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ABSTRACT
Mice are the most widely used animal model to study genotype to phenotype relation-
ships. Inbred mice are genetically identical, which eliminates genetic heterogeneity and
makes themparticularly useful for genetic studies.Many different strains have been bred
over decades and a vast amount of phenotypic data has been generated. In addition,
recently whole genome sequencing-based genome-wide genotype data for many widely
used inbred strains has been released. Here, we present an approach for in silico fine-
mapping that uses genotypic data of 37 inbred mouse strains together with phenotypic
data provided by the user to propose candidate variants and genes for the phenotype
under study. Public genome-wide genotype data covering more than 74 million variant
sites is queried efficiently in real-time to provide those variants that are compatible
with the observed phenotype differences between strains. Variants can be filtered by
molecular consequences and by corresponding molecular impact. Candidate gene lists
can be generated from variant lists on the fly. Fine-mapping together with annotation
or filtering of results is provided in a Bioconductor package called MouseFM. In order
to characterize candidate variant lists under various settings, MouseFM was applied to
two expression data sets across 20 inbred mouse strains, one from neutrophils and one
from CD4+ T cells. Fine-mapping was assessed for about 10,000 genes, respectively,
and identified candidate variants and haplotypes for many expression quantitative
trait loci (eQTLs) reported previously based on these data. For albinism, MouseFM
reports only one variant allele of moderate or high molecular impact that only albino
mice share: a missense variant in the Tyr gene, reported previously to be causal for
this phenotype. Performing in silico fine-mapping for interfrontal bone formation
in mice using four strains with and five strains without interfrontal bone results in
12 genes. Of these, three are related to skull shaping abnormality. Finally performing
fine-mapping for dystrophic cardiac calcification by comparing 9 strains showing the
phenotype with eight strains lacking it, we identify only onemoderate impact variant in
the known causal geneAbcc6. In summary, this illustrates the benefit of usingMouseFM
for candidate variant and gene identification.

Subjects Bioinformatics, Genetics, Genomics, Zoology
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INTRODUCTION
Mice are the most widely used animal models in research. Several factors such as small
size, low cost of maintain, and fast reproduction as well as sharing disease phenotypes
and physiological similarities with human makes them one of the most favourable
animal models (Uhl & Warner, 2015). Inbred mouse strains are strains with all mice
being genetically identical, i.e., clones, as a result of sibling mating for many generations,
which results in eventually identical chromosome copies. When assessing genetic variance
between mouse strains, the genome of the most commonly used inbred strain, called Black
6J (C57BL/6J) is typically used as reference and variants called with respect to the Black 6J
mouse genome. For inbred mouse strains, variants are homozygous by design.

Grupe et al. (2001) published impressive results utilizing first genome-wide genetic data
for in silico fine-mapping of complex traits, ‘‘reducing the time required for analysis of such
[inbred mouse] models from many months down to milliseconds’’. Darvasi commented
on this paper that in his opinion, the benefit of in silico fine-mapping lies in the analysis of
monogenic traits and in informing researchers prior to initiating traditional breeding-based
studies. In 2007, with Cervino et al. (2007) he suggested to combine in silico mapping with
expression information for gene prioritization using 20,000 and 240,000 common variants,
respectively. Since then, the general approach has been applied successfully and uncovered
a number of genotype-phenotype relationships in inbred mice (Liao et al., 2004; Zheng,
Dill & Peltz, 2012; Hall & Lammert, 2017; Mulligan et al., 2019). Nonetheless, to the best
of our knowledge, there is to date no tool publicly available that implements the idea and
which allows to analyze any phenotype of interest. Such a tool is particularly helpful now
that all genetic variation between all commonly used inbred strains is known at base pair
resolution (Doran et al., 2016; Keane et al., 2011).

At the same time, in the last years huge amounts of mouse phenotype data were
generated, often in collaborative efforts and systematically for many mouse strains.
Examples are phenotyping undertaken by the International Mouse Phenotyping
Consortium (IMPC) (Dickinson et al., 2016; Meehan et al., 2017) or lately also the
phenotyping of the expanded BXD family of mice (Ashbrook et al., 2021). Data are
publicly available in resources such as the mouse phenome database (MPD) (Bogue et
al., 2018) (https://www.mousephenotype.org) or the IMPC’s website (Dickinson et al.,
2016) (https://phenome.jax.org). Other websites such as Mouse Genome Informatics
(MGI) (http://www.informatics.jax.org) or GeneNetwork (Mulligan et al., 2017) (https:
//www.genenetwork.org) also house phenotype data together with web browser-based
functionality to investigate genotype-phenotype relationships.

Several of the aforementioned resources allow the user to interactively query genotypes
for 70 user-selected inbred mouse strains for input genes or genetic regions. Moreover,
the variant browser in GeneNetwork allows also comparison of genotypes between
strains, however, data can only be extracted gene- or region-wise and is not accessible
programmatically. No current resource thus provides the functionality to extract genome-
wide all variants that are different between two user-specified groups of inbred mouse
strains. Such information can be used for in silico fine-mapping and for the identification
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Figure 1 Illustration of the in silico fine-mapping approach. Every row represents a variant site and ev-
ery column one inbred mouse strain. In this example, the phenotype is albinism and four strains are albi-
nos and five are not. Displayed are six variants, but only one variant, rs31191169, has consistently different
alleles between the albino and the other mice (G allele is here linked to albinism). With option thr2=1 in
the MouseFM package, one discordant strain would be allowed in the second strain group and the variant
in the row above rs31191169 would also be returned.

Full-size DOI: 10.7717/peerj.11017/fig-1

of candidate genes and variants underlying a phenotypic trait. Further, such a catalog
of genetic differences between groups of strains is very useful prior to designing mouse
breeding-based experiments e.g., for the identification or fine-mapping of quantitative
trait loci (QTL).

METHODS
Fine-mapping approach
Unlike previous approaches for in silico fine-mapping, here we are using whole genome
sequencing-based variant data and thus information on all single nucleotide variation
present between inbred strains. Due to the completeness of this variant data, we do not
need to perform any statistical aggregation of variant data over genetic loci, but simply
report all variant sites with different alleles between two groups of inbred strains. That is,
we report all variant sites with alleles compatible with the observed phenotype difference,
see Fig. 1 for an illustration.

In the case of a binary phenotype caused by a single variant, this causal variant is one
of the variants that has a different allele in those strains showing the phenotype compared
to those strains lacking the phenotype. This is the case for example for albinism and its
underlying causal variant rs31191169, used in Fig. 1 for illustration and discussed later in
detail.

This in silico fine-mapping approach can reduce the number of variants to a much
smaller set of variants that are compatible with a phenotype. The more inbred strains are
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phenotyped and used for comparison, the more variants can be discarded because they are
not compatible with the observed phenotypic difference.

In the case of a quantitative phenotype, the fine-mapping can be performed in two ways.
The first option is to obtain genetic differences between strains showing the most extreme
phenotypes. The second option is binarization of the phenotype by applying a cutoff. Since
in these cases allele differences of variants affecting the trait may not be fully compatible
with an artificially binarized phenotype, fine-mapping is provided with an option that
allows alleles of a certain number of strains to be incompatible with the phenotype, see
Fig. 1 for an example.

Two important, related aspects need to be considered with respect to the in silico
fine-mapping approach implemented in MouseFM: (i) power and (ii) significance of the
MouseFM candidates with respect to chance findings. With respect to (i): The suggested
fine-mapping approach considerably gains power when increasing the number of inbred
strains with phenotype data available. This is the result of an explosion of the number of
possible genotype combinations across the analyzed strains. Figure 2 shows the number
of possible genotype combinations. If, e.g., for a Mendelian trait, only one combination is
compatible with the phenotype, it is increasingly unlikely to observe this combination by
chance when the number of strains increases. Based on these theoretical considerations,
we recommend using MouseFM for more than eight phenotyped strains. The number of
actual genotype combinations for a given set of inbred strains is less than the maximum
depicted in Fig. 2, because of kinship between strains. One favourable extreme are two
phenotypic groups of overall closely related strains: only few variants differ between the
groups and will be returned by MouseFM. The opposite extreme are groups of inbred
strains closely related only within their phenotypic group, but not across groups: many
variants will differ and be returned by MouseFM. With respect to (ii): For a low number
of strains, a random split may result in a similar number of candidate variants compared
to a split by phenotype and false-positive candidates increase. The important property is
though, that in a split by phenotype, true positives will be among the candidates and once
the number of phenotyped strains increases, the candidate set becomes smaller while still
including true positives.

Variant data
The database used by this tool was created based on the genetic variants database of the
Mouse Genomes Project (https://www.sanger.ac.uk/science/data/mouse-genomes-project)
of the Wellcome Sanger Institute. It includes whole genome sequencing-based single
nucleotide variants of 36 inbred mouse strains which have been compiled by Keane
et al. (2011), see ftp://ftp-mouse.sanger.ac.uk/current_snps/mgp.v5.merged.snps_all.
dbSNP142.vcf.gz. for the accession code and sources. This well designed set of inbredmouse
strains for which genome-wide variant data is available includes classical laboratory strains
(C3H/HeJ, CBA/J, A/J, AKR/J, DBA/2J, LP/J, BALB/cJ, NZO/HlLtJ, NOD/ShiLtJ), strains
extensively used in knockout experiments (129S5SvEvBrd, 129P2/OlaHsd, 129S1/SvImJ,
C57BL/6NJ), strains used commonly for a range of diseases (BUB/BnJ, C57BL/10J,
C57BR/cdJ, C58/J, DBA/1J, I/LnJ, KK/HiJ, NZB/B1NJ, NZW/LacJ, RF/J, SEA/GnJ,
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Figure 2 The maximum number of genotype combinations for an overall number of inbred strains n

including up to k alternative alleles is given by
∑n

k=1

∑k
j=1

(
k
j

)
and grows exponentially with respect to

the overall number of inbred strains. Further the more evenly the alleles are divided among these overall
strains, the larger the corresponding number of genotype combinations. The gray horizontal line denotes
the number of variants in MouseFM (n= 74,480,058). For more than 26 strains, the maximum number of
genotype combinations are larger than the number of variant positions, and it is thus extremely unlikely to
observe a phenotype-compatible combination by chance. For 10 and more strains, there is a maximum of
more than 1000 genotype combinations, which reduces the probability of a phenotype-compatible combi-
nation already considerably. The number of actual, observed genotype combinations depends on the par-
ticular inbred strains used and, importantly, on their kinship.

Full-size DOI: 10.7717/peerj.11017/fig-2

ST/bJ) as well as wild-derived inbred strains from different mouse taxa (CAST/EiJ,
PWK/PhJ, WSB/EiJ, SPRET/EiJ, MOLF/EiJ). Genome sequencing, variant identification
an characterization of 17 strains was performed by Keane et al. (2011) and of 13 strains by
Doran et al. (2016). We downloaded the single nucleotide polymorphism (SNP) VCF file
(https://www.sanger.ac.uk/data/mouse-genomes-project). Overall, it contains 78,767,736
SNPs, of which 74,873,854 are autosomal. The chromosomal positions map to the mouse
reference genome assembly GRCm38 which is based on the Black 6J inbred mouse strain
and by definition has no variant positions.

Low confidence, heterozygous, missing and multiallelic variants vary by strain, in sum
they are typically less than 5% of the autosomal variants (Fig. 3, Table S1). Exceptions are
for example the wild-derived inbred strains, for which variant genotypes excluded from
the database reach a maximum of 11.5% for SPRET/EiJ. There are four strains that are
markedly genetically different from each other and all remaining strains, these are the
wild-derived, inbred strains CAST/EiJ, PWK/PhJ, SPRET/EiJ and MOLF/EiJ, see Fig. 3A.
These four strains also show the highest number of missing and multiallelic genotypes
(Fig. 3B and Table S1).
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Figure 3 (A) Inbred mouse strain autosomal SNP characteristics: The number of homozygous, low
confidence, missing andmultiallelic genotypes for 36 non-reference strains. For each strain, a SNP was
checked for groupmembership in the order low confidence→missing→multiallelic→ homozygous
→ heterozygous and was assigned to the first matching group. Since no SNPmade it to the group with
heterozygous genotypes it is not shown in the diagram. (B) Principal component analysis shows four
outlier inbred strains, CAST/EiJ, PWK/PhJ, SPRET/EiJ andMOLF/EiJ.

Full-size DOI: 10.7717/peerj.11017/fig-3

Database
We re-annotated the source VCF file with Ensembl Variant Effect Predictor (VEP) v100
(McLaren et al., 2016) using a Docker container image (https://github.com/matmu/vep).
For real-time retrieval of variants compatible with phenotypes under various filtering
criteria, the variant data was loaded into aMySQL database. The database consists of a single
table with columns for chromosomal locus, the reference SNP cluster ID (rsID), variant
consequences based on a controlled vocabulary from the sequence ontology (Eilbeck et al.,
2005), the consequence categorization into variant impacts ‘‘HIGH’’, ‘‘MODERATE’’,
‘LOW’’ or ‘‘MODIFIER’’ according to the Ensembl Variation database (Hunt et al.,
2018) (see Table S2 for details) and the genotypes (NULL = missing, low confidence,
heterozygous or consisting of other alleles than reference or most frequent alternative
allele; 0 = homozygous for the reference allele, 1 = homozygous for alternative allele).
SNPs with exclusively NULL genotypes were not loaded into the database resulting in
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Figure 4 74,480,058 variants have been annotated with 120,927,856 consequences. Shown here are
the number of variants annotated with a given consequence, stratified by consequence impact. For de-
scription of consequence types see Table S2. Both impact and consequence can be used for variant priori-
tization in MouseFM. (A) Impact ‘‘HIGH’’; (B) Impact ‘‘MODERATE’’; (C) Impact ‘‘LOW’’: (D) Impact
‘‘MODIFIER’’.

Full-size DOI: 10.7717/peerj.11017/fig-4

74,480,058 autosomal SNVs that were finally added to our database. These have been
annotated with overall 120,927,856 consequences, i.e., on average every variant has two
annotated consequences. Figure 4 summarizes these consequence annotations stratified by
impact; description of consequences and annotation counts are provided in Table S2. Most
annotations belong to impact category ‘‘MODIFIER’’ (99.4%). High impact annotations
are rare, because they are typically deleterious (0.013%). Annotation with moderate impact
consequences comprise only missense, i.e., protein sequence altering variants contributing
0.204%. Low impact consequences are slightly more often annotated, amounting to 0.37%.
Ensembl Variant Effect Predictor (VEP) annotation is loaded into theMouseFMdatabase to
allow for quick candidate ranking and filtering, which otherwise could not be performed in
real-time. Additionally, all candidate variants can be retrieved unfiltered and independent
of VEP predictions to allow for custom effect predictions, ranking and filtering.

Bioconductor R package MouseFM
Our fine-mapping approach was implemented as function finemap in the Bioconductor R
package ‘‘MouseFM’’. Bioconductor is a repository for open software for bioinformatics.

The function finemap takes as input two groups of inbred strains and one or more
chromosomal regions on the GRCm38 assembly and returns a SNP list for which the
homozygous genotypes are discordant between the two groups. Optionally, filters for
variant consequence and impacts as well as a threshold for each group to allow for
intra-group discordances can be passed. With function annotate_mouse_genes the SNP
list can further be annotated with overlapping genes. Optionally, flanking regions can be
passed.
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Figure 5 Visualization of mouse phenotypic data for which fine-mapping is performed. (A) Binary in-
bred mouse strain phenotype albinism. All or no mice of a strain are albinos; shown here is which strain
belongs to which group. (B) Quantitative inbred mouse strain phenotype interfrontal bone (IF). Shown is
the number of mice of the respective strain having an interfrontal bone (dark blue, IF) and not having an
interfrontal bone (light blue, No IF). (C) Phenotype cardiac dystrophic calcification (DCC). Five inbred
strains show the phenotype and five strains lack it.

Full-size DOI: 10.7717/peerj.11017/fig-5

The finemap function queries the genotype data from our backend server while
function annotate_mouse_genes queries the Ensembl Rest Service (Yates et al., 2015).
The repository containing the backend of the MouseFM tool, including the scripts
of the ETL (Extract, transform, load) process and the webserver, is available at
https://github.com/matmu/MouseFM-Backend. Following the repositories’ instructions,
users may also install the database and server application on a local server.

The workflow and scripts to generate the MouseFM case study results are available at
https://github.com/iwohlers/2020_mousefm_finemap.

RESULTS
In order to characterize fine-mapping results of MouseFM for different numbers of strains
and when applying the threshold parameter allowing phenotype-incompatible strains, we
used a large gene expression data set. Such a data set contains both (i) genes with clear
binary expression phenotype, likely caused by a cis variant or haplotype, (ii) cases with no
or no binary difference in phenotype.

Further, as a proof of concept, we applied our in silico fine-mapping approach on
three additional phenotypes: albinism, interfrontal bone formation and dystrophic cardiac
calcification. Phenotypic data is illustrated in Fig. 5.

Expression quantitative trait loci
MouseFM is particularly useful for detecting variants for which a large, binary effect on a
trait can be observed. As such, it is useful for providing candidate variants affecting gene
expression, i.e., expression quantitative trait loci (eQTLs). Here, we use two expression
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data sets to illustrate this use case as well as to investigate aspects of MouseFM candidate
variant lists for a large number of traits with different charactersitics. We use neutorphil
and CD4+ T cell expression data from Mostafavi et al. (2014) generated in the context
of an eQTL study by the Immunological Genome Project. This data is available for 39
inbred mouse strains of which 20 are part of MouseFM. Polymorphonuclear neutrophils
(granulocytes) data is available under GEO accession GSE60336, CD4+ T cell data
under GSE60337. We downloaded the corresponding normalized expression data from
http://rstats.immgen.org/DataPage. Of the strains used here, expression is assessed for two
mice each, except for the Black 6J strain of which expression from five mice is available.
Neutrophils further have expression for only one FVB mouse.

We read in the expression data and selected all mice from the 20 MouseFM strains
(n= 43 for CD4+ T cell; n= 42 for neutrophils). As Mostafavi et al. (2014), we keep only
expressed genes using a cutoff of 120 expression on the intensity scale. This way, we
obtain n= 10,676 transcripts from 9,136 genes for T cells and n= 10,137 transcripts from
8,687 genes for neutrophils, which is comparable to the numbers assessed by Mostafavi
et al. (2014) using all 39 strains. Mostafavi et al. (2014) applied a well-designed dedicated
statistical approach to identify and interpret cis eQTLs. Briefly, they introduce a metric
called TV metric to identify cases of bimodal gene expression and test SNPs within 1
Mb of the transcription start side using a linear regression model. In our experimental
setting, we also use a 1 Mb cutoff and aim to detect cis eQTLs with MouseFM. For testing,
genome-wide 96,779 SNPs were available in the study of Mostafavi et al. (2014). Overall,
they identified 1,111 joint T cell and neutrophil eQTLs using n= 39 strains. Assessment
with MouseFM uses about 74 million SNVs and can be considered somewhat an inverse
approach to this previous eQTL study: it is not testing expression differences for a SNP,
but it needs as input a separation of strains into two expression groups and identifies all
compatible variants, if available. In order to assess characteristics of fine-mapped variants
of MouseFM, we use a very crude group separation based on ordering strains using the
mouse with minimum expression of a strain and then splitting at the rank of maximum
difference between median expression of all mice of strains with smaller rank compared to
all mice of strains with larger rank. We run MouseFM for smaller group size from 1 to 10.
According to theoretical expectation (cf. Fig. 2), the number of cases in which MouseFM
returns candidate variants that are entirely compatible with phenotype decreases with
increasing group size, see Fig. 6A for neutrophils and Fig. 6B for CD4+ T cells. At the
same time, the proportion of previously detected eQTL transcripts and the number of
previously identified eQTL variants increases, because the probability of chance findings
decreases. The number of fine-mapped variants varies greatly, often being less than ten but
also often more than 100, see Fig. 6C and Fig. 6D, for neutrophils and T cells, respectively.
Cases, in which a previously reported eQTL variant was among the fine-mapped variants
are comparably few. In these cases, the number of fine-mapped variants tends to be larger
than in those cases without a previous eQTL variant among the fine-mapped variants. This
effect is likely caused by the much smaller number of variants assessed in the eQTL study
–we observe a variant overlap only in cases of large expression-compatible haplotypes. The
overall number of fine-mapped variants is rather low, which may be because of the crude
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Figure 6 Summary of fine-mapping results for two expression data sets. Shown are numbers of
fine-mapped transcripts and boxplots of fine-mapped variants for these transcripts. The subset of
fine-mapped eQTL transcripts and variants according toMostafavi et al. (2014) is colored blue, the subset
of fine-mapped eQTL transcripts without reported eQTL variant according toMostafavi et al. (2014) is
colored red, remaining fine-mapped transcripts yellow. (A) The number of successfully fine-mapped
transcripts for the neutrophil data set on log 10 scale at different allowed minimum group sizes from 1
to 10. Solid lines denote a threshold of zero incompatible strains, dashed lines denote a threshold of one
of incompatible strains (thr1=1 and thr2=1). (B) As A, but for CD4+ T cells. (C) Boxplots of number of
fine-mapped variants for the transcripts in A (threshold 0, i.e., solid lines) for different minimum group
sizes from 1 to 10. (D) As C, but for CD4+ T cells. (E) Boxplots of number of fine-mapped variants for the
transcripts in A (threshold 1, i.e., dashed lines and thr1=1 and thr2=1) for different minimum group sizes
from 2 to 10. (F) As E, but for CD4+ T cells.

Full-size DOI: 10.7717/peerj.11017/fig-6

group definition. We observe that group definition sometimes can be improved, especially
if expression is not clearly bimodal. Thus, it is useful to apply MouseFM with a threshold
allowing for a given number of incompatible strains. We here allow for one incompatible
strain in the first and one incompatible strain in the second group. This increases the
number transcripts that could be fine-mapped considerably, especially for large group
sizes, see Fig. 6A and Fig. 6B. At the same time, the distributions of number of fine-mapped
variants are only marginally affected, see Figs. 6E and 6F. Nearly all high TV scores and/or
high effect size and/or low cis eQTL p-value genes mentioned byMostafavi et al. (2014) can
be fine-mapped (71 of 74), illustrating that MouseFM is particularly useful for detecting
variants and haplotypes that are compatible with binary, high effect phenotypes.
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Albinism
Albinism is the absence of pigmentation resulting from a lack ofmelanin and is well-studied
in mice (Beermann, Orlow & Lamoreux, 2004). It is a monogenic trait caused by a mutation
in the Tyr gene (Beermann, Orlow & Lamoreux, 2004), which encodes for tyrosinase,
an enzyme involved in melanin synthesis. The Tyr locus has been used before for the
validation of in silico fine-mapping approaches (Cervino et al., 2007). According to the
Jackson Laboratory website (https://www.jax.org), 10 of the 37 inbred mouse strains are
albinos with a Tyr c genotype (http://www.informatics.jax.org/allele/MGI:1855976), see
Fig. 5A.

Our algorithm resulted in only one genetic locus, which includes the Tyr gene; only 245
SNPs have different alleles between the albino and non-albino inbred mouse strains, all
located from 7:83,244,464 to 7:95,801,713 (GRCm38). When removing SNPs except those
of moderate or high impact, only one variant remains. This variant rs31191169 at position
7:87,493,043, with reference allele C and with alternative allele G in the albino strains is
the previously described causal missense SNP in the Tyr gene, which results in a cysteine
to serine amino acid change at position 103 of the tyrosinase protein.

Interfrontal bone
Further, we applied our algorithm to the phenotype of interfrontal bone formation, a
complex skeletal trait residing between the frontal bones in inbred mice. In some inbred
mouse strains, the interfrontal bone is present or absent in all mice, whereas other strains
are polymorphic for this phenotype suggesting that phenotypic plasticity is involved.
Phenotypic data related to interfrontal bone has recently been generated by Zimmerman
et al. (2019) for 27 inbred mouse strains (Fig. 5B). They performed QTL mapping and
identified four significant loci on chromosomes 4,7,11 and 14, the same loci for interfrontal
bone length and interfrontal bone width. For the genotyping, the authors use the mapping
and developmental analysis panel (MMDAP; Partners HealthCare Center for Personalized
Genetic Medicine, Cambridge, MA, United States), which contains 748 SNPs.

Of the available interfrontal bone data, we only used inbred strains for which all
mice show the same phenotype. This corresponds to four strains with interfrontal
bone (C57BL/6J, C57L/J, CBA/J, NZB/B1NJ) and five strains without interfrontal bone
(C3H/HEJ, MOLF/EiJ, NZW/LacJ, WSB/EiJ, SPRET/EiJ).

In silico fine-mapping resulted in 8,608 SNPs compatible with the observed interfrontal
bone phenotype. Of these, 15 showed moderate or high impact on 12 candidate genes, see
Table 1. None of the loci identified by us overlaps with the markers of peak LOD score
reported by Zimmerman et al. (2019) but according to visual inspection, two of their four
QTL regions overlap with regions reported by MouseFM, one on chromosome 7 and one
on chromosome 11. MouseFM may thus have identified variants underlying those two
QTLs. The two other loci reported by Zimmerman et al. (2019) may have been missed by
MouseFM, because they are driven by strains not used here. Variant rs29393437 is located
in the less well described isoform ENSMUST00000131519.1 of Stac2, one of two isoforms
of this gene. It is is a missense variant, changing arginine (R) to histidine (H) which is at
low confidence predicted to be deleterious by SIFT. Stac2 has been shown to negatively
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Table 1 Moderate and high impact candidate variants and genes for interfrontal bone formation.

RSID Position Gene

rs32785405 1:36311963 Arid5a
rs27384937 2:92330761 Phf21a
rs32757904 7:45996764 Abcc6
rs32761224 7:46068710 Nomo1
rs32763636 7:46081416 Nomo1
rs13472312 7:46376829 Myod1
rs31674298 7:46443316 Sergef
rs31226051 7:49464827 Nav2
rs248206089 7:49547983 Nav2
rs45995457 9:86586988 Me1
rs29393437 11:98040971 Stac2
rs29414131 11:98042573 Stac2
rs251305478 11:98155926 Med1
rs27086373 11:98204403 Cdk12
rs27026064 11:98918145 Cdc6

regulate formation of osteoclasts, cells that dissect bone tissue (Jeong et al., 2018). Phf21a;
is expressed during ossification of cranial bones in mouse early embryonic stages and
has been linked to craniofacial development (Kim et al., 2012). Gene Abcc6 is linked to
abnormal snout skin morphology in mouse and abnormality of the mouth, high palate in
human according to MGI.

Dystrophic cardiac calcification
Physiological calcification takes place in bones, however pathologically calcification may
affect the cardiovascular system including vessels and the cardiac tissue. Dystrophic cardiac
calcification (DCC) is known as calcium phosphate deposits in necrotic myocardiac tissue
independently fromplasma calcium and phosphate imbalances.We previously reported the
identification of four DCC loci Dyscal1, Dyscalc2, Dyscalc3, andDyscalc4 on chromosomes
7, 4, 12 and 14, respectively using QTL analysis and composite interval mapping (Ivandic
et al., 1996; Ivandic et al., 2001). The Dyscalc1 was confirmed as major genetic determinant
contributing significantly to DCC (Aherrahrou et al., 2004). It spans a 15.2 Mb region on
proximal chromosome 7. Finally, chromosome 7 was further refined to a 80 kb region and
Abcc6 was identified as causal gene (Meng et al., 2007; Aherrahrou et al., 2007). In this study
we applied our algorithm to previously reported data on 16 mouse inbred strains which
were well-characterized for DCC (Aherrahrou et al., 2007). Eight inbred mouse strains
were found to be susceptible to DCC (C3H/HeJ, NZW/LacJ, 129S1/SvImJ, C3H/HeH,
DBA/1J, DBA/2J, BALB/cJ, NZB/B1NJ) and eight strains were resistant to DCC (CBA/J,
FVB/NJ, AKR/J, C57BL/10J, C57BL/6J, C57BL/6NJ, C57BR/cdJ, C57L/J). 2,003 SNPs
in 13 genetic loci were fine-mapped and found to match the observed DCC phenotype
in the tested 16 DCC strains. Of these, 19 SNPs are moderate or high impact variants
affecting protein amino acid sequences of 13 genes localized in two chromosomal regions
mainly on chromosome 7 (45.6–46.3 Mb) and 11 (102.4–102.6 Mb), see Table 2. The
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Table 2 Moderate and high impact candidate variants and genes for dystrophic cardiac calcification.

RSID Position Gene

rs46174746 7:45538428 Plekha4
rs49200743 7:45634990 Rasip1
rs32122777 7:45642384 Mamstr
rs215144870 7:45679109 Sec1
rs45768641 7:45679410 Sec1
rs51645617 7:45679423 Sec1
rs31997402 7:45725284 Spaca4
rs50753342 7:45794044 Lmtk3
rs50693551 7:45794821 Lmtk3
rs52312062 7:45798406 Lmtk3
rs49106901 7:45798469 Emp3
rs47934871 7:45918097 Emp3
rs32444059 7:45942897 Ccdc114
rs32753988 7:45998774 Abcc6
rs32778283 7:46219386 Ush1c
rs31889971 7:46288929 Otog
rs50613184 11:102456258 Itga2b
rs27040377 11:102457490 Itga2b
rs29383996 11:102605308 Fzd2

SNP rs32753988 is compatible with the observed phenotype manifestations and affects the
previously identified causal gene Abcc6. This SNP has a SIFT score of 0.22, the lowest score
after two SNPs in gene Sec1 and one variant in gene Mamstr, although SIFT predicts all
amino acid changes to be tolerated.

DISCUSSION
With MouseFM, we developed a novel tool for in silico-based genetic fine-mapping
exploiting the extremely high homozygosity rate of inbred mouse strains for identifying
new candidate SNPs and genes. Towards this, by including latest genotype data for 37
inbred mouse strains at a genome-wide scale derived from next generation sequencing,
MouseFM uses the most detailed genetic resolution for this approach to date.

Using two large expression data sets, we applyMouseFM tomore than 20,000 expression
phenotypes of diverse distributions, using different minimum group sizes and also allowing
up to one incompatible strain per group. This results in a comprehensive characterization
of MouseFM fine-mapped candidate variants. For low group sizes, many phenotype
compatible variants can be detected, but these likely include many more false-positives
than larger group sies. For larger group sizes, previously identified eQTLs of Mostafavi et
al. (2014) are much more often successfully fine-mapped than expected by chance, which
is in line with theoretical expectation that a given 10/10 group split is rather unlikely
to be observed by chance and thus indicates a causal genetic effect. The high number of
non-eQTL transcripts that could be fine-mapped also at large group sizes could have several
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sources. Firstly, we analyze only 20 strains compared to 39 strains analyzed by Mostafavi
et al. (2014), so likely not all of their eQTLs still apply to the smaller set of strains used
here. Secondly, previously undetected eQTLs may occur in this smaller set, which could
be tested in future work by repeating theMostafavi et al. (2014) analysis for the exact same
strains used by MouseFM. Lastly, these may indeed be chance findings unrelated to the
expression phenotype, possibly confounded by strain kinship. Manual inspection would
help to obtain a clearer picture on a case-by-case basis. Finally, the number of fine-mapped
variants varies greatly, so in many cases, additional regulatory information will still be
needed to refine the candidate variant list.

By re-analyzing previously published fine-mapping studies for albinism and dystrophic
cardiac calcificaton, we could show that MouseFM is capable of re-identifying causal SNPs
and genes. Re-analyzing a study on interfrontal bone formation (IF) resulted in MouseFM
loci that did not overlap the overall markers of peak LOD score reported in the original
study, but according to visual inspection, two of the corresponding QTLs. With gene Stac2
we suggest a new candidate gene possibly affecting interfrontal bone formation.

We selected cases studies particularly to validate that MouseFM can identify
experimentally validated variants and genes, such as the Tyr variant rs31191169 for
albinism and the gene Abcc6 for dystrophic cardiac calcification. Variant rs31191169 is not
a candidate variant and Abcc6 not a candidate gene, both are experimentally validated to
be causally linked to the phenotype. Only for traits that are polygenic, e.g., for DCC (but
not for albinism), other candidates returned by MouseFMmay be linked to the phenotype,
but they do not need to, they are only candidates to follow up on. A different type of
case study relates to phenotype interfrontal bone formation, for which causal variants and
genes are not known. Still, several candidate genes returned by MouseFM are plausible to
affect the phenotype. In summary, additional DCC candidate loci beyond Abcc6 as well as
identified interfrontal bone loci are valid candidate loci. Whether they are in fact affecting
the phenotypes needs to be assessed in subsequent QTL and experimental studies.

MouseFM performs most powerful and without limitations for Mendelian traits such
as albinism. Secondly, it is most useful as a second-line after QTL mapping. MouseFM
is specifically designed to accommodate this fine-mapping setting by allowing to provide
start and end of a region to be analyzed. Complex traits and phenotypes with several large
effect loci are much more challenging. For these, binarizing the phenotype and performing
fine-mapping with MouseFM is not guaranteed to include all causal variants and genes
(unlike Mendelian traits). For this reason, we added the option to allow for a user-selected
number of outlier strains, which have a genotype discordant with the phenotype. The
rationale behind this is identification of genomic regions which are more similar in those
strains showing the phenotype compared to strains not showing the phenotype. Lastly,
another informative MouseFM setting is the comparison of one phenotype-outlier strain
with all other strains, which identifies genetic variants specific to this strain. In summary,
MouseFM users need to consider that for polygenic and complex traits, the quality of
variant and gene candidates obtained by MouseFM depends on the number and effect
size and direction of loci, the genetic diversity of mouse strains and the variability of the
phenotype.
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A current limitation of MouseFM is that it does only consider single nucleotide variants.
Loci containing other types of genetic variation such as insertions, deletions or other,
structural variants affecting a phenotype may thus be missed. QTL studies would be able to
identify these loci. This could thus be a reason for QTLs without MouseFM support, such
as we observe in our case study on interfrontal bone formation. However, this constitutes
not a methodological limitation, and other variant types can be added to MouseFM. To
date though, genome-wide identification of structural variants is less accurate and less
standard compared to small variant identification and thus structural variants are typically
not yet systematically analyzed in genetic studies.

We observe that frequently genetic loci identified by MouseFM fine-mapping consist
of few or often only a single variant compatible with the phenotype. For example, five
of 13 fine-mapped DCC loci comprise a single phenotype-pattern compatible variant
and three loci comprise less than 10 variants. This contradicts the expectation that
commonly used mice strains differ by chromosomal segments comprising several or
many consecutive variants. Commonly used inbred strains display mosaic genomes with
sequences from different subspecific origins (Wade et al., 2002) and thus one may expect
genomic regions with high SNP rate. Fine-mapped loci comprising more phenotype-
compatible variants are thus likely more informative for downstream experiments. When
allowing no phenotype outlier strain (i.e., thr1=0 and thr2=0), in the case of DCC we
identify only six such genetic loci that lend themselves for further experimental fine-
mapping (chr7:45,327,763-46,308,368 (811 compatible SNVs); chr7:54,894,131-54,974,260
(32 compatible SNVs); chr9:106,456,180-106,576,076 (170 SNVs); chr11:24,453,006-
24,568,761 (40 compatible SNVs); chr11:102,320,611-102,607,848 (46 compatible SNVs);
chr16:65,577,755-66,821,071 (890 compatible SNVs)).

CONCLUSIONS
We show here that in silico fine-mapping can effectively identify genetic loci compatible
with the observed phenotypic differences and prioritize genetic variants and genes for
further consideration. This allows for subsequent more targeted approaches towards
identification of causal variants and genes using literature, data integration, and lab and
animal experiments. MouseFM in silico fine-mapping provides phenotype-compatible
genotypic differences between representatives of many common laboratory mice strains.
These genetic differences can be used to select strains which are genetically diverse at
an indicated genetic locus and which are thus providing additional information when
performing phenotyping or breeding-based mouse experiments. Thus in silico fine-
mapping is a first, very efficient step on the way of unraveling genotype-phenotype
relationships.

During the implementation of MouseFMwe have paid attention to a very easy handling.
To perform a fine-mapping study, our tool only requires binary information (e.g., case
versus control) for a phenotype of interest on at least two of the 37 available input strains.
Further optional parameters can be set to reduce or expand the search space. MouseFM
can also be performed on quantitative traits as we showed for expression data and in the
interfrontal bone example.
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The general approach underlying MouseFM is straightforward and it has been
successfully applied before in a case-wise setting (Liao et al., 2004; Zheng, Dill & Peltz,
2012; Hall & Lammert, 2017; Mulligan et al., 2019) and also recently in a high-throughput
manner (Arslan et al., 2020). Nonetheless, genome-wide variant data ofmany inbredmouse
strains is quite recently available, and this data is large and from raw VCF format difficult
to assess systematically for any phenotype of interest. MouseFM is the first tool providing
this functionality together with versatile query settings and subsequent variant and gene
annotation and filtering options.

In conclusion, MouseFM implements a conceptually simple, but powerful approach for
in silico fine-mapping inluding a very comprehensive SNV set of 37 inbred mouse strains.
By re-analyzing three fine-mapping studies, we demonstrate that MouseFM is a very useful
tool for studying genotype-phenotype relationships in mice. Further, by high-throughput
analysis of all genes of two expression datasets, we illustrate that MouseFM is capable of
analyzing molecular phenotypes in a versatile and high-throughput manner. This shows
the potential of MouseFM to be used for large-scale analyses of diverse phenotypes in
future work.
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The MouseFM client is available as an R package on GitHub (https://github.com/
matmu/MouseFM) and on Bioconductor (https://bioconductor.org/packages/devel/bioc/
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The script used for fine-mapping of expression and of phenotypes albinism, interfrontal
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https://github.com/iwohlers/2020_mousefm_finemap.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.11017#supplemental-information.

REFERENCES
Aherrahrou Z, Axtner SB, Kaczmarek PM, Jurat A, Korff S, Doehring LC,Weichenhan

D, Katus HA, Ivandic BT. 2004. A locus on chromosome 7 determines dramatic up-
regulation of osteopontin in dystrophic cardiac calcification in mice. The American
Journal of Pathology 164(4):1379–1387 DOI 10.1016/S0002-9440(10)63224-5.

Aherrahrou Z, Doehring LC, Kaczmarek PM, Liptau H, Ehlers E-M, Pomarino
A,Wrobel S, Gtz A, Mayer B, Erdmann J, Schunkert H. 2007. Ultrafine map-
ping of Dyscalc1 to an 80-kb chromosomal segment on chromosome 7 in mice
susceptible for dystrophic calcification. Physiological Genomics 28(2):203–212
DOI 10.1152/physiolgenomics.00133.2006.

Arslan A, Guan Y, Chen X, Donaldson R, ZhuW, FordM,WuM, ZhengM, Dill
DL, Peltz G. 2020.High throughput computational mouse genetic analysis.
bioRxiv. Publisher: Cold Spring Harbor Laboratory _eprint. Available at https:
//www.biorxiv.org/ content/ early/2020/09/01/2020.09.01.278465.full.pdf
DOI 10.1101/2020.09.01.278465.

Ashbrook DG, Arends D, Prins P, MulliganMK, Roy S, Williams EG, Lutz CM,
Valenzuela A, Bohl CJ, Ingels JF, McCarty MS, Centeno AG, Hager R, Auwerx
J, Lu L,Williams RW. 2021. A platform for experimental precision medicine:
the extended BXD mouse family. Cell Systems. Epub ahead of print Jan 19 2021
DOI 10.1016/j.cels.2020.12.002.

Beermann F, Orlow SJ, LamoreuxML. 2004. The Tyr (albino) locus of the laboratory
mouse.Mammalian Genome 15(10):749–758 DOI 10.1007/s00335-004-4002-8.

BogueMA, Grubb SC,Walton DO, Philip VM, Kolishovski G, Stearns T, DunnMH,
Skelly DA, Kadakkuzha B, TeHennepe G, Kunde-Ramamoorthy G, Chesler EJ.
2018.Mouse phenome database: an integrative database and analysis suite for
curated empirical phenotype data from laboratory mice. Nucleic Acids Research
46(D1):D843–D850 DOI 10.1093/nar/gkx1082.

Cervino A. CL, Darvasi A, Fallahi M, Mader CC, Tsinoremas NF. 2007. An inte-
grated in silico gene mapping strategy in inbred mice. Genetics 175(1):321–333
DOI 10.1534/genetics.106.065359.

Munz et al. (2021), PeerJ, DOI 10.7717/peerj.11017 17/20

https://peerj.com
https://github.com/matmu/MouseFM
https://github.com/matmu/MouseFM
https://bioconductor.org/packages/devel/bioc/html/MouseFM.html
https://bioconductor.org/packages/devel/bioc/html/MouseFM.html
https://github.com/matmu/MouseFM-Backend
https://github.com/iwohlers/2020_mousefm_finemap
http://dx.doi.org/10.7717/peerj.11017#supplemental-information
http://dx.doi.org/10.7717/peerj.11017#supplemental-information
http://dx.doi.org/10.1016/S0002-9440(10)63224-5
http://dx.doi.org/10.1152/physiolgenomics.00133.2006
https://www.biorxiv.org/content/early/2020/09/01/2020.09.01.278465.full.pdf
https://www.biorxiv.org/content/early/2020/09/01/2020.09.01.278465.full.pdf
http://dx.doi.org/10.1101/2020.09.01.278465
http://dx.doi.org/10.1016/j.cels.2020.12.002
http://dx.doi.org/10.1007/s00335-004-4002-8
http://dx.doi.org/10.1093/nar/gkx1082
http://dx.doi.org/10.1534/genetics.106.065359
http://dx.doi.org/10.7717/peerj.11017


DickinsonME, Flenniken AM, Ji X, Teboul L, WongMD,White JK, Meehan TF,
WeningerWJ,Westerberg H, Adissu H, Baker CN, Bower L, Brown JM, Caddle
LB, Chiani F, Clary D, Cleak J, Daly MJ, Denegre JM, Doe B, DolanME, Edie SM,
Fuchs H, Gailus-Durner V, Galli A, Gambadoro A, Gallegos J, Guo S, Horner NR,
Hsu C-W, Johnson SJ, Kalaga S, Keith LC, Lanoue L, Lawson TN, LekM,Mark
M,Marschall S, Mason J, McElweeML, Newbigging S, Nutter LMJ, Peterson
KA, Ramirez-Solis R, Rowland DJ, Ryder E, Samocha KE, Seavitt JR, Selloum
M, Szoke-Kovacs Z, TamuraM, Trainor AG, Tudose I, Wakana S, Warren J,
Wendling O,West DB,Wong L, Yoshiki A, International Mouse Phenotyping
Consortium, Jackson Laboratory, Infrastructure Nationale PHENOMIN, Institut
Clinique de la Souris (ICS), Charles River Laboratories, MRCHarwell, Toronto
Centre for Phenogenomics, Wellcome Trust Sanger Institute, RIKEN BioResource
Center, MacArthur DG, Tocchini-Valentini GP, Gao X, Flicek P, Bradley A,
SkarnesWC, Justice MJ, Parkinson HE, MooreM,Wells S, Braun RE, Svenson
KL, De Angelis MH, Herault Y, Mohun T, Mallon A-M, Henkelman RM, Brown
S. DM, Adams DJ, Lloyd KCK, McKerlie C, Beaudet AL, BućanM,Murray SA.
2016.High-throughput discovery of novel developmental phenotypes. Nature
537(7621):508–514 DOI 10.1038/nature19356.

Doran AG,Wong K, Flint J, Adams DJ, Hunter KW, Keane TM. 2016. Deep genome
sequencing and variation analysis of 13 inbred mouse strains defines candidate
phenotypic alleles, private variation and homozygous truncating mutations. Genome
Biology 17(1):167 DOI 10.1186/s13059-016-1024-y.

Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L, Durbin R, Ashburner M. 2005.
The Sequence Ontology: a tool for the unification of genome annotations. Genome
Biology 6(5):R44 DOI 10.1186/gb-2005-6-5-r44.

Grupe A, Germer S, Usuka J, Aud D, Belknap JK, Klein RF, Ahluwalia MK, Higuchi R,
Peltz G. 2001. In silico mapping of complex disease-related traits in mice. Science
292(5523):1915–1918 DOI 10.1126/science.1058889.

Hall RA, Lammert F. 2017. Systems genetics of liver fibrosis.Methods in Molecular
Biology (Clifton, N.J.) 1488:455–466 DOI 10.1007/978-1-4939-6427-7_21.

Hunt SE, McLarenW, Gil L, Thormann A, Schuilenburg H, Sheppard D, Parton A,
Armean IM, Trevanion SJ, Flicek P, Cunningham F. 2018. Ensembl variation
resources. Database: The Journal of Biological Databases and Curation 2018:bay119
DOI 10.1093/database/bay119.

Ivandic BT, Qiao JH, Machleder D, Liao F, Drake TA, Lusis AJ. 1996. A locus on
chromosome 7 determines myocardial cell necrosis and calcification (dystrophic
cardiac calcinosis) in mice. Proceedings of the National Academy of Sciences of the
United States of America 93(11):5483–5488 DOI 10.1073/pnas.93.11.5483.

Ivandic BT, Utz HF, Kaczmarek PM, Aherrahrou Z, Axtner SB, Klepsch C, Lusis AJ,
Katus HA. 2001. New Dyscalc loci for myocardial cell necrosis and calcification
(dystrophic cardiac calcinosis) in mice. Physiological Genomics 6(3):137–144
DOI 10.1152/physiolgenomics.2001.6.3.137.

Munz et al. (2021), PeerJ, DOI 10.7717/peerj.11017 18/20

https://peerj.com
http://dx.doi.org/10.1038/nature19356
http://dx.doi.org/10.1186/s13059-016-1024-y
http://dx.doi.org/10.1186/gb-2005-6-5-r44
http://dx.doi.org/10.1126/science.1058889
http://dx.doi.org/10.1007/978-1-4939-6427-7_21
http://dx.doi.org/10.1093/database/bay119
http://dx.doi.org/10.1073/pnas.93.11.5483
http://dx.doi.org/10.1152/physiolgenomics.2001.6.3.137
http://dx.doi.org/10.7717/peerj.11017


Jeong E, Choi HK, Park JH, Lee SY. 2018. STAC2 negatively regulates osteoclast
formation by targeting the RANK signaling complex. Cell Death and Differentiation
25(8):1364–1374 DOI 10.1038/s41418-017-0048-5.

Keane TM, Goodstadt L, Danecek P,White MA,Wong K, Yalcin B, Heger A, Agam
A, Slater G, GoodsonM, Furlotte NA, Eskin E, Nellker C,Whitley H, Cleak J,
Janowitz D, Hernandez-Pliego P, Edwards A, Belgard TG, Oliver PL, McIntyre
RE, Bhomra A, Nicod J, Gan X, YuanW, Van derWeyden L, Steward CA, Bala
S, Stalker J, Mott R, Durbin R, Jackson IJ, Czechanski A, Guerra-Assuno JA,
Donahue LR, Reinholdt LG, Payseur BA, Ponting CP, Birney E, Flint J, Adams DJ.
2011.Mouse genomic variation and its effect on phenotypes and gene regulation.
Nature 477(7364):289–294 DOI 10.1038/nature10413.

KimH-G, KimH-T, Leach NT, Lan F, Ullmann R, Silahtaroglu A, Kurth I, Nowka
A, Seong IS, Shen Y, Talkowski ME, Ruderfer D, Lee J-H, Glotzbach C, Ha K,
Kjaergaard S, Levin AV, Romeike BF, Kleefstra T, Bartsch O, Elsea SH, Jabs
EW,MacDonaldME, Harris DJ, Quade BJ, Ropers H-H, Shaffer LG, Kutsche K,
Layman LC, Tommerup N, Kalscheuer VM, Shi Y, Morton CC, Kim C-H, Gusella
JF. 2012. Translocations disrupting PHF21A in the Potocki-Shaffer-syndrome
region are associated with intellectual disability and craniofacial anomalies. American
Journal of Human Genetics 91(1):56–72 DOI 10.1016/j.ajhg.2012.05.005.

Liao G,Wang J, Guo J, Allard J, Cheng J, Ng A, Shafer S, Puech A, McPherson JD,
Foernzler D, Peltz G, Usuka J. 2004. In silico genetics: identification of a functional
element regulating H2-Ealpha gene expression. Science 306(5696):690–695
DOI 10.1126/science.1100636.

McLarenW, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, Cunning-
ham F. 2016. The Ensembl Variant Effect Predictor. Genome Biology 17(1):122
DOI 10.1186/s13059-016-0974-4.

Meehan TF, Conte N,West DB, Jacobsen JO, Mason J, Warren J, Chen C-K, Tudose
I, Relac M, Matthews P, Karp N, Santos L, Fiegel T, Ring N,Westerberg H,
Greenaway S, Sneddon D, Morgan H, Codner GF, Stewart ME, Brown J, Horner
N, International Mouse Phenotyping Consortium, Haendel M,Washington
N, Mungall CJ, Reynolds CL, Gallegos J, Gailus-Durner V, Sorg T, Pavlovic G,
Bower LR, Moore M,Morse I, Gao X, Tocchini-Valentini GP, Obata Y, Cho SY,
Seong JK, Seavitt J, Beaudet AL, DickinsonME, Herault Y, WurstW, de Angelis
MH, Lloyd KCK, Flenniken AM, Nutter LMJ, Newbigging S, McKerlie C, Justice
MJ, Murray SA, Svenson KL, Braun RE,White JK, Bradley A, Flicek P,Wells S,
SkarnesWC, Adams DJ, Parkinson H, Mallon A-M, Brown SDM, Smedley D. 2017.
Disease model discovery from 3,328 gene knockouts by The International Mouse
Phenotyping Consortium. Nature Genetics 49(8):1231–1238 DOI 10.1038/ng.3901.

Meng H, Vera I, Che N,Wang X,Wang SS, Ingram-Drake L, Schadt EE, Drake TA,
Lusis AJ. 2007. Identification of Abcc6 as the major causal gene for dystrophic
cardiac calcification in mice through integrative genomics. Proceedings of the
National Academy of Sciences of the United States of America 104(11):4530–4535
DOI 10.1073/pnas.0607620104.

Munz et al. (2021), PeerJ, DOI 10.7717/peerj.11017 19/20

https://peerj.com
http://dx.doi.org/10.1038/s41418-017-0048-5
http://dx.doi.org/10.1038/nature10413
http://dx.doi.org/10.1016/j.ajhg.2012.05.005
http://dx.doi.org/10.1126/science.1100636
http://dx.doi.org/10.1186/s13059-016-0974-4
http://dx.doi.org/10.1038/ng.3901
http://dx.doi.org/10.1073/pnas.0607620104
http://dx.doi.org/10.7717/peerj.11017


Mostafavi S, Ortiz-Lopez A, BogueMA, Hattori K, Pop C, Koller D, Mathis D, Benoist
C, Immunological Genome Consortium. 2014. Variation and genetic control of
gene expression in primary immunocytes across inbred mouse strains. Journal of
Immunology 193(9):4485–4496 DOI 10.4049/jimmunol.1401280.

MulliganMK, Abreo T, Neuner SM, Parks C,Watkins CE, Houseal MT, Shapaker
TM, HookM, Tan H,Wang X, Ingels J, Peng J, Lu L, Kaczorowski CC, Bryant
CD, Homanics GE,Williams RW. 2019. Identification of a functional non-coding
variant in the GABA A Receptor α2 subunit of the C57BL/6J mouse reference
genome: major implications for neuroscience research. Frontiers in Genetics 10:188
DOI 10.3389/fgene.2019.00188.

MulliganMK,Mozhui K, Prins P,Williams RW. 2017. GeneNetwork: a toolbox for
systems genetics.Methods in Molecular Biology 1488:75–120
DOI 10.1007/978-1-4939-6427-7_4.

Uhl EW,Warner NJ. 2015.Mouse models as predictors of human responses: evolution-
ary medicine. Current Pathobiology Reports 3(3):219–223
DOI 10.1007/s40139-015-0086-y.

Wade CM, Kulbokas EJ, Kirby AW, ZodyMC,Mullikin JC, Lander ES, Lindblad-
Toh K, Daly MJ. 2002. The mosaic structure of variation in the laboratory mouse
genome. Nature 420(6915):574–578 DOI 10.1038/nature01252.

Yates A, Beal K, Keenan S, McLarenW, Pignatelli M, Ritchie G. RS, Ruffier M, Taylor
K, Vullo A, Flicek P. 2015. The Ensembl REST API: ensembl data for any language.
Bioinformatics 31(1):143–145 DOI 10.1093/bioinformatics/btu613.

ZhengM, Dill D, Peltz G. 2012. A better prognosis for genetic association studies in
mice. Trends in Genetics 28(2):62–69 DOI 10.1016/j.tig.2011.10.006.

Zimmerman H, Yin Z, Zou F, Everett ET. 2019. Interfrontal bone among inbred strains
of mice and QTL mapping. Frontiers in Genetics 10:291
DOI 10.3389/fgene.2019.00291.

Munz et al. (2021), PeerJ, DOI 10.7717/peerj.11017 20/20

https://peerj.com
http://dx.doi.org/10.4049/jimmunol.1401280
http://dx.doi.org/10.3389/fgene.2019.00188
http://dx.doi.org/10.1007/978-1-4939-6427-7_4
http://dx.doi.org/10.1007/s40139-015-0086-y
http://dx.doi.org/10.1038/nature01252
http://dx.doi.org/10.1093/bioinformatics/btu613
http://dx.doi.org/10.1016/j.tig.2011.10.006
http://dx.doi.org/10.3389/fgene.2019.00291
http://dx.doi.org/10.7717/peerj.11017

