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Mice are the most widely used animal model to study genotype to phenotype
relationships. Inbred mice are genetically identical, which eliminates genetic heterogeneity
and makes them particularly useful for genetic studies. Many different strains have been
bred over decades and a vast amount of phenotypic data has been generated. In addition,
recently whole genome sequencing-based genome-wide genotype data for many widely
used inbred strains has been released. Here, we present an approach for in silico fine-
mapping that uses genotypic data of 37 inbred mouse strains together with phenotypic
data provided by the user to propose candidate variants and genes for the phenotype
under study. Public genome-wide genotype data covering more than 74 million variant
sites is queried efficiently in real-time to provide those variants that are compatible with
the observed phenotype differences between strains. Variants can be filtered by molecular
consequences and by corresponding molecular impact. Candidate gene lists can be
generated from variant lists on the fly. Fine-mapping together with annotation or filtering
of results is provided in a Bioconductor package called MouseFM. In order to characterize
candidate variant lists under various settings, MouseFM was applied to two expression
data sets across 20 inbred mouse strains, one from neutrophils and one from CD4+ T cells.
Fine-mapping was assessed for about 10,000 genes, respectively, and identified candidate
variants and haplotypes for many expression quantitative trait loci (eQTLs) reported
previously based on these data. For albinism, MouseFM reports only one variant allele of
moderate or high molecular impact that only albino mice share: a missense variant in the
Tyr gene, reported previously to be causal for this phenotype. Performing in silico fine-
mapping for interfrontal bone formation in mice using four strains with and five strains
without interfrontal bone results in 12 genes. Of these, three are related to skull shaping
abnormality. Finally performing fine-mapping for dystrophic cardiac calcification by
comparing 9 strains showing the phenotype with 8 strains lacking it, we identify only one
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moderate impact variant in the known causal gene Abcc6. In summary, this illustrates the
benefit of using MouseFM for candidate variant and gene identification.
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ABSTRACT13

Mice are the most widely used animal model to study genotype to phenotype relationships. Inbred mice

are genetically identical, which eliminates genetic heterogeneity and makes them particularly useful for

genetic studies. Many different strains have been bred over decades and a vast amount of phenotypic

data has been generated. In addition, recently whole genome sequencing-based genome-wide genotype

data for many widely used inbred strains has been released. Here, we present an approach for in silico

fine-mapping that uses genotypic data of 37 inbred mouse strains together with phenotypic data provided

by the user to propose candidate variants and genes for the phenotype under study. Public genome-wide

genotype data covering more than 74 million variant sites is queried efficiently in real-time to provide

those variants that are compatible with the observed phenotype differences between strains. Variants

can be filtered by molecular consequences and by corresponding molecular impact. Candidate gene

lists can be generated from variant lists on the fly. Fine-mapping together with annotation or filtering of

results is provided in a Bioconductor package called MouseFM. In order to characterize candidate variant

lists under various settings, MouseFM was applied to two expression data sets across 20 inbred mouse

strains, one from neutrophils and one from CD4+ T cells. Fine-mapping was assessed for about 10,000

genes, respectively, and identified candidate variants and haplotypes for many expression quantitative

trait loci (eQTLs) reported previously based on these data. For albinism, MouseFM reports only one

variant allele of moderate or high molecular impact that only albino mice share: a missense variant in

the Tyr gene, reported previously to be causal for this phenotype. Performing in silico fine-mapping for

interfrontal bone formation in mice using four strains with and five strains without interfrontal bone results

in 12 genes. Of these, three are related to skull shaping abnormality. Finally performing fine-mapping for

dystrophic cardiac calcification by comparing 9 strains showing the phenotype with 8 strains lacking it, we

identify only one moderate impact variant in the known causal gene Abcc6. In summary, this illustrates

the benefit of using MouseFM for candidate variant and gene identification.
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INTRODUCTION37

Mice are the most widely used animal models in research. Several factors such as small size, low cost of38

maintain, and fast reproduction as well as sharing disease phenotypes and physiological similarities with39

human makes them one of the most favourable animal models (Uhl and Warner, 2015). Inbred mouse40

strains are strains with all mice being genetically identical, i.e. clones, as a result of sibling mating for41

many generations, which results in eventually identical chromosome copies. When assessing genetic42

variance between mouse strains, the genome of the most commonly used inbred strain, called Black 6J43

(C57BL/6J) is typically used as reference and variants called with respect to the Black 6J mouse genome.44

For inbred mouse strains, variants are homozygous by design.45

Grupe et al. in 2001 published impressive results utilizing first genome-wide genetic data for in46

silico fine-mapping of complex traits, “reducing the time required for analysis of such [inbred mouse]47
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models from many months down to milliseconds” (Grupe et al., 2001). Darvasi commented on this48

paper that in his opinion, the benefit of in silico fine-mapping lies in the analysis of monogenic traits49

and in informing researchers prior to initiating traditional breeding-based studies. In 2007, with Cervino50

et al., he suggested to combine in silico mapping with expression information for gene prioritization51

using 20,000 and 240,000 common variants, respectively (Cervino et al., 2007). Since then, the general52

approach has been applied successfully and uncovered a number of genotype-phenotype relationships53

in inbred mice (Liao et al., 2004; Zheng et al., 2012; Hall and Lammert, 2017; Mulligan et al., 2019).54

Nonetheless, to the best of our knowledge, there is to date no tool publicly available that implements the55

idea and which allows to analyze any phenotype of interest. Such a tool is particularly helpful now that56

all genetic variation between all commonly used inbred strains is known at base pair resolution (Doran57

et al., 2016; Keane et al., 2011).58

At the same time, in the last years huge amounts of mouse phenotype data were generated, often59

in collaborative efforts and systematically for many mouse strains. Examples are phenotyping under-60

taken by the International Mouse Phenotyping Consortium (IMPC) (Dickinson et al., 2016)(Meehan61

et al., 2017) or lately also the phenotyping of the expanded BXD family of mice (Ashbrook et al.,62

2021). Data are publicly available in resources such as the mouse phenome database (MPD) (Bogue63

et al., 2018) (https://www.mousephenotype.org) or the IMPC’s website (Dickinson et al.,64

2016) (https://phenome.jax.org). Other websites such as Mouse Genome Informatics (MGI)65

(http://www.informatics.jax.org) or GeneNetwork (Mulligan et al., 2017) (https://www.66

genenetwork.org) also house phenotype data together with web browser-based functionality to in-67

vestigate genotype-phenotype relationships.68

Several of the aforementioned resources allow the user to interactively query genotypes for 70 user-69

selected inbred mouse strains for input genes or genetic regions. Moreover, the variant browser in70

GeneNetwork allows also comparison of genotypes between strains, however, data can only be extracted71

gene- or region-wise and is not accessible programmatically. No current resource thus provides the72

functionality to extract genome-wide all variants that are different between two user-specified groups of73

inbred mouse strains. Such information can be used for in silico fine-mapping and for the identification of74

candidate genes and variants underlying a phenotypic trait. Further, such a catalog of genetic differences75

between groups of strains is very useful prior to designing mouse breeding-based experiments e.g. for the76

identification or fine-mapping of quantitative trait loci (QTL).77

METHODS78

Fine-mapping approach79

Unlike previous approaches for in silico fine-mapping, here we are using whole genome sequencing-based80

variant data and thus information on all single nucleotide variation present between inbred strains. Due to81

the completeness of this variant data, we do not need to perform any statistical aggregation of variant data82

over genetic loci, but simply report all variant sites with different alleles between two groups of inbred83

strains. That is, we report all variant sites with alleles compatible with the observed phenotype difference,84

see Figure 1 for an illustration.85

In the case of a binary phenotype caused by a single variant, this causal variant is one of the variants86

that has a different allele in those strains showing the phenotype compared to those strains lacking the87

phenotype. This is the case for example for albinism and its underlying causal variant rs31191169, used88

in Figure 1 for illustration and discussed later in detail.89

This in silico fine-mapping approach can reduce the number of variants to a much smaller set of90

variants that are compatible with a phenotype. The more inbred strains are phenotyped and used for91

comparison, the more variants can be discarded because they are not compatible with the observed92

phenotypic difference.93

In the case of a quantitative phenotype, the fine-mapping can be performed in two ways. The first94

option is to obtain genetic differences between strains showing the most extreme phenotypes. The second95

option is binarization of the phenotype by applying a cutoff. Since in these cases allele differences of96

variants affecting the trait may not be fully compatible with an artificially binarized phenotype, fine-97

mapping is provided with an option that allows alleles of a certain number of strains to be incompatible98

with the phenotype, see Figure 1 for an example.99

Two important, related aspects need to be considered with respect to the in silico fine-mapping100

approach implemented in MouseFM: (i) power and (ii) significance of the MouseFM candidates with101
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Figure 1. Illustration of the in silico fine-mapping approach. Every row represents a variant site and

every column one inbred mouse strain. In this example, the phenotype is albinism and four strains are

albinos and 5 are not. Displayed are six variants, but only one variant, rs31191169, has consistently

different alleles between the albino and the other mice (G allele is here linked to albinism). With option

thr2=1 in the MouseFM package, one discordant strain would be allowed in the second strain group and

the variant in the row above rs31191169 would also be returned.

respect to chance findings. With respect to (i): The suggested fine-mapping approach considerably gains102

power when increasing the number of inbred strains with phenotype data available. This is the result of an103

explosion of the number of possible genotype combinations across the analyzed strains. Figure 2 shows104

the number of possible genotype combinations. If, e.g. for a Mendelian trait, only one combination is105

compatible with the phenotype, it is increasingly unlikely to observe this combination by chance when the106

number of strains increases. Based on these theoretical considerations, we recommend using MouseFM107

for more than 8 phenotyped strains. The number of actual genotype combinations for a given set of108

inbred strains is less than the maximum depicted in Figure 2, because of kinship between strains. One109

favourable extreme are two phenotypic groups of overall closely related strains: only few variants differ110

between the groups and will be returned by MouseFM. The opposite extreme are groups of inbred strains111

closely related only within their phenotypic group, but not across groups: many variants will differ and be112

returned by MouseFM. With respect to (ii): For a low number of strains, a random split may result in113

a similar number of candidate variants compared to a split by phenotype and false-positive candidates114

increase. The important property is though, that in a split by phenotype, true positives will be among the115

candidates and once the number of phenotyped strains increases, the candidate set becomes smaller while116

still including true positives.117

Variant data118

The database used by this tool was created based on the genetic variants database of the Mouse Genomes119

Project (https://www.sanger.ac.uk/science/data/mouse-genomes-project) of the120

Wellcome Sanger Institute. It includes whole genome sequencing-based single nucleotide variants of121

36 inbred mouse strains which have been compiled by Keane et al. (2011), see ftp://ftp-mouse.122

sanger.ac.uk/REL-1502-BAM/sample_accessions.txt for the accession code and sources.123

This well designed set of inbred mouse strains for which genome-wide variant data is available in-124

cludes classical laboratory strains (C3H/HeJ, CBA/J, A/J, AKR/J, DBA/2J, LP/J, BALB/cJ, NZO/HlLtJ,125

NOD/ShiLtJ), strains extensively used in knockout experiments (129S5SvEvBrd, 129P2/OlaHsd, 129S1/SvImJ,126

C57BL/6NJ), strains used commonly for a range of diseases (BUB/BnJ, C57BL/10J, C57BR/cdJ, C58/J,127

DBA/1J, I/LnJ, KK/HiJ, NZB/B1NJ, NZW/LacJ, RF/J, SEA/GnJ, ST/bJ) as well as wild-derived inbred128

strains from different mouse taxa (CAST/EiJ, PWK/PhJ, WSB/EiJ, SPRET/EiJ, MOLF/EiJ). Genome se-129

quencing, variant identification an characterization of 17 strains was performed by Keane et al. (2011) and130

of 13 strains by Doran et al. (2016). We downloaded the single nucleotide polymorphism (SNP) VCF file131
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Figure 2. The maximum number of genotype combinations for an overall number of inbred strains n

including up to k alternative alleles is given by ∑
n
k=1 ∑

k
j=1

(

k
j

)

and grows exponentially with respect to the

overall number of inbred strains. Further the more evenly the alleles are divided among these overall

strains, the larger the corresponding number of genotype combinations. The gray horizontal line denotes

the number of variants in MouseFM (n=74,480,058). For more than 26 strains, the maximum number of

genotype combinations are larger than the number of variant positions, and it is thus extremely unlikely to

observe a phenotype-compatible combination by chance. For 10 and more strains, there is a maximum of

more than 1000 genotype combinations, which reduces the probability of a phenotype-compatible

combination already considerably. The number of actual, observed genotype combinations depends on

the particular inbred strains used and, importantly, on their kinship.

ftp://ftp-mouse.sanger.ac.uk/current_snps/mgp.v5.merged.snps_all.dbSNP142.132

vcf.gz. Overall, it contains 78,767,736 SNPs, of which 74,873,854 are autosomal. The chromosomal133

positions map to the mouse reference genome assembly GRCm38 which is based on the Black 6J inbred134

mouse strain and by definition has no variant positions.135

Low confidence, heterozygous, missing and multiallelic variants vary by strain, in sum they are136

typically less than 5% of the autosomal variants (Figure 3, Suppl. Table 1). Exceptions are for example137

the wild-derived inbred strains, for which variant genotypes excluded from the database reach a maximum138

of 11.5% for SPRET/EiJ. There are four strains that are markedly genetically different from each other139

and all remaining strains, these are the wild-derived, inbred strains CAST/EiJ, PWK/PhJ, SPRET/EiJ and140

MOLF/EiJ, see Figure 3A. These four strains also show the highest number of missing and multiallelic141

genotypes (Figure 3B and Suppl. Table 1).142

Database143

We re-annotated the source VCF file with Ensembl Variant Effect Predictor (VEP) v100 (McLaren144

et al., 2016) using a Docker container image (https://github.com/matmu/vep). For real-time145

retrieval of variants compatible with phenotypes under various filtering criteria, the variant data was146

loaded into a MySQL database. The database consists of a single table with columns for chromosomal147

locus, the reference SNP cluster ID (rsID), variant consequences based on a controlled vocabulary from148

the sequence ontology (Eilbeck et al., 2005), the consequence categorization into variant impacts “HIGH”,149

“MODERATE”, ‘LOW” or “MODIFIER” according to the Ensembl Variation database (Hunt et al., 2018)150

(see Suppl. Table 2 for details) and the genotypes (NULL = missing, low confidence, heterozygous or151

consisting of other alleles than reference or most frequent alternative allele; 0 = homozygous for the152

reference allele, 1 = homozygous for alternative allele). SNPs with exclusively NULL genotypes were not153

loaded into the database resulting in 74,480,058 autosomal SNVs that were finally added to our database.154

These have been annotated with overall 120,927,856 consequences, i.e. on average every variant has155

two annotated consequences. Figure 4 summarizes these consequence annotations stratified by impact;156

description of consequences and annotation counts are provided in Suppl. Table 2. Most annotations157

belong to impact category “MODIFIER” (99.4%). High impact annotations are rare, because they are158

typically deleterious (0.013%). Annotation with moderate impact consequences comprise only missense,159

4/15PeerJ reviewing PDF | (2020:09:52671:2:0:NEW 3 Feb 2021)

Manuscript to be reviewed



Figure 3. A) Inbred mouse strain autosomal SNP characteristics: The number of homozygous, low

confidence, missing and multiallelic genotypes for 36 non-reference strains. For each strain, a SNP was

checked for group membership in the order low confidence → missing → multiallelic → homozygous →

heterozygous and was assigned to the first matching group. Since no SNP made it to the group with

heterozygous genotypes it is not shown in the diagram. B) Principal component analysis shows four

outlier inbred strains, CAST/EiJ, PWK/PhJ, SPRET/EiJ and MOLF/EiJ.
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Figure 4. 74,480,058 variants have been annotated with 120,927,856 consequences. Shown here are the

number of variants annotated with a given consequence, stratified by consequence impact. For description

of consequence types see Suppl. Table 2. Both impact and consequence can be used for variant

prioritization in MouseFM. A) Impact “HIGH”; B) Impact “MODERATE”; C) Impact “LOW”: D)

Impact “MODIFIER”.

i.e. protein sequence altering variants contributing 0.204%. Low impact consequences are slightly more160

often annotated, amounting to 0.37%. Ensembl Variant Effect Predictor (VEP) annotation is loaded into161

the MouseFM database to allow for quick candidate ranking and filtering, which otherwise could not be162

performed in real-time. Additionally, all candidate variants can be retrieved unfiltered and independent of163

VEP predictions to allow for custom effect predictions, ranking and filtering.164

Bioconductor R package MouseFM165

Our fine-mapping approach was implemented as function finemap in the Bioconductor R package166

“MouseFM”. Bioconductor is a repository for open software for bioinformatics.167

The function finemap takes as input two groups of inbred strains and one or more chromosomal168

regions on the GRCm38 assembly and returns a SNP list for which the homozygous genotypes are169

discordant between the two groups. Optionally, filters for variant consequence and impacts as well170

as a threshold for each group to allow for intra-group discordances can be passed. With function171

annotate mouse genes the SNP list can further be annotated with overlapping genes. Optionally,172

flanking regions can be passed.173

The finemap function queries the genotype data from our backend server while function annotate mouse genes174

queries the Ensembl Rest Service (Yates et al., 2015). The repository containing the backend of the175

MouseFM tool, including the scripts of the ETL (Extract, transform, load) process and the webserver,176

is available at https://github.com/matmu/MouseFM-Backend. Following the repositories’177

instructions, users may also install the data base and server application on a local server.178

The workflow and scripts to generate the MouseFM case study results are available at https:179

//github.com/iwohlers/2020\_mousefm\_finemap.180
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Figure 5. Visualization of mouse phenotypic data for which fine-mapping is performed. A) Binary

inbred mouse strain phenotype albinism. All or no mice of a strain are albinos; shown here is which strain

belongs to which group. B) Quantitative inbred mouse strain phenotype interfrontal bone (IF). Shown is

the number of mice of the respective strain having an interfrontal bone (dark blue, IF) and not having an

interfrontal bone (light blue, No IF). The interfrontal bone (IF) image is taken from (Zimmerman et al.,

2019). C) Phenotype cardiac dystrophic calcification (DCC). Five inbred strains show the phenotype and

five strains lack it.

RESULTS181

In order to characterize fine-mapping results of MouseFM for different numbers of strains and when ap-182

plying the threshold parameter allowing phenotype-incompatible strains, we used a large gene expression183

data set. Such a data set contains both (i) genes with clear binary expression phenotype, likely caused by184

a cis variant or haplotype, (ii) cases with no or no binary difference in phenotype.185

Further, as a proof of concept, we applied our in silico fine-mapping approach on three additional186

phenotypes: albinism, interfrontal bone formation and dystrophic cardiac calcification. Phenotypic data is187

illustrated in Figure 5.188

Expression quantitative trait loci189

MouseFM is particularly useful for detecting variants for which a large, binary effect on a trait can be190

observed. As such, it is useful for providing candidate variants affecting gene expression, i.e. expression191

quantitative trait loci (eQTLs). Here, we use two expression data sets to illustrate this use case as well192

as to investigate aspects of MouseFM candidate variant lists for a large number of traits with different193

charactersitics. We use neutorphil and CD4+ T cell expression data from Mostafavi et al. (2014) generated194

in the context of an eQTL study by the Immunological Genome Project. This data is available for 39195

inbred mouse strains of which 20 are part of MouseFM. Polymorphonuclear neutrophils (granulocytes)196

data is available under GEO Accession GSE60336, CD4+ T cell data under GSE60337. We downloaded197

the corresponding normalized expression data from http://rstats.immgen.org/DataPage.198

Of the strains used here, expression is assessed for two mice each, except for the Black 6J strain of which199

expression from five mice is available. Neutrophils further have expression for only one FVB mouse.200

We read in the expression data and selected all mice from the 20 MouseFM strains (n=43 for CD4+201

T cell; n= 42 for neutrophils). As Mostafavi et al. (2014), we keep only expressed genes using a cutoff202

of 120 expression on the intensity scale. This way, we obtain n=10,676 transcripts from 9,136 genes for203

T cells and n=10,137 transcripts from 8,687 genes for neutrophils, which is comparable to the numbers204

assessed by Mostafavi et al. using all 39 strains. Mostafavi et al. (2014) applied a well-designed dedicated205
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Figure 6. Summary of fine-mapping results for two expression data sets. Shown are numbers of

fine-mapped transcripts and boxplots of fine-mapped variants for these transcripts. The subset of

fine-mapped eQTL transcripts and variants according to Mostafavi et al. (2014) is colored blue, the subset

of fine-mapped eQTL transcripts without reported eQTL variant according to Mostafavi et al. (2014) is

colored red, remaining fine-mapped transcripts yellow. A) The number of successfully fine-mapped

transcripts for the neutrophil data set on log 10 scale at different allowed minimum group sizes from 1 to

10. Solid lines denote a threshold of 0 incompatible strains, dashed lines denote a threshold of 1 of

incompatible strains (thr1=1 and thr2=1). B) As A, but for CD4+ T cells. C) Boxplots of number of

fine-mapped variants for the transcripts in A (threshold 0, i.e. solid lines) for different minimum group

sizes from 1 to 10. D) As C, but for CD4+ T cells. E) Boxplots of number of fine-mapped variants for the

transcripts in A (threshold 1, i.e. dashed lines and thr1=1 and thr2=1) for different minimum group sizes

from 2 to 10. F) As E, but for CD4+ T cells.
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statistical approach to identify and interpret cis eQTLs. Briefly, they introduce a metric called TV metric206

to identify cases of bimodal gene expression and test SNPs within 1 Mb of the transcription start side using207

a linear regression model. In our experimental setting, we also use a 1 Mb cutoff and aim to detect cis208

eQTLs with MouseFM. For testing, genome-wide 96,779 SNPs were available in the study of Mostafavi209

et al.. Overall, they identified 1,111 joint T cell and neutrophil eQTLs using n=39 strains. Assessment210

with MouseFM uses about 74 million SNVs and can be considered somewhat an inverse approach to this211

previous eQTL study: It is not testing expression differences for a SNP, but it needs as input a separation212

of strains into two expression groups and identifies all compatible variants, if available. In order to assess213

characteristics of fine-mapped variants of MouseFM, we use a very crude group separation based on214

ordering strains using the mouse with minimum expression of a strain and then splitting at the rank of215

maximum difference between median expression of all mice of strains with smaller rank compared to all216

mice of strains with larger rank. We run MouseFM for smaller group size from 1 to 10. According to217

theoretical expectation (cf. Figure 2), the number of cases in which MouseFM returns candidate variants218

that are entirely compatible with phenotype decreases with increasing group size, see Figure 6A for219

neutrophils and Figure 6B for CD4+ T cells. At the same time, the proportion of previously detected220

eQTL transcripts and the number of previously identified eQTL variants increases, because the probability221

of chance findings decreases. The number of fine-mapped variants varies greatly, often being less than222

ten but also often more than 100, see Figure 6C and Figure 6D, for neutrophils and T cells, respectively.223

Cases, in which a previously reported eQTL variant was among the fine-mapped variants are comparably224

few. In these cases, the number of fine-mapped variants tends to be larger than in those cases without a225

previous eQTL variant among the fine-mapped variants. This effect is likely caused by the much smaller226

number of variants assessed in the eQTL study – we observe a variant overlap only in cases of large227

expression-compatible haplotypes. The overall number of fine-mapped variants is rather low, which may228

be because of the crude group definition. We observe that group definition sometimes can be improved,229

especially if expression is not clearly bimodal. Thus, it is useful to apply MouseFM with a threshold230

allowing for a given number of incompatible strains. We here allow for one incompatible strain in the231

first and one incompatible strain in the second group. This increases the number transcripts that could be232

fine-mapped considerably, especially for large group sizes, see Figure 6A and Figure 6B. At the same233

time, the distributions of number of fine-mapped variants are only marginally affected, see Figures 6E234

and 6F. Nearly all high TV scores and/or high effect size and/or low cis eQTL p-value genes mentioned235

by Mostafavi et al. can be fine-mapped (71 of 74), illustrating that MouseFM is particularly useful for236

detecting variants and haplotypes that are compatible with binary, high effect phenotypes.237

Albinism238

Albinism is the absence of pigmentation resulting from a lack of melanin and is well-studied in mice (Beer-239

mann et al., 2004). It is a monogenic trait caused by a mutation in the Tyr gene (Beermann et al., 2004),240

which encodes for tyrosinase, an enzyme involved in melanin synthesis. The Tyr locus has been used241

before for the validation of in silico fine-mapping approaches (Cervino et al., 2007). According to242

the Jackson Laboratory website (https://www.jax.org), 10 of the 37 inbred mouse strains are243

albinos with a Tyrc genotype (http://www.informatics.jax.org/allele/MGI:1855976),244

see Figure 5A.245

Our algorithm resulted in only one genetic locus, which includes the Tyr gene; only 245 SNPs have246

different alleles between the albino and non-albino inbred mouse strains, all located from 7:83,244,464247

to 7:95,801,713 (GRCm38). When removing SNPs except those of moderate or high impact, only one248

variant remains. This variant rs31191169 at position 7:87,493,043, with reference allele C and with249

alternative allele G in the albino strains is the previously described causal missense SNP in the Tyr gene,250

which results in a cysteine to serine amino acid change at position 103 of the tyrosine protein.251

Interfrontal bone252

Further, we applied our algorithm to the phenotype of interfrontal bone formation, a complex skeletal253

trait residing between the frontal bones in inbred mice (Figure 5B). In some inbred mouse strains, the254

interfrontal bone is present or absent in all mice, whereas other strains are polymorphic for this phenotype255

suggesting that phenotypic plasticity is involved. Phenotypic data related to interfrontal bone has recently256

been generated by Zimmerman et al. (Zimmerman et al., 2019) for 27 inbred mouse strains (Figure 5B).257

They performed QTL mapping and identified four significant loci on chromosomes 4,7,11 and 14, the258

same loci for interfrontal bone length and interfrontal bone width. For the genotyping, the authors use259
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the mapping and developmental analysis panel (MMDAP; Partners HealthCare Center for Personalized260

Genetic Medicine, Cambridge, MA, United States), which contains 748 SNPs.261

Of the available interfrontal bone data, we only used inbred strains for which all mice show the262

same phenotype. This corresponds to four strains with interfrontal bone (C57BL/6J, C57L/J, CBA/J,263

NZB/B1NJ) and five strains without interfrontal bone (C3H/HEJ, MOLF/EiJ, NZW/LacJ, WSB/EiJ,264

SPRET/EiJ).265

In silico fine-mapping resulted in 8,608 SNPs compatible with the observed interfrontal bone pheno-266

type. Of these, 15 showed moderate or high impact on 12 candidate genes, see Table 1. None of the loci267

identified by us overlaps with the markers of peak LOD score reported by Zimmerman et al., but according268

to visual inspection, two of their four QTL regions overlap with regions reported by MouseFM, one on269

chromosome 7 and one on chromosome 11. MouseFM may thus have identified variants underlying270

those two QTLs. The two other loci reported by Zimmerman et al. may have been missed by MouseFM,271

because they are driven by strains not used here. Variant rs29393437 is located in the less well described272

isoform ENSMUST00000131519.1 of Stac2, one of two isoforms of this gene. It is is a missense variant,273

changing arginine (R) to histidine (H) which is at low confidence predicted to be deleterious by SIFT.274

Stac2 has been shown to negatively regulate formation of osteoclasts, cells that dissect bone tissue (Jeong275

et al., 2018). Phf21 is expressed during ossification of cranial bones in mouse early embryonic stages and276

has been linked to craniofacial development (Kim et al., 2012). Gene Abcc6 is linked to abnormal snout277

skin morphology in mouse and abnormality of the mouth, high palate in human according to MGI.278

RSID Position Gene

rs32785405 1:36311963 Arid5a

rs27384937 2:92330761 Phf21a

rs32757904 7:45996764 Abcc6

rs32761224 7:46068710 Nomo1

rs32763636 7:46081416 Nomo1

rs13472312 7:46376829 Myod1

rs31674298 7:46443316 Sergef

rs31226051 7:49464827 Nav2

rs248206089 7:49547983 Nav2

rs45995457 9:86586988 Me1

rs29393437 11:98040971 Stac2

rs29414131 11:98042573 Stac2

rs251305478 11:98155926 Med1

rs27086373 11:98204403 Cdk12

rs27026064 11:98918145 Cdc6

Table 1. Moderate and high impact candidate variants and genes for interfrontal bone formation.

Dystrophic cardiac calcification279

Physiological calcification takes place in bones, however pathologically calcification may affect the280

cardiovascular system including vessels and the cardiac tissue. Dystrophic cardiac calcification (DCC) is281

known as calcium phosphate deposits in necrotic myocardiac tissue independently from plasma calcium282

and phosphate imbalances. We previously reported the identification of four DCC loci Dyscal1, Dyscalc2,283

Dyscalc3, and Dyscalc4 on chromosomes 7, 4, 12 and 14, respectively using QTL analysis and composite284

interval mapping (Ivandic et al., 1996, 2001). The Dyscalc1 was confirmed as major genetic determinant285

contributing significantly to DCC (Aherrahrou et al., 2004). It spans a 15.2 Mb region on proximal286

chromosome 7. Finally, chromosome 7 was further refined to a 80 kb region and Abcc6 was identified287

as causal gene (Meng et al., 2007; Aherrahrou et al., 2007). In this study we applied our algorithm to288

previously reported data on 16 mouse inbred strains which were well-characterized for DCC (Aherrahrou289

et al., 2007). Eight inbred mouse strains were found to be susceptible to DCC (C3H/HeJ, NZW/LacJ,290

129S1/SvImJ, C3H/HeH, DBA/1J, DBA/2J, BALB/cJ, NZB/B1NJ) and eight strains were resistant to291

DCC (CBA/J, FVB/NJ, AKR/J, C57BL/10J, C57BL/6J, C57BL/6NJ, C57BR/cdJ, C57L/J). 2,003 SNPs292

in 13 genetic loci were fine-mapped and found to match the observed DCC phenotype in the tested293

16 DCC strains. Of these, 19 SNPs are moderate or high impact variants affecting protein amino acid294
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sequences of 13 genes localized in two chromosomal regions mainly on chromosome 7 (45.6-46.3 Mb)295

and 11 (102.4-102.6 Mb), see Table 2. The SNP rs32753988 is compatible with the observed phenotype296

manifestations and affects the previously identified causal gene Abcc6. This SNP has a SIFT score of 0.22,297

the lowest score after two SNPs in gene Sec1 and one variant in gene Mamstr, although SIFT predicts all298

amino acid changes to be tolerated.299

RSID Position Gene

rs46174746 7:45538428 Plekha4

rs49200743 7:45634990 Rasip1

rs32122777 7:45642384 Mamstr

rs215144870 7:45679109 Sec1

rs45768641 7:45679410 Sec1

rs51645617 7:45679423 Sec1

rs31997402 7:45725284 Spaca4

rs50753342 7:45794044 Lmtk3

rs50693551 7:45794821 Lmtk3

rs52312062 7:45798406 Lmtk3

rs49106901 7:45798469 Emp3

rs47934871 7:45918097 Emp3

rs32444059 7:45942897 Ccdc114

rs32753988 7:45998774 Abcc6

rs32778283 7:46219386 Ush1c

rs31889971 7:46288929 Otog

rs50613184 11:102456258 Itga2b

rs27040377 11:102457490 Itga2b

rs29383996 11:102605308 Fzd2

Table 2. Moderate and high impact candidate variants and genes for dystrophic cardiac calcification.

DISCUSSION300

With MouseFM, we developed a novel tool for in silico-based genetic fine-mapping exploiting the301

extremely high homozygosity rate of inbred mouse strains for identifying new candidate SNPs and genes.302

Towards this, by including latest genotype data for 37 inbred mouse strains at a genome-wide scale derived303

from next generation sequencing, MouseFM uses the most detailed genetic resolution for this approach to304

date.305

Using two large expression data sets, we apply MouseFM to more than 20,000 expression phenotypes306

of diverse distributions, using different minimum group sizes and also allowing up to one incompatible307

strain per group. This results in a comprehensive characterization of MouseFM fine-mapped candidate308

variants. For low group sizes, many phenotype compatible variants can be detected, but these likely309

include many more false-positives than larger group sies. For larger group sizes, previously identified310

eQTLs of Mostafavi et al. (2014) are much more often successfully fine-mapped than expected by chance,311

which is in line with theoretical expectation that a given 10/10 group split is rather unlikely to be observed312

by chance and thus indicates a causal genetic effect. The high number of non-eQTL transcripts that313

could be fine-mapped also at large group sizes could have several sources. Firstly, we analyze only 20314

strains compared to 39 strains analyzed by Mostafavi et al. (2014), so likely not all of their eQTLs still315

apply to the smaller set of strains used here. Secondly, previously undetected eQTLs may occur in this316

smaller set, which could be tested in future work by repeating the Mostafavi et al. analysis for the exact317

same strains used by MouseFM. Lastly, these may indeed be chance findings unrelated to the expression318

phenotype, possibly confounded by strain kinship. Manual inspection would help to obtain a clearer319

picture on a case-by-case basis. Finally, the number of fine-mapped variants varies greatly, so in many320

cases, additional regulatory information will still be needed to refine the candidate variant list.321

By re-analyzing previously published fine-mapping studies for albinism and dystrophic cardiac322

calcificaton, we could show that MouseFM is capable of re-identifying causal SNPs and genes. Re-323

analyzing a study on interfrontal bone formation (IF) resulted in MouseFM loci that did not overlap the324
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overall markers of peak LOD score reported in the original study, but according to visual inspection,325

two of the corresponding QTLs. With gene Stac2 we suggest a new candidate gene possibly affecting326

interfrontal bone formation.327

We selected cases studies particularly to validate that MouseFM can identify experimentally validated328

variants and genes, such as the Tyr variant rs31191169 for albinism and the gene Abcc6 for dystrophic329

cardiac calcification. Variant rs31191169 is not a candidate variant and Abcc6 not a candidate gene, both330

are experimentally validated to be causally linked to the phenotype. Only for traits that are polygenic, e.g.331

for DCC (but not for albinism), other candidates returned by MouseFM may be linked to the phenotype,332

but they do not need to, they are only candidates to follow up on. A different type of case study relates to333

phenotype interfrontal bone formation, for which causal variants and genes are not known. Still, several334

candidate genes returned by MouseFM are plausible to affect the phenotype. In summary, additional DCC335

candidate loci beyond Abcc6 as well as identified interfrontal bone loci are valid candidate loci. Whether336

they are in fact affecting the phenotypes needs to be assessed in subsequent QTL and experimental studies.337

MouseFM performs most powerful and without limitations for Mendelian traits such as albinism.338

Secondly, it is most useful as a second-line after QTL mapping. MouseFM is specifically designed to339

accommodate this fine-mapping setting by allowing to provide start and end of a region to be analyzed.340

Complex traits and phenotypes with several large effect loci are much more challenging. For these,341

binarizing the phenotype and performing fine-mapping with MouseFM is not guaranteed to include all342

causal variants and genes (unlike Mendelian traits). For this reason, we added the option to allow for343

a user-selected number of outlier strains, which have a genotype discordant with the phenotype. The344

rationale behind this is identification of genomic regions which are more similar in those strains showing345

the phenotype compared to strains not showing the phenotype. Lastly, another informative MouseFM346

setting is the comparison of one phenotype-outlier strain with all other strains, which identifies genetic347

variants specific to this strain. In summary, MouseFM users need to consider that for polygenic and348

complex traits, the quality of variant and gene candidates obtained by MouseFM depends on the number349

and effect size and direction of loci, the genetic diversity of mouse strains and the variability of the350

phenotype.351

A current limitation of MouseFM is that it does only consider single nucleotide variants. Loci352

containing other types of genetic variation such as insertions, deletions or other, structural variants353

affecting a phenotype may thus be missed. QTL studies would be able to identify these loci. This could354

thus be a reason for QTLs without MouseFM support, such as we observe in our case study on interfrontal355

bone formation. However, this constitutes not a methodological limitation, and other variant types can be356

added to MouseFM. To date though, genome-wide identification of structural variants is less accurate and357

less standard compared to small variant identification and thus structural variants are typically not yet358

systematically analyzed in genetic studies.359

We observe that frequently genetic loci identified by MouseFM fine-mapping consist of few or often360

only a single variant compatible with the phenotype. For example, five of 13 fine-mapped DCC loci361

comprise a single phenotype-pattern compatible variant and 3 loci comprise less than 10 variants. This362

contradicts the expectation that commonly used mice strains differ by chromosomal segments comprising363

several or many consecutive variants. Commenly used inbred strains display mosaic genomes with364

sequences from different subspecific origins (Wade et al., 2002) and thus one may expect genomic regions365

with high SNP rate. Fine-mapped loci comprising more phenotype-compatible variants are thus likely366

more informative for downstream experiments. When allowing no phenotype outlier strain (i.e. thr1=0 and367

thr2=0), in the case of DCC we identify only six such genetic loci that lend themselves for further experi-368

mental fine-mapping (chr7:45,327,763-46,308,368 (811 compatible SNVs); chr7:54,894,131-54,974,260369

(32 compatible SNVs); chr9:106,456,180-106,576,076 (170 SNVs); chr11:24,453,006-24,568,761 (40370

compatible SNVs); chr11:102,320,611-102,607,848 (46 compatible SNVs); chr16:65,577,755-66,821,071371

(890 compatible SNVs)).372

CONCLUSIONS373

We show here that in silico fine-mapping can effectively identify genetic loci compatible with the observed374

phenotypic differences and prioritize genetic variants and genes for further consideration. This allows for375

subsequent more targeted approaches towards identification of causal variants and genes using literature,376

data integration, and lab and animal experiments. MouseFM in silico fine-mapping provides phenotype-377

compatible genotypic differences between representatives of many common laboratory mice strains. These378
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genetic differences can be used to select strains which are genetically diverse at an indicated genetic locus379

and which are thus providing additional information when performing phenotyping or breeding-based380

mouse experiments. Thus in silico fine-mapping is a first, very efficient step on the way of unraveling381

genotype-phenotype relationships.382

During the implementation of MouseFM we have paid attention to a very easy handling. To perform a383

fine-mapping study, our tool only requires binary information (e.g. case versus control) for a phenotype of384

interest on at least two of the 37 available input strains. Further optional parameters can be set to reduce385

or expand the search space. MouseFM can also be performed on quantitative traits as we showed for386

expression data and in the interfrontal bone example.387

The general approach underlying MouseFM is straightforward and it has been successfully applied388

before in a case-wise setting (Liao et al., 2004; Zheng et al., 2012; Hall and Lammert, 2017; Mulligan et al.,389

2019) and also recently in a high-throughput manner (Arslan et al., 2020). Nonetheless, genome-wide390

variant data of many inbred mouse strains is quite recently available, and this data is large and from391

raw VCF format difficult to assess systematically for any phenotype of interest. MouseFM is the first392

tool providing this functionality together with versatile query settings and subsequent variant and gene393

annotation and filtering options.394

In conclusion, MouseFM implements a conceptually simple, but powerful approach for in silico395

fine-mapping inluding a very comprehensive SNV set of 37 inbred mouse strains. By re-analyzing396

three fine-mapping studies, we demonstrate that MouseFM is a very useful tool for studying genotype-397

phenotype relationships in mice. Further, by high-throughput analysis of all genes of two expression398

datasets, we illustrate that MouseFM is capable of analyzing molecular phenotypes in a versatile and399

high-throughput manner. This shows the potential of MouseFM to be used for large-scale analyses of400

diverse phenotypes in future work.401
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