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ABSTRACT
Background and Objectives. Glucose, an aldose, spontaneously reacts with protein
amino acids yielding glycosylated proteins. The compounds may reorganize
to produce advanced glycosylation products, which regulatory importance is
increasingly being recognized. Protein glycosylation is produced without the direct
intervention of enzymes and results in the loss of function. Glycosylated plasma
albumin, and glycosylated haemoglobin are currently used as index of mean plasma
glucose levels, since higher glucose availability results in higher glycosylation rates.
In this study we intended to detect the early changes in blood protein glycosylation
elicited by an obesogenic diet.
Experimental Design. Since albumin is in constant direct contact with plasma
glucose, as are the red blood cell (RBC) membranes, we analyzed their degree or
glycosylation in female and male rats, either fed a standard diet or subjected to a
hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small
increase in basal glycaemia and a significant increase in body fat, leaving the animals
in the initial stages of development of metabolic syndrome. We also measured the
degree of glycosylation of hemoglobin, and the concentration of glucose in contact
with this protein, that within the RBC. Glycosylation was measured by colorimetric
estimation of the hydroxymethylfurfural liberated from glycosyl residues by
incubation with oxalate.
Results. Plasma glucose was higher in cafeteria diet and in male rats, both
independent effects. However, there were no significant differences induced by sex
or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a
marked effect of diet: higher glycosylation in cafeteria rats, which was more marked
in females (not in controls). In any case, the number of glycosyl residues per molecule
were higher in hemoglobin than in plasma proteins (after correction for molecular
weight). The detected levels of glucose in RBC were lower than those of plasma,
even when expressed in molal units, and were practically nil in cafeteria-diet fed rats
compared with controls; there was no effect of sex.
Conclusions. RBC membrane glycosylation is a sensitive indicator of developing
metabolic syndrome-related hyperglycemia, more sensitive than the general
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measurement of plasma or RBC protein glycosylation. The extensive glycosylation
of blood proteins does not seem to be markedly affected by sex; and could be hardly
justified from an assumedly sustained plasma hyperglycemia. The low levels of
glucose found within RBC, especially in rats under the cafeteria diet, could hardly
justify the extensive glycosylation of hemoglobin and the lack of differences with
controls, which contained sizeable levels of intracellular glucose. Additional studies
are needed to study the dynamics of glucose in vivo in the RBC to understand how
such extensive protein glycosylation could take place.

Subjects Cell Biology, Diabetes and Endocrinology, Hematology, Metabolic Sciences
Keywords Erythrocyte, Protein glycosylation, Glycemia, Glycosylated hemoglobin, Blood cell
membrane, Cafeteria diet, Glycosylation

INTRODUCTION
Glucose, in addition to being the main intercellular energy staple, is a reducing aldose.

Thus, it may easily react with a number of chemical groups in proteins and other biological

compounds. The direct condensation with protein free amino groups (Maillard reactions)

(John & Lamb, 1993) is fairly common, to the degree that a significant proportion of

circulating plasma proteins are glycosylated (Gragnoli et al., 1982), as well as proteins in

the red blood cell (RBC) membrane (Miller, Gravallese & Bunn, 1980) and the hemoglobin

they contain (Bunn, Gabbay & Gallop, 1978). The proportion of hemoglobin glycosylated

in the terminal valine of chain B (Hb1AC) is currently used as an index of overall exposure

to free plasma glucose over time (Siu & Yuen, 2014). Glycosylation products may undergo

Amadori reorganizations, producing a number of complex compounds known as

advanced glycosylation products (AGP) (Henning et al., 2011), which play a significant

role in the control of substrate utilization (Wu et al., 2011), cell function (Guo et al., 2012)

and inflammation (Poulsen et al., 2014).

The chemical reactivity of glucose is often overlooked because of its overwhelming

function in energy supply and rapid turnover, but direct non-enzymatic glycosylation

remains a common mechanism of alteration of protein function and interference in

signaling pathways (Asahi et al., 2000; Itkonen & Mills, 2013). It is commonly accepted that

higher sustained circulating levels of glucose, as in diabetes, result in increased proportions

of glycosylated proteins in plasma, RBCs and endothelial cells, Hb1AC being a case in point

(Carson et al., 2010). In fact, equations based on the correlation between mean estimated

plasma glucose concentration and Hb1AC proportion are currently in use (Borg & Kuenen,

2009; Nathan et al., 2008).

The self-selected cafeteria diets (Sclafani & Springer, 1976) are essentially hyperlipidic

(Prats et al., 1989), and its consumption by rats causes hyperphagia, insulin resistance and

obesity (Correa Pinto & Monteiro Seraphim, 2012; Prats et al., 1989). Exposure for one

month of young adult rats to a cafeteria diet induces a number of metabolic changes that

are in the limit of normalcy and correspond to the initial stages of the metabolic syndrome
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(Romero et al., 2010). The effects are more marked in male than in female rats (Romero et

al., 2012), probably because of the anti-inflammatory effects of estrogen (Thomas et al.,

2003); but, in any case, the obesity is already patent. Short-term treatment with cafeteria

diets induce a mild hyperglycemia and hyperinsulinemia (Romero et al., 2010), but not

frank diabetes, which is more developed after prolonged exposure (Castell-Auv́ı et al., 2012;

Correa Pinto & Monteiro Seraphim, 2012).

In the present study, we have analyzed whether the glycosylation degree of total plasma

or RBC proteins, as well as those of RBC membranes, are a direct correlate of their

prolonged contact with plasma glucose in an early stage of development of hyperglycemia.

We wanted, also, to check whether sex exerts any influence on the glycosylation response to

comparable glucose concentrations.

MATERIALS AND METHODS
Animals and animal handling
All animal handling procedures were carried out in accordance with the norms of the

European, Spanish and Catalan Governments. The study was specifically approved

(DMAH-5483) by the Animal Ethics Committee of the University of Barcelona.

Wistar adult male and female (9 week-old) rats were used (Harlan Laboratories Models,

Sant Feliu de Codines, Spain). The rats were adapted to the Animal House environment

for at least one week prior to the beginning of the experiment, and were fed a standard

(Harlan, type 2014) chow. The rats were kept in solid-bottomed adjoining collective 2-rat

cages, with wood shards as bedding material. Half of the rats in each group were subjected

to an energy-rich limited-item cafeteria diet (Ferrer-Lorente et al., 2005) for a month. The

items of cafeteria diet (plain cookies spread with liver pâté, bacon, standard chow, water

and whole cow’s milk containing 300 g/L sucrose and a mineral and vitamin supplement)

were renewed daily. Food consumption per cage and rat weights were recorded every day.

The four experimental groups (N = 6 for each) were: female-control (FC), female-

cafeteria, (FCAF) male-control (MC) and male-cafeteria (MCAF). On day 29, a small

sample of blood was taken from a cut in the rat tail’s tip, centrifuged in capillary tubes, and

the plasma was frozen for later measurement of glucose levels.

At the end of the experiment (day 30), the rats were anaesthetized with isoflurane and

killed by exsanguination (blood drawn from the aorta using a dry-heparinized syringe).

Part of the blood was centrifuged immediately (at 1,300×g for 25 min and 2–4 ◦C).

Plasma and packed cells were frozen and kept at −20 ◦C. A sample of fresh blood was

deproteinized with 0.5 volumes of 6,7 M perchloric acid, mixed, neutralized with 4.5 M

KOH containing 1.55 M potassium bicarbonate, centrifuged again at the same speed (at

4 ◦C), and the supernatants used for the measurement of total blood glucose.

Packed cell volume was estimated from the weight of blood before centrifugation, that

of plasma obtained after that centrifugation and the (redundant) weight of packed cells

sedimented. Since the densities of cells and packed cells were known, and the proportion

of packed cell volume was a direct correlate of time and acceleration generated during

centrifugation, we used the previously described graphs, obtained under the same
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conditions (Romero et al., 2012) to estimate the actual proportion of plasma trapped

between the cells, and thus determine the real packed cell volume.

A known weight of frozen packed cells was suspended in 10 volumes of chilled pure

water. After gentle shaking for 20 min at 4 ◦C, the suspension was centrifuged 10 min at

2,000× g and 2–4 ◦C. The clear supernatant (hemoglobin and cytosolic RBC proteins) was

used for the analyses of total and glycosylated protein.

RBC membrane separation
About 0.5 g samples of frozen packed cells were weighed and suspended in 3.5 mL of chilled

tris–HCl buffer 10 mM pH 7.4, the cells were gently stirred until a uniform solution was

obtained. Then, 4 mL of chilled 250 mM glucose were added and gently mixed. After

standing 15 min (Tomoda et al., 1984), the suspension was coarse-filtered through a small

wad of glass fiber to remove debris, and then was centrifuged for 3 min at 8,000× g in the

cold (2–4 ◦C). The fluffy precipitate was suspended in medium, and centrifuged again. A

small translucent sediment of RBC membranes was obtained; it was weighed, and used for

the analysis of protein, total phosphate and glycosylation.

Chemical analyses
Glucose in plasma and deproteinized fresh blood was measured with a glucose oxidase kit

(Biosystems, Barcelona, Spain), supplemented with mutarotase (490 nkat/mL of reagent)

(Calzyme, San Luis Obispo, CA, USA). Mutarotase was added to speed up epimerization

equilibrium of α- and β-D-glucose and thus facilitate the oxidation of β-D-glucose by

glucose oxidase (Miwa et al., 1972). The enzyme addition was complemented with a precise

control of the time (15 min) and temperature (30 ◦C) conditions of development of the

reaction, in order to make sure all glucose in the sample was oxidized to gluconate. Protein

content was estimated with a variant of the Lowry method (Lowry et al., 1951) using fatty

acid-free bovine serum albumin (Sigma, St Louis MO, USA) as standard.

RBC membranes were mineralized with perchloric acid (700 g/L) in 15 mL Teflon-

stoppered glass tubes, in a dry block heater, at 150 ◦C for 24 h (Stein & Smith, 1982).

Aliquots of the clear mineralized samples were used, after centrifugation, for the estima-

tion of phosphate using the phosphomolybdate reaction using sodium mono-phosphate

as standard (Gomori, 1942; Stein & Smith, 1982). A standard of phosphatidyl-choline

(Sigma) was processed along with the samples. The measurements of phosphate from

the phosphatidyl-choline standards proved that mineralization was complete (98–101%).

Each batch of samples was corrected using their own standards, ran in parallel.

The degree of glycosylation was estimated by direct measurement of the 5-

hydroxymethylfurfural (HMF) liberated by treatment of the samples with 1 N oxalic

acid at 100 ◦C for 24 h (Gabbay et al., 1979) in 15 mL Teflon-stoppered tubes set in a dry

heating block. After cooling, trichloroacetic acid was added (final concentration 100 g/L),

and the tubes were shaken and centrifuged for 15 min at 5,000× g. The precipitate was

discarded. The amount of HMF released was measured through the condensation of HMF

with 50 mM thiobarbituric acid (Sigma) (Gabbay et al., 1979). After 20 min at 37 ◦C for

development of color, the OD was measured at 443 nm, using blanks and pure HMF
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Table 1 Body weight changes, energy intake and plasma glucose of Wistar rats fed control or cafeteria diet for 30 days. The data are the
mean ± sem of 6 animals per group. Plasma glucose was measured on day 29. Statistical significance of the differences between means were
determined using a 2-way ANOVA program.

Parameter Units Male Female P values

Control Cafeteria Control Cafeteria Sex Diet Interaction

Initial weight g 394 ± 9 379 ± 3 238 ± 5 217 ± 4 <0.0001 NS NS

Final weight g 474 ± 10 511 ± 3.5 275 ± 11 290 ± 8 0.0068 <0.0001 NS

Weight increase g/30 d 82 ± 10 137 ± 4 41 ± 5 74 ± 7 <0.0001 <0.0001 NS

MJ/30 d 8.62 ± 0.04 21.4 ± 1.5 6.32 ± 0.39 18.0 ± 1.0 NS
Eenergy intake

W 3.33 ± 0.01 8.26 ± 0.59 2.44 ± 0.15 6.93 ± 0.38
0.0055 <0.0001

Plasma glucose mM 7.58 ± 0.32 9.13 ± 0.15 6.83 ± 0.26 8.53 ± 0.12 0.0082 <0.0001 NS

(Sigma) standards, and was used to determine the HMF (i.e., unaltered glycosyl residues in

proteins) in each sample.

Blood cell glucose estimation
Blood glucose is the composite of the glucose carried by the cells and that in plasma using

the common (Higgins, Garlick & Bunn, 1982) formula:

blood glucose = plasma glucose × (1 − PCV) + cell glucose × PCV

where PCV (Packed Cell Volume) is the net cell volume fraction (i.e., discounting trapped

plasma volume) of total blood volume (in this case = 1). In that equation, we had, for each

rat, the PCV value as well as plasma and blood glucose. Crude cell-transported glucose was

derived from these data. Since it was assumed that trapped plasma glucose concentration

was the same than in plasma obtained by centrifugation, the glucose present in that plasma

fraction was discounted from the total packed cell glucose (and added to the final data for

“plasma glucose”). These calculations were carried out for each individual rat, thus all data

used for the calculations were homologous.

Statistics
Statistic comparison between groups was carried out using 2- and 3-way ANOVA analyses,

and the Bonferroni post-hoc test for further differences between specific groups (Prism 5

program; GraphPad Software, La Jolla, CA, USA).

RESULTS
Table 1 presents the changes in body weight experienced by the rats during one month

of exposure to a cafeteria diet. The initial weight difference between female and male rats

widened with time, since control males increased about 20% of their weight, compared

with 15% of females; cafeteria diet increased body weight 35% in males and 34% in

females. Males ate more energy than females: 36% (control diet) or 19% (cafeteria diet).

Males’ food (expressed as energy content) intake was 2.5-fold higher in cafeteria than in

control diet; the value for females was 2.8×.
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Figure 1 Distribution of blood glucose in plasma and cell compartments of Wistar rats fed control or
cafeteria diet during 30 days. Data are the mean ± sem of 6 animals per group (killed under isoflurane
anesthesia), and were calculated from the data presented in Table 2. Statistical significance (two-way
ANOVA) of the differences between groups: No differences were found for “sex”, but “diet” showed
P < 0.0001 for cells and was not significant for plasma. Blood cell data for cafeteria diet were not
statistically different from zero.

Standard plasma glucose (measured on day 29) showed both an effect of sex (female

levels being lower) and diet (cafeteria diet data being higher).

Table 2 shows the data obtained from the analysis of blood extracted under isoflurane

anesthesia. In this case, all plasma glucose data were higher than those obtained on day

29 under basal conditions, and there were no statistical differences between the groups

attributable to sex or diet. Total blood glucose values were lower than those of plasma, and

showed neither differences by sex or diet. However, the estimated data for cell glucose

showed a clear effect of diet (Fig. 1). In both groups of cafeteria rats, the levels were

minimal, not statistically different from zero, while those of rats under the control diet

were lower than in plasma but clearly positive, the differences being not significant for

“sex” but significant for “diet”. In control rats, when water content of plasma (about 92%)

and packed cells (about 70%) was included in the calculations, the molal concentrations

of cell glucose were in the range of 1/3rd of those of plasma; female rats presented similar

values. Cafeteria diet-fed rats showed values in the range of only 4–7%.

The proportions of glycosylated protein, both in RBC and in plasma, are presented in

Fig. 2. No significant differences were observed between the groups for “sex” and “diet”.

However, cell protein was more heavily glycosylated than plasma proteins. In the case of

cells, since most of the protein (>95%) is hemoglobin, it can be assumed that most glycosyl

residues were bound to this protein; since its molecular weight (tetramer) is about 64,000,

the molar ratio of HMF to hemoglobin was about 320, i.e., about 80 glycosyl residues

per hemoglobin subunit. This value is about six-fold higher than the number of sites

representing 7% Hb1AC, which is limited to the terminal chains of hemoglobin. In the case

of plasma, since albumin makes about 55% of plasma proteins and its molecular weight

is close to 66,500, we obtain about 90 glycosyl residues per molecule. Evidently, this is

only an imprecise approximation but shows that under the particular conditions of this
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Figure 2 Degree of glycosylation expressed in nmol HMF per mg total protein in the cells and plasma
of Wistar rats fed control or cafeteria diet during 30 days. Data are the mean ± sem of 6 animals per
group. Statistical significance (three-way ANOVA) of the differences between groups: No differences were
found for “sex” and “diet”, but the differences between “compartments” (i.e., blood cells vs. plasma) was
P < 0.0001.

Table 2 Blood glucose and packed cell volume of Wistar rats fed control or cafeteria diet for one month, after exsanguination under isoflurane
anesthesia on day 30. The data are the mean ± sem of 6 animals per group. Packed cell volume data were corrected for trapped plasma as explained
in the text. Statistical significance of the differences between means were determined using a 2-way ANOVA program.

Parameter Units Male Female P values

Control Cafeteria Control Cafeteria Sex Diet Interaction

Blood glucose mM 6.83 ± 0.13 5.93 ± 0.37 6.43 ± 0.14 6.31 ± 0.31 NS NS NS

Plasma glucose mM 10.41 ± 0.33 10.90 ± 0.64 10.71 ± 0.63 10.84 ± 0.64 NS NS NS

Packed cell volume % blood volume 45.7 ± 0.9 43.8 ± 0.7 43.1 ± 1.1 42.7 ± 1.8 NS NS NS

Blood cell glucosea µmol/g 2.75 ± 0.32 0.53 ± 0.96* 2.76 ± 0.56 0.33 ± 0.27* NS <0.0001 NS

Notes.
a Blood cells’ glucose concentration was calculated for each animal from glucose data (whole blood and plasma) and the net packed cell volume.
* Statistically not different from zero.

experiment, protein glycosylation was significant and about 3.5 times more intensive in

cells (on a molar ratio) than in plasma proteins as a whole.

Figure 3 depicts the rate of glycosylation observed in purified membranes of blood

cells. Since purification of membranes is not even close to quantitative, we could not

determine in which proportion RBC membranes were glycosylated. In fact, we were not

able to ascertain the degree of the purity of samples. Thus, membrane proteins could

be contaminated by hemoglobin (in spite of the appearance of total elimination at the

expense of dwindling recovery of membranes), spectrin or other molecules. Thus, we

decided to also relate the degree of glycosylation to phospholipid, an exclusive membrane

component in RBC. The molar ratio of released HMF to phospholipid phosphate (Fig. 3)

showed an image quite different from that of Fig. 2. There were no statistical differences

between groups attributable to “sex”. This was clear for control diet, but the post-hoc test

showed a significant (P < 0.05) sex-related difference in cafeteria-fed rats. The effect of

“diet” was significant, with several-fold higher values in cafeteria- than in control-fed rats.
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Figure 3 Degree of glycosylation of blood cell membranes, expressed as mmoles of HMF per mmol of
phospholipid P or unit of membrane protein weight, of Wistar rats fed control or cafeteria diet during
30 days. Data are the mean ± sem of 6 animals per group. Statistical significance (two-way ANOVA) of
the differences between groups: When analyzed for HMF vs. protein, no statistical differences were found.
When analyzed for HMF vs. phospholipid P. No differences were found for “sex” but the difference for
“diet” was P < 0.0001. There was a significant interaction between sex and diet. Glycosylation was higher
(P < 0.05, Bonferroni post-hoc test) in the female cafeteria rats, compared with males.

Presentation of the data of HMF per mg of membrane preparation protein shown in Fig. 3,

yields almost the same pattern, but statistical significance was lower because the individual

variation of data was higher.

DISCUSSION
In the development of this apparently simple study, we tried to maintain a close control of

methodology, since the problems of glycosylation of blood components have generated a

sizeable number of studies, but their integrated analysis is scarce, in a way that only limited

comparisons have been studied. We intended to present homologous data for plasma and

RBC proteins, including also samples of RBC membranes, and using a model in which the

metabolic syndrome pathologies, especially insulin resistance and hyperglycemia, were not

fully set in.

The problem of anesthesia as hyperglycemic agent (Arola et al., 1981; Zuurbier et al.,

2008) has not been solved; we opted by using this avenue to obtain sufficient blood to

carry out all the compartmentation and membrane experiments in the same samples.

Consequently we had to obtain separate plasma samples to compare the basal results

with previous studies (Palou et al., 1980). The changes elicited by cafeteria diet agree

with previously published studies (Ferrer-Lorente et al., 2005). We assumed that the brief

isoflurane anesthesia-induced hyperglycemia (Zuurbier et al., 2008) (less than 5 min from

start to exsanguination) changes plasma glucose levels, but its effects on RBC glucose (if

any) would be at least partly buffered. In any case, it is highly improbable that these changes

would affect differentially the rats depending on their diet. The uniformity of the data
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obtained seem to support this weak point of our experimental setup. We have not been able

to circumvent the problem within the ethical standards of our Laboratory.

The lower blood vs. plasma glucose levels, more marked in cafeteria diet-fed rats, attest

directly to a lower cell compartment glucose content (there were minimal differences in

packed cell volume). The accuracy of the calculations used to quantify the cell glucose

content notwithstanding, do not change the fact that cafeteria rats had higher glucose

content in the blood plasma fraction compared with that of cells; precisely the glucose in

direct contact with hemoglobin.

Metabolic syndrome, diabetes and in general, high exposure to inflammation and

hyperglycemia increase the glycosylation of plasma proteins (Matsuura, Hughes &

Khamashta, 2008; Roohk & Zaidi, 2008). In fact, glycosylated albumin has been proposed

as an indicator of maintained hyperglycemia (i.e., exposure of plasma proteins to higher

aldose levels for long periods) (Abe & Matsumoto, 2008). However, the most used indicator

of long-time maintained hyperglycemia is the measurement of glycosylated hemoglobin

(Siu & Yuen, 2014), which initially was applied to whole RBC hemoglobin (Carson et

al., 2010), but soon was focused on the terminal amino groups of hemoglobin (Hb1AC)

alone, giving rise to a much more sensitive (and extended) assay methodology (Little et al.,

2008; Weykamp et al., 2008). The study of glycosylated hemoglobin (Hb1AC) has become

one of the standard elements for the evaluation of diabetes (metabolic syndrome) and,

in general, sustained hyperglycemia (Ong et al., 2010). The critical point, however, is that

all hemoglobin is contained within the RBC, and is not in direct contact with plasma

glucose. This obvious circumstance would make a priori glycosylated albumin a more

acceptable indicator of hyperglycemia. The conundrum of a marker of glycosylation not

in direct contact with the parameter it measures has not been sufficiently explained so far.

Nevertheless, its widespread use and clinical reliability are powerful reasons in favor of its

continued use despite the largely unexplained nature of its origins.

In mammals, the direct permeability of the RBC membrane to glucose is low, if any

(Britton, 1964; Rich et al., 1967), however, interchange of plasma and RBC glucose is active

thanks to a facilitated-diffusion transport system (Levine, Oxender & Stein, 1965). The

transport has been attributed, mainly to GLUT1 (Graybill et al., 2006), which function may

be regulated by insulin, glucocorticoids and other factors (Kahn & Flyer, 1990). However,

no differences in glucose transport through erythrocyte membranes were found between

diabetic and euglycemic children (Mortensen & Brahm, 1985). There is, also, a high

variability in the permeability of RBC membranes to glucose, due to species differences,

individual factors and transporter modulation/saturation (Khera et al., 2008).

Compartmentation of blood glucose between plasma and cells may be an important

regulatory factor by itself (Palou et al., 1980), since glucose carried by blood cells is rapidly

interchanged with tissues (Jacquez, 1984). This is in overt contradiction with the slow

velocity of glucose interchange of RBC when measured in vitro (Sen & Widdas, 1962). In

addition, given the glycolytic nature of mammalian RBC, it can be expected that a sizeable

part of the glucose entering the cell is rapidly glycolyzed to lactate, a process that is the

only significant source of ATP for the cell. This inefficient mechanism converts blood in a
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sizeable source of lactate, which implies that a variable part of glucose will be converted to

hexoses-P on entering the cell, and thus (at least in part, when isomerized to ketose-P) lose

its aldose-related glycosylating capacity.

The high proportions of Hb1AC found under conditions of assumed sustained

hyperglycemia (Giuffrida et al., 2010) contrast with the physical existence of barriers

between hyperglycemic plasma and hemoglobin. We could not explain why Hb1AC is

so highly correlated with hyperglycemia, since total hemoglobin glycosylation does not

reflect only hyperglycemia (Adams et al., 2009; Chan et al., 2014), which is in agreement

with our data. In addition, diabetogenic conditions, such as those presented here and

those found in the literature (Koga et al., 2007; Miyashita et al., 2007; Wakabayashi, 2012)

do not show the expected changes in hemoglobin glycosylation. Our data on the lack of

significant changes elicited by diet on plasma protein glycosylation do not agree with the

common occurrence of increased glycosylated proteins in plasma of humans and rodents

alike under already settled metabolic syndrome or its associated pathologies (Gornik &

Lauc, 2008). The probable differences lie in the fact that in our model of initial stages

of metabolic syndrome, the pathologic markers have not been yet developed fully, as we

have previously found (Ferrer-Lorente et al., 2005). It must be also taken into account that

metabolic syndrome-induced modifications on plasma proteins (Marliss et al., 2006; Welle

et al., 1992) and RBC (Cohen, Franco & Joiner, 2004; Manodori & Kuypers, 2002) increase

their cell turnover rates which compounds the problem and makes more difficult the

comparisons unless the data maintain their homology.

The elevated degree of glycosylation found in RBC membranes, however, shows that

even the small differences in basal glycemia found in our model are enough to already

induce several-fold changes in the glycosylative activity of plasma glucose. Probably, other

factors so far not identified, may help explain the increased glycosylation observed even at

early stages of the development of metabolic syndrome. The relationship with high-energy

(lipid) diet is clear, but the common assumption that these changes are a correlate of

hyperglycemia remain unproven, and largely based only on indirect evidence.

In our experiment, the degree of glycosylation of hemoglobin was high, even under

conditions in which practically no free glucose was found within the RBC. We only

measured glycosyl residues, not those recombined by Amadori rearrangements, i.e., those

able to liberate hydroxymethylfurfural. However, the ratio of up to 90 glycosyl residues

per subunit of hemoglobin is close to the level of saturation of glycosylable sites. This was

necessarily achieved in at most one month, a time shorter than the mean rat RBC half-life,

45–50 days (Burwell, Brickley & Finch, 1953), a value considerably decreased in rats with

metabolic syndrome (Kung, Tseng & Wang, 2009). However, compared with albumin

which median life span is close to 2 days (Reed et al., 1988), the differences can be better

explained, since exposure of hemoglobin was 15-fold higher (30 days out of 45–50) than

that of plasma proteins (2 days, assuming a behavior comparable to that of albumin). The

shorter exposure was predictably more intense (as that of RBC membrane protein) because

plasma proteins were in constant contact with plasma glucose.
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The levels of glycosylation of plasma proteins and hemoglobin observed do not reflect

the (limited) changes in plasma glucose, however, RBC membranes do. The results we

obtained are puzzling; they agree with the known fact that exposure to hyperglycemia

results in increased protein glycosylation, as shown by membrane proteins’ differences,

but not observed in plasma proteins; this may be due to their shorter half-lives and limited

span of glucose level change.

On the other side, the low free glucose levels observed in cafeteria diet-fed rat RBC,

agree with a slower rate of uptake (Prats et al., 1987) compared with plasma, but cannot

directly explain how the overall glycosylation of hemoglobin was unaffected by one month

of consumption of a hyper-energetic obesogenic diet.

CONCLUSIONS
We conclude that blood glucose compartmentation, as previously indicated, may play

a role, in the regulation of plasma/blood versus tissue glucose transport/transfer, more

important than usually assumed, but also, that glycosylation of blood proteins widely

affects non-diabetic young experimental animals, both under standard or hyper-energetic

diet conditions. This extensive glycosylation does not seem to be markedly affected by sex;

and could be hardly justified from an assumedly sustained plasma hyperglycemia. More

detailed—and comprehensive—analyses should be carried out to study the dynamics of

glucose in vivo in the RBC to understand how so extensive protein glycosylation as that

found here could take place, including an special emphasis on the hormonal regulation of

RBC glucose transporters.

We have also found that RBC membrane glycosylation is a sensitive indicator of

developing metabolic syndrome-related hyperglycemia, more sensitive than the general

measurement of plasma or RBC protein glycosylation.
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• Marià Alemany conceived and designed the experiments, analyzed the data, contributed

reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body

and any reference numbers):

All animal handling procedures were carried out in accordance with the norms of

European, Spanish and Catalan Governments. The study was specifically approved

(DMAH-5483) by the Animal Ethics Committee of the University of Barcelona.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.1101#supplemental-information.

REFERENCES
Abe M, Matsumoto K. 2008. Glycated hemoglobin or glycated albumin for assessment of glycemic

control in hemodialysis patients with diabetes? Nature Clinical Practice Nephrology 4:482–483
DOI 10.1038/ncpneph0881.

Adams RJ, Appleton SL, Hill CL, Wilson DH, Taylor AW, Chittleborough CR, Gill TK,
Ruffin RE. 2009. Independent association of HbA1c and incident cardiovascular disease in
people without diabetes. Obesity 17:559–563 DOI 10.1038/oby.2008.592.

Arola L, Alemany M, Herrera E, Palou A, Remesar X. 1981. Effect of ether, sodium pentobarbital
and chloral hydrate anesthesia on rat plasma metabolite concentrations. Revista Española de
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Ferrer-Lorente R, Cabot C, Fernández-López JA, Alemany M. 2005. Combined effects of
oleoyl-estrone and a β3-adrenergic agonist (CL316,243) on lipid stores of diet-induced
overweight male Wistar rats. Life Sciences 77:2051–2058 DOI 10.1016/j.lfs.2005.04.008.

Gabbay KH, Sosenko JM, Banuchi GA, Mininsohn MJ, Flückiger R. 1979. Glycosylated
hemoglobins: increased glycosylation of Hemoglobin A in diabetic patients. Diabetes
28:337–340 DOI 10.2337/diab.28.4.337.

Giuffrida FMA, Sallum CFC, Gabbay MAL, Gomes MB, Pires AC, Dib SA. 2010. Relationship
between glycated hemoglobin and metabolic syndrome of type 1 and type 2 diabetes. A factor
analysis study. Diabetes Care 33:e80–e80 DOI 10.2337/dc09-2280.

Gomori G. 1942. A modification of the colorimetric phosphorus determination for use with the
photoelectric colorimeter. Journal of Laboratory and Clinical Medicine 27:955–960.

Gornik O, Lauc G. 2008. Glycosylation of serum proteins in inflammatory diseases. Disease
Markers 25:267–278 DOI 10.1155/2008/493289.

Gragnoli G, Tanganelli I, Signorini AM, Tarli P, Paoli C. 1982. Non-enzymatic glycosylation
of serum proteins as an indicator of diabetic control. Acta Diabetologica Latina 19:161–166
DOI 10.1007/BF02581152.

Graybill C, Van Hoek AN, Desai D, Carruthers AM, Carruthers A. 2006. Ultrastructure of
human erythrocyte GLUT1. Biochemistry 45:8096–8107 DOI 10.1021/bi060398x.

Guo CX, Zeng XJ, Song JJ, Zhang M, Wang HX, Xu XW, Du FH, Chen BX. 2012. A soluble
receptor for advanced glycation end-products inhibits hypoxia/reoxygenation-induced
apoptosis in rat cardiomyocytes via the mitochondrial pathway. International Journal of
Molecular Sciences 13:11923–11940 DOI 10.3390/ijms130911923.

Oliva et al. (2015), PeerJ, DOI 10.7717/peerj.1101 13/16

https://peerj.com
http://dx.doi.org/10.1113/jphysiol.1964.sp007310
http://dx.doi.org/10.1126/science.635569
http://dx.doi.org/10.2337/dc09-1227
http://dx.doi.org/10.1017/S0007114511006623
http://dx.doi.org/10.1111/pedi.12132
http://dx.doi.org/10.2337/diacare.27.4.1013
http://dx.doi.org/10.1590/S1415-52732012000300001
http://dx.doi.org/10.1016/j.lfs.2005.04.008
http://dx.doi.org/10.2337/diab.28.4.337
http://dx.doi.org/10.2337/dc09-2280
http://dx.doi.org/10.1155/2008/493289
http://dx.doi.org/10.1007/BF02581152
http://dx.doi.org/10.1021/bi060398x
http://dx.doi.org/10.3390/ijms130911923
http://dx.doi.org/10.7717/peerj.1101


Henning C, Smuda M, Girndt M, Ulrich C, Glomb MA. 2011. Molecular basis of Maillard
amide-advanced glycation end product (AGE) formation in vivo. Journal of Biological Chemistry
286:44350–44356 DOI 10.1074/jbc.M111.282442.

Higgins PJ, Garlick RL, Bunn HF. 1982. Glycosylated hemoglobin in human and animal red cells:
role of glucose permeability. Diabetes 31:743–748 DOI 10.2337/diab.31.9.743.

Itkonen HM, Mills IG. 2013. N-Linked glycosylation supports cross-talk between receptor tyrosine
kinases and androgen receptor. PLoS ONE 8:e65016 DOI 10.1371/journal.pone.0065016.

Jacquez JA. 1984. Red blood cell as glucose carrier: significance for placental and cerebral glucose
transfer. American Journal of Physiology 246:R289–R298.

John WG, Lamb EJ. 1993. The Maillard or browning reaction in diabetes. Eye 7:230–237
DOI 10.1038/eye.1993.55.

Kahn BB, Flyer JS. 1990. Regulation of glucose-transporter gene expression in vitro and in vivo.
Diabetes Care 13:548–564 DOI 10.2337/diacare.13.6.548.

Khera PK, Joiner CH, Carruthers A, Lindsell CJ, Smith EP, Franco RS, Holmes YR, Cohen RM.
2008. Evidence for interindividual heterogeneity in the glucose gradient across the human red
blood cell membrane and its relationship to hemoglobin glycation. Diabetes 57:2445–2452
DOI 10.2337/db07-1820.

Koga M, Otsuki M, Matsumoto S, Saito H, Mukai M, Kasayama S. 2007. Negative association of
obesity and its related chronic inflammation with serum glycated albumin but not glycated
hemoglobin levels. Clinica Chimica Acta 378:48–52 DOI 10.1016/j.cca.2006.10.013.

Kung CM, Tseng ZL, Wang HL. 2009. Erythrocyte fragility increases with level of glycosylated
hemoglobin in type 2 diabetic patients. Clinical Hemorheology and Microcirculation 43:345–351.

Levine M, Oxender DL, Stein W. 1965. The substrate-facilitated transport of the glucose
carrier across the human erythrocyte membrane. Biochimica et Biophysica Acta 109:151–163
DOI 10.1016/0926-6585(65)90099-3.

Little RR, Rohlfing CL, Hanson S, Connolly S, Higgins T, Weykamp CW, D’Costa M,
Luzzi V, Owen WE, Roberts WL. 2008. Effects of hemoglobin (Hb) E and HbD traits on
measurements of glycated Hb (HbA1C) by 23 methods. Clinical Chemistry 54:1277–1282
DOI 10.1373/clinchem.2008.103580.

Lowry OH, Rosebrough RW, Farr AL, Randall RJ. 1951. Protein measurement with the Folin
phenol reagent. Journal of Biological Chemistry 193:265–275.

Manodori AB, Kuypers FA. 2002. Altered red cell turnover in diabetic mice. Journal of Laboratory
and Clinical Medicine 140:161–165 DOI 10.1067/mlc.2002.126504.

Marliss E, Chevalier S, Gougeon R, Morais J, Lamarche M, Adegoke O, Wu G. 2006. Elevations
of plasma methylarginines in obesity and ageing are related to insulin sensitivity and rates of
protein turnover. Diabetologia 49:351–359 DOI 10.1007/s00125-005-0066-6.

Matsuura E, Hughes GR, Khamashta MA. 2008. Oxidation of LDL and its clinical implication.
Autoimmunity Reviews 7:558–566 DOI 10.1016/j.autrev.2008.04.018.

Miller JA, Gravallese E, Bunn HF. 1980. Nonenzymatic glycosylation of erythrocyte
membrane proteins. Relevance to diabetes. Journal of Clinical Investigation 65:896–901
DOI 10.1172/JCI109743.

Miwa I, Maeda K, Okuda J, Okuda G. 1972. Mutarotase effect on colorimetric determination
of blood-glucose with β-D-glucose oxidase. Clinica Chimica Acta 37:538–340
DOI 10.1016/0009-8981(72)90483-4.

Oliva et al. (2015), PeerJ, DOI 10.7717/peerj.1101 14/16

https://peerj.com
http://dx.doi.org/10.1074/jbc.M111.282442
http://dx.doi.org/10.2337/diab.31.9.743
http://dx.doi.org/10.1371/journal.pone.0065016
http://dx.doi.org/10.1038/eye.1993.55
http://dx.doi.org/10.2337/diacare.13.6.548
http://dx.doi.org/10.2337/db07-1820
http://dx.doi.org/10.1016/j.cca.2006.10.013
http://dx.doi.org/10.1016/0926-6585(65)90099-3
http://dx.doi.org/10.1373/clinchem.2008.103580
http://dx.doi.org/10.1067/mlc.2002.126504
http://dx.doi.org/10.1007/s00125-005-0066-6
http://dx.doi.org/10.1016/j.autrev.2008.04.018
http://dx.doi.org/10.1172/JCI109743
http://dx.doi.org/10.1016/0009-8981(72)90483-4
http://dx.doi.org/10.7717/peerj.1101


Miyashita Y, Nishimura R, Morimoto A, Matsudaira T, Sano H, Tajima N. 2007. Glycated
albumin is low in obese, type 2 diabetic patients. Diabetes Research and Clinical Practice
78:51–55 DOI 10.1016/j.diabres.2007.02.021.

Mortensen HB, Brahm J. 1985. Glucose transport in erythrocytes of diabetic and healthy children
as related to hemoglobin A1c. Clinical Chemistry 31:1387–1389.

Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ. 2008. Translating the A1C
Assay into estimated average glucose values. Diabetes Care 31:1473–1478
DOI 10.2337/dc08-0545.

Ong KL, Tso AWK, Lam KSL, Cherny SS, Sham PC, Cheung BMY. 2010. Using glycosylated
hemoglobin to define the metabolic syndrome in United States adults. Diabetes Care
33:1856–1858 DOI 10.2337/dc10-0190.

Palou A, Remesar X, Arola L, Alemany M. 1980. Blood and plasma glucose relationships during
pregnancy, the breeding cycle and development in the rat. Diabete et Metabolisme 6:271–275.

Poulsen MW, Bak MJ, Andersen JM, Monosik R, Giraudi-Futin AC, Holst JJ, Nielsen J,
Lauritzen L, Larsen LH, Bugel S, Dragsted LO. 2014. Effect of dietary advanced glycation
end products on postprandial appetite, inflammation, and endothelial activation in healthy
overweight individuals. European Journal of Nutrition 53:661–672
DOI 10.1007/s00394-013-0574-y.

Prats E, Monfar M, Argilés JM, Alemany M. 1987. Effects of starvation and a high-energy diet
on rat blood compartmentation of injected radioactive alanine and glucose. Biochemistry
International 14:95–101.
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