019MS001723
http://dx.doi.org/10.1038/s41598-017-17765-5
http://dx.doi.org/10.1016/j.jhydrol.2014.03.038
http://dx.doi.org/10.1175/JCLI-D-11-00052.1
http://dx.doi.org/10.1029/2006GL027946
http://dx.doi.org/10.1016/j.rse.2019.02.020
http://dx.doi.org/10.1007/s00382-015-2914-5
http://dx.doi.org/10.7717/peerj.11040


Fu Y, Ma Y, Zhong L, Yang Y, Guo X,Wang C, Xu X, Yang K, Xu X, Liu L. 2020. Land-
surface processes and summer-cloud-precipitation characteristics in the Tibetan
Plateau and their effects on downstream weather: a review and perspective. National
Science Review 7:500–515 DOI 10.1093/nsr/nwz226.

Gao K, Duan A, Chen D,Wu G. 2019. Surface energy budget diagnosis reveals possible
mechanism for the different warming rate among Earth’s three poles in recent
decades. Science Bulletin 64:1140–1143 DOI 10.1016/j.scib.2019.06.023.

Gao Y, Xiao L, Chen D, Chen F, Xu J, Xu Y. 2017. Quantification of the relative role
of land-surface processes and large-scale forcing in dynamic downscaling over the
Tibetan Plateau. Climate Dynamics 48:1705–1721 DOI 10.1007/s00382-016-3168-6.

Gonzalez Miralles D, Holmes T, De Jeu R, Gash J, Meesters A, Dolman A. 2011. Global
land-surface evaporation estimated from satellite-based observations. Hydrology and
Earth System Sciences 45:453–469.

Guillod BP, Orlowsky B, Miralles DG, Teuling AJ, Seneviratne SI. 2015. Reconciling
spatial and temporal soil moisture effects on afternoon rainfall. Nature Communica-
tions 6:1–6.

Guo D,Wang A, Li D, HuaW. 2018. Simulation of changes in the near–surface soil
freeze/thaw cycle using clm4, 5 with four atmospheric forcing data sets. Journal of
Geophysical Research: Atmospheres 123:2509–2523.

He J, Yang K, TangW, Lu H, Qin J, Chen Y, Li X. 2020. The first high-resolution
meteorological forcing dataset for land process studies over China. Scientific Data
7:1–11 DOI 10.1038/s41597-019-0340-y.

HuG, Zhao L, Li R,Wu X,Wu T, Xie C, Zhu X, Hao J. 2020. Estimation of ground
temperatures in permafrost regions of the Qinghai-Tibetan Plateau from climatic
variables. Theoretical and Applied Climatology 140:1081–1091.

Ji P, Yuan X, Li D. 2020. Atmospheric radiative processes accelerate ground surface
warming over the southeastern Tibetan Plateau during 1998–2013. Journal of Climate
33:1881–1895 DOI 10.1175/JCLI-D-19-0410.1.

Jin M, Dickinson RE. 2010. Land surface skin temperature climatology: benefitting from
the strengths of satellite observations. Environmental Research Letters 5:044004
DOI 10.1088/1748-9326/5/4/044004.

Jin M, Liang S. 2006. An improved land surface emissivity parameter for land surface
models using global remote sensing observations. Journal of Climate 19:2867–2881
DOI 10.1175/JCLI3720.1.

Jin MS, Mullens TJ. 2012. Land–biosphere–atmosphere interactions over the Tibetan
plateau from MODIS observations. Environmental Research Letters 7:014003
DOI 10.1088/1748-9326/7/1/014003.

Johannsen F, Ermida S, Martins J, Trigo IF, Nogueira M, Dutra E. 2019. Cold Bias of
ERA5 summertime daily maximum land surface temperature over Iberian Peninsula.
Remote Sensing 11:2570 DOI 10.3390/rs11212570.

Johansen O. 1977. Thermal conductivity of soils, cold regions research and engineering
laboratory report 637. Hanover, US Army Corps of Engineers.

Ma et al. (2021), PeerJ, DOI 10.7717/peerj.11040 24/29

https://peerj.com
http://dx.doi.org/10.1093/nsr/nwz226
http://dx.doi.org/10.1016/j.scib.2019.06.023
http://dx.doi.org/10.1007/s00382-016-3168-6
http://dx.doi.org/10.1038/s41597-019-0340-y
http://dx.doi.org/10.1175/JCLI-D-19-0410.1
http://dx.doi.org/10.1088/1748-9326/5/4/044004
http://dx.doi.org/10.1175/JCLI3720.1
http://dx.doi.org/10.1088/1748-9326/7/1/014003
http://dx.doi.org/10.3390/rs11212570
http://dx.doi.org/10.7717/peerj.11040


Lawrence D, Fisher R, Koven C, Oleson K, Swenson S, VertensteinM, Andre B, Bonan
G, Ghimire B, vanKampenhout L. 2018. Technical description of version 5.0 of the
Community Land Model (CLM). In: NCAR Technical Note NCAR/TN-478+ STR
257. National Center for Atmospheric Research (NCAR).

Lawrence PJ, Chase TN. 2007. Representing a new MODIS consistent land surface in the
Community Land Model (CLM 3.0). Journal of Geophysical Research: Biogeosciences
112:G01023 DOI 10.1029/2006JG000168.

Lehmann P, Merlin O, Gentine P, Or D. 2018. Soil texture effects on surface resistance to
bare–soil evaporation. Geophysical Research Letters 45(10):398–310.

Li C, Lu H, Leung LR, Yang K, Li H,WangW, HanM, Chen Y. 2019a. Improving
land surface temperature simulation in CoLM over the Tibetan Plateau through
fractional vegetation cover derived from a remotely sensed clumping index and
model–simulated leaf area index. Journal of Geophysical Research: Atmospheres
124:2620–2642.

Li C, Lu H, Yang K, HanM,Wright JS, Chen Y, Yu L, Xu S, Huang X, GongW. 2018.
The evaluation of SMAP enhanced soil moisture products using high-resolution
model simulations and in-situ observations on the Tibetan Plateau. Remote Sensing
10:535 DOI 10.3390/rs10040535.

Li X, Long D, Han Z, Scanlon BR, Sun Z, Han P, Hou A. 2019b. Evapotranspiration
estimation for Tibetan plateau headwaters using conjoint terrestrial and atmo-
spheric water balances and multisource remote sensing.Water Resources Research
55:8608–8630 DOI 10.1029/2019WR025196.

Liu G, Hu Z, Han G, Pei C. 2020. Assessment of freeze-thaw process simulation in
qinghai-tibetan plateau by different parameterization schemes based on noah-MP
Land surface model. Plateau Meteorology 39:1–14.

Lu F, HuH, SunW, Zhu J, Liu G, ZhouW, Zhang Q, Shi P, Liu X,Wu X. 2018a. Effects
of national ecological restoration projects on carbon sequestration in China from
2001 to 2010. Proceedings of the National Academy of Sciences 115:4039–4044
DOI 10.1073/pnas.1700294115.

Lu L, Zhang T,Wang T, Zhou X. 2018b. Evaluation of collection-6 MODIS land surface
temperature product using multi-year ground measurements in an arid area of
Northwest China. Remote Sensing 10:1852 DOI 10.3390/rs10111852.

Lu H, Zheng D, Yang K, Yang F. 2020. Last decade progress in understanding and
modeling the land surface processes on the Tibetan Plateau. Hydrology and Earth
System Sciences 24:5745–5758 DOI 10.5194/hess-24-5745-2020.

Luo S, Fang X, Lyu S, Zhang Y, Chen B. 2017. Improving CLM4, 5 simulations of land–
atmosphere exchange during freeze–thaw processes on the Tibetan Plateau. Journal
of Meteorological Research 31:916–930 DOI 10.1007/s13351-017-6063-0.

Luo S, Lu S, Zhang Y, Hu Z, Ma Y, Li S, Shang L. 2009. Soil thermal conductivity
parameterization establishment and application in numerical model of central
Tibetan Plateau. Chinese Journal of Geophysics 919–928.

Ma et al. (2021), PeerJ, DOI 10.7717/peerj.11040 25/29

https://peerj.com
http://dx.doi.org/10.1029/2006JG000168
http://dx.doi.org/10.3390/rs10040535
http://dx.doi.org/10.1029/2019WR025196
http://dx.doi.org/10.1073/pnas.1700294115
http://dx.doi.org/10.3390/rs10111852
http://dx.doi.org/10.5194/hess-24-5745-2020
http://dx.doi.org/10.1007/s13351-017-6063-0
http://dx.doi.org/10.7717/peerj.11040


MaX, Jin J, Liu J, Niu G-Y. 2019b. An improved vegetation emissivity scheme for land
surface modeling and its impact on snow cover simulations. Climate Dynamics
53:6215–6226 DOI 10.1007/s00382-019-04924-9.

Ma Y, Kang S, Zhu L, Xu B, Tian L, Yao T. 2008. Tibetan observation and research plat-
form: atmosphere–land interaction over a heterogeneous landscape. Bulletin of the
American Meteorological Society 89:1487–1492 DOI 10.1175/1520-0477-89.10.1469.

Martens B, Gonzalez Miralles D, Lievens H, VanDer Schalie R, De Jeu RA, Fernández-
Prieto D, Beck HE, DorigoW, Verhoest N. 2017. GLEAM v3: satellite-based
land evaporation and root-zone soil moisture. Geoscientific Model Development
10:1903–1925 DOI 10.5194/gmd-10-1903-2017.

Martens B,WaegemanW, DorigoWA, Verhoest NE, Miralles DG. 2018. Terrestrial
evaporation response to modes of climate variability. NPJ Climate and Atmospheric
Science 1:1–7 DOI 10.1038/s41612-017-0007-3.

Miralles DG, Van Den BergMJ, Gash JH, Parinussa RM, De Jeu RA, Beck HE, Holmes
TR, Jiménez C, Verhoest NE, DorigoWA. 2014. El Niño–La Niña cycle and
recent trends in continental evaporation. Nature Climate Change 4:122–126
DOI 10.1038/nclimate2068.

Nogueira M, Albergel C, Boussetta S, Johannsen F, Trigo IF, Ermida SL, Martins
J, Dutra E. 2020. Role of vegetation in representing land surface temperature
in the CHTESSEL (CY45R1) and SURFEX-ISBA (v8. 1) land surface mod-
els: a case study over Iberia. Geoscientific Model Development 13:3975–3993
DOI 10.5194/gmd-13-3975-2020.

Oku Y, Ishikawa H, Haginoya S, Ma Y. 2006. Recent trends in land surface temperature
on the Tibetan Plateau. Journal of Climate 19:2995–3003 DOI 10.1175/JCLI3811.1.

Orth R, Dutra E, Trigo IF, Balsamo G. 2017. Advancing land surface model development
with satellite-based Earth observations. Hydrology and Earth System Sciences
21:2483–2495 DOI 10.5194/hess-21-2483-2017.

Pablos M, Martínez-Fernández J, Piles M, Sánchez N, Vall-llossera M, Camps A.
2016.Multi-temporal evaluation of soil moisture and land surface tempera-
ture dynamics using in situ and satellite observations. Remote Sensing 8:587
DOI 10.3390/rs8070587.

Pan Y, Lyu S, Li S, Gao Y, Meng X, Ao Y,Wang S. 2017. Simulating the role of gravel
in freeze–thaw process on the Qinghai–Tibet Plateau. Theoretical and Applied
Climatology 127:1011–1022 DOI 10.1007/s00704-015-1684-7.

Phan TN, Kappas M. 2018. Application of MODIS land surface temperature data:
a systematic literature review and analysis. Journal of Applied Remote Sensing
12:041501.

Qing-bai LD-lW,Mao-cang T. 2005. The time-space variety characteristics of the surface
temperature over the Qinghai-Tibet Plateau. Science & Technology Review 1:18–22.

Qiu J. 2008. China: the third pole. Nature 454:393–396 DOI 10.1038/454393a.
Schumacher DL, Keune J, Van Heerwaarden CC, De Arellano JV-G, Teuling AJ,

Miralles DG. 2019. Amplification of mega-heatwaves through heat torrents fuelled
by upwind drought. Nature Geoscience 12:712–717 DOI 10.1038/s41561-019-0431-6.

Ma et al. (2021), PeerJ, DOI 10.7717/peerj.11040 26/29

https://peerj.com
http://dx.doi.org/10.1007/s00382-019-04924-9
http://dx.doi.org/10.1175/1520-0477-89.10.1469
http://dx.doi.org/10.5194/gmd-10-1903-2017
http://dx.doi.org/10.1038/s41612-017-0007-3
http://dx.doi.org/10.1038/nclimate2068
http://dx.doi.org/10.5194/gmd-13-3975-2020
http://dx.doi.org/10.1175/JCLI3811.1
http://dx.doi.org/10.5194/hess-21-2483-2017
http://dx.doi.org/10.3390/rs8070587
http://dx.doi.org/10.1007/s00704-015-1684-7
http://dx.doi.org/10.1038/454393a
http://dx.doi.org/10.1038/s41561-019-0431-6
http://dx.doi.org/10.7717/peerj.11040


ShangguanW, Dai Y, Liu B, Zhu A, Duan Q,Wu L, Ji D, Ye A, Yuan H, Zhang Q. 2013.
A China data set of soil properties for land surface modeling. Journal of Advances in
Modeling Earth Systems 5:212–224 DOI 10.1002/jame.20026.

Shi C,Wang K, Sun C, Zhang Y, He Y,Wu X, Gao C,Wu G, Shu L. 2019. Significantly
lower summer minimum temperature warming trend on the southern Tibetan
Plateau than over the Eurasian continent since the Industrial Revolution. Environ-
mental Research Letters 14:124033 DOI 10.1088/1748-9326/ab55fc.

Sobrino JA, Jiménez-Muñoz JC, VerhoefW. 2005. Canopy directional emissiv-
ity: comparison between models. Remote Sensing of Environment 99:304–314
DOI 10.1016/j.rse.2005.09.005.

Swenson SC, Lawrence D. 2012. A new fractional snow–covered area parameterization
for the Community Land Model and its effect on the surface energy balance. Journal
of Geophysical Research: Atmospheres 117:D21107 DOI 10.1029/2012JD018178.

Swenson S, Lawrence D. 2014. Assessing a dry surface layer–based soil resistance
parameterization for the Community Land Model using GRACE and FLUXNET–
MTE data. Journal of Geophysical Research: Atmospheres 119(10):299–210.

Tian L, Jin J, Wu P, G-y Niu, Zhao C. 2020.High-resolution simulations of mean and
extreme precipitation with WRF for the soil-erosive Loess Plateau. Climate Dynamics
54:3489–3506 DOI 10.1007/s00382-020-05178-6.

Trigo I, Boussetta S, Viterbo P, Balsamo G, Beljaars A, Sandu I. 2015. Comparison
of model land skin temperature with remotely sensed estimates and assessment
of surface–atmosphere coupling. Journal of Geophysical Research: Atmospheres
120:12,096-012,111.

Van de Griend AA, OweM. 1994. Bare soil surface resistance to evaporation by va-
por diffusion under semiarid conditions.Water Resources Research 30:181–188
DOI 10.1029/93WR02747.

Wan Z. 2008. New refinements and validation of the MODIS land-surface tem-
perature/emissivity products. Remote Sensing of Environment 112:59–74
DOI 10.1016/j.rse.2006.06.026.

WanW, Li H, Xie H, Hong Y, Long D, Zhao L, Han Z, Cui Y, Liu B,Wang C. 2017. A
comprehensive data set of lake surface water temperature over the Tibetan Plateau
derived from MODIS LST products 2001–2015. Scientific Data 4:1–10.

Wan Z. 2013. Collection-6 MODIS land surface temperature products users’ guide. Santa
Barbara: ICESS, University of California.

Wan Z, Zhang Y, Zhang Q, Li Z. 2002. Validation of the land-surface temperature prod-
ucts retrieved from Terra Moderate Resolution Imaging Spectroradiometer data.
Remote Sensing of Environment 83:163–180 DOI 10.1016/S0034-4257(02)00093-7.

Wang A, Barlage M, Zeng X, Draper CS. 2014. Comparison of land skin temperature
from a land model, remote sensing, and in situ measurement. Journal of Geophysical
Research: Atmospheres 119:3093–3106.

Ma et al. (2021), PeerJ, DOI 10.7717/peerj.11040 27/29

https://peerj.com
http://dx.doi.org/10.1002/jame.20026
http://dx.doi.org/10.1088/1748-9326/ab55fc
http://dx.doi.org/10.1016/j.rse.2005.09.005
http://dx.doi.org/10.1029/2012JD018178
http://dx.doi.org/10.1007/s00382-020-05178-6
http://dx.doi.org/10.1029/93WR02747
http://dx.doi.org/10.1016/j.rse.2006.06.026
http://dx.doi.org/10.1016/S0034-4257(02)00093-7
http://dx.doi.org/10.7717/peerj.11040


Wang K, Liang S. 2009. Evaluation of ASTER and MODIS land surface tempera-
ture and emissivity products using long-term surface longwave radiation ob-
servations at SURFRAD sites. Remote Sensing of Environment 113:1556–1565
DOI 10.1016/j.rse.2009.03.009.

Wang K,Wan Z,Wang P, SparrowM, Liu J, Haginoya S. 2007. Evaluation and improve-
ment of the MODIS land surface temperature/emissivity products using ground–
based measurements at a semi–desert site on the western Tibetan Plateau. Interna-
tional Journal of Remote Sensing 28:2549–2565 DOI 10.1080/01431160600702665.

Wang Y, Xie Z, Jia B,Wang L, Li R, Liu B, Chen S, Xie J, Qin P. 2020. Sensitivity of Snow
Simulations to Different Atmospheric Forcing Data Sets in the Land Surface Model
CAS–LSM. Journal of Geophysical Research: Atmospheres 125:e2019JD032001.

Wang Y, Xu X, Liu H, Li Y, Li Y, Hu Z, Gao X, Ma Y, Sun J, LenschowDH. 2016.
Analysis of land surface parameters and turbulence characteristics over the Tibetan
Plateau and surrounding region. Journal of Geophysical Research: Atmospheres
121:9540–9560.

Wang Z, Yang S, Duan A, HuaW, Ullah K, Liu S. 2019. Tibetan Plateau heating as a
driver of monsoon rainfall variability in Pakistan. Climate Dynamics 52:6121–6130
DOI 10.1007/s00382-018-4507-6.

Xue Y, Ma Y, Li Q. 2017. Land–climate interaction over the Tibetan Plateau. Oxford Re-
search Encyclopedia, Climate Science 1:1 DOI 10.1093/acrefore/9780190228620.013.592.

Yamanaka T, Takeda A, Shimada J. 2006. Formation of the dry surface layer and its
effect on bare soil evaporation: field observation and numerical experiments. Chiba
University. Center for Environmental Remote Sensing 2:117–122.

Yamanaka T, Yonetani T. 1999. Dynamics of the evaporation zone in dry sandy soils.
Journal of Hydrology 217:135–148 DOI 10.1016/S0022-1694(99)00021-9.

Yang K, Koike T, Fujii H, Tamagawa K, Hirose N. 2002. Improvement of surface flux
parametrizations with a turbulence–related length. Quarterly Journal of the Royal
Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and
Physical Oceanography 128:2073–2087 DOI 10.1256/003590002320603548.

Yang K, Koike T, Ye B, Bastidas L. 2005. Inverse analysis of the role of soil vertical
heterogeneity in controlling surface soil state and energy partition. Journal of
Geophysical Research: Atmospheres 110.

You Q,Wu T, Shen L, Pepin N, Zhang L, Jiang Z,Wu Z, Kang S, AghaKouchak
A. 2020. Review of snow cover variation over the Tibetan Plateau and its
influence on the broad climate system. Earth-Science Reviews 201:103043
DOI 10.1016/j.earscirev.2019.103043.

Zeng X,Wang Z,Wang A. 2012. Surface skin temperature and the interplay between
sensible and ground heat fluxes over arid regions. Journal of Hydrometeorology
13:1359–1370 DOI 10.1175/JHM-D-11-0117.1.

Zhang G, Yao T, Xie H, Qin J, Ye Q, Dai Y, Guo R. 2014. Estimating surface temperature
changes of lakes in the Tibetan Plateau using MODIS LST data. Journal of Geophysi-
cal Research: Atmospheres 119:8552–8567.

Ma et al. (2021), PeerJ, DOI 10.7717/peerj.11040 28/29

https://peerj.com
http://dx.doi.org/10.1016/j.rse.2009.03.009
http://dx.doi.org/10.1080/01431160600702665
http://dx.doi.org/10.1007/s00382-018-4507-6
http://dx.doi.org/10.1093/acrefore/9780190228620.013.592
http://dx.doi.org/10.1016/S0022-1694(99)00021-9
http://dx.doi.org/10.1256/003590002320603548
http://dx.doi.org/10.1016/j.earscirev.2019.103043
http://dx.doi.org/10.1175/JHM-D-11-0117.1
http://dx.doi.org/10.7717/peerj.11040


Zhang L, Lei H, Shen H, Cong Z, Yang D, Liu T. 2019. Evaluating the representation of
vegetation phenology in the Community Land Model 4.5 in a temperate grassland.
Journal of Geophysical Research: Biogeosciences 124:187–210.

Zheng D, Velde Rvander, Su Z, Booij MJ, Hoekstra AY,Wen J. 2014. Assess-
ment of roughness length schemes implemented within the Noah land sur-
face model for high-altitude regions. Journal of Hydrometeorology 15:921–937
DOI 10.1175/JHM-D-13-0102.1.

Zheng D, Velde Rvander, Su Z,Wang X,Wen J, Booij MJ, Hoekstra AY, Chen Y.
2015. Augmentations to the Noah model physics for application to the Yellow
River source area Part II: turbulent heat fluxes and soil heat transport,. Journal of
Hydrometeorology 16:2677–2694 DOI 10.1175/JHM-D-14-0199.1.

Zhong L, Ma Y, Su Z, SalamaMS. 2010. Estimation of land surface temperature over the
Tibetan Plateau using AVHRR and MODIS data. Advances in Atmospheric Sciences
27:1110–1118 DOI 10.1007/s00376-009-9133-0.

Zhu L, Jin J, Liu Y. 2020.Modeling the effects of lakes in the Tibetan Plateau on diurnal
variations of regional climate and their seasonality. Journal of Hydrometeorology
21:2523–2536 DOI 10.1175/JHM-D-20-0091.1.

Ma et al. (2021), PeerJ, DOI 10.7717/peerj.11040 29/29

https://peerj.com
http://dx.doi.org/10.1175/JHM-D-13-0102.1
http://dx.doi.org/10.1175/JHM-D-14-0199.1
http://dx.doi.org/10.1007/s00376-009-9133-0
http://dx.doi.org/10.1175/JHM-D-20-0091.1
http://dx.doi.org/10.7717/peerj.11040

