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ABSTRACT
Background. Prostate cancer is one of the most common cancers worldwide.
Currently, convolution neural networks (CNNs) are achieving remarkable success
in various computer vision tasks, and in medical imaging research. Various CNN
architectures and methodologies have been applied in the field of prostate cancer
diagnosis. In this work, we evaluate the impact of the adaptation of a state-of-the-
art CNN architecture on domain knowledge related to problems in the diagnosis of
prostate cancer. The architecture of the final CNN model was optimised on the basis
of the Prostate Imaging Reporting and Data System (PI-RADS) standard, which is
currently the best available indicator in the acquisition, interpretation, and reporting
of prostate multi-parametric magnetic resonance imaging (mpMRI) examinations.
Methods. A dataset containing 330 suspicious findings identified using mpMRI was
used. Two CNN models were subjected to comparative analysis. Both implement the
concept of decision-level fusion for mpMRI data, providing a separate network for
each multi-parametric series. The first model implements a simple fusion of multi-
parametric features to formulate the final decision. The architecture of the second
model reflects the diagnostic pathway of PI-RADS methodology, using information
about a lesion’s primary anatomic location within the prostate gland. Both networks
were experimentally tuned to successfully classify prostate cancer changes.
Results. The optimised knowledge-encodedmodel achieved slightly better classification
results compared with the traditional model architecture (AUC = 0.84 vs. AUC = 0.82).
We found the proposed model to achieve convergence significantly faster.
Conclusions. The final knowledge-encoded CNNmodel providedmore stable learning
performance and faster convergence to optimal diagnostic accuracy. The results fail
to demonstrate that PI-RADS-based modelling of CNN architecture can significantly
improve performance of prostate cancer recognition using mpMRI.
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INTRODUCTION
In 2018, it was estimated that prostate cancer (PCa) was the second most common type
of cancer globally, contributing to 3.8% of all deaths from the disease (Rawla, 2019).
It is estimated that one in seven males will suffer from PCa during their lifetime. The
detection and characterisation of clinically significant prostate cancer (csPCa) within the
prostate gland is a complex process. A significant breakthrough came with the emergence
of multi-parametric magnetic resonance imaging (mpMRI), which utilises a combination
of anatomical and functional pulse sequences, and has quickly become a cornerstone
in the diagnostic algorithm of csPCa (Polanec et al., 2020). Current mpMRI methods
include conventional T2-weighted imaging (T2W), diffusion-weighted imaging (DWI)
with apparent diffusion coefficient (ADC) mapping, and dynamic contrast-enhanced MRI
(DCE). mpMRI has proved to be an effective technique for localising high-risk prostate
cancer, in addition to guiding biopsies, and better reflects the true Gleason grade (Fei,
2017). As a result, recent guidelines issued by the European Association of Urology
strongly recommend that patients are referred for mpMRI prior to biopsies (Mottet et al.,
2017). However, the introduction of mpMRI to clinical practice has also brought new
challenges. Prostate mpMRI imaging depends heavily on the vendors of MRI equipment,
and the parameters used—includingmagnet field, gradient strength, and choice of sequence
parameters. Moreover, the prostate mpMRI interpretation process is characterised by high
inter-observer variability, and the learning curve effect.

Prostate Imaging-Reporting and Data System
The Prostate Imaging Reporting and Data System (PI-RADS) was introduced by the
European Society of Urogenital Radiology (ESUR) in 2012, with the aim of standardising
prostate mpMRI examination protocols and suspicious lesion reporting. The PI-RADS
system categorises prostate lesions based on the likelihood of cancer according to a five-
point scale. The current version, PI-RADS 2.1, was launched in 2019. Its clinical utility is
growing, and several studies have confirmed that PI-RADS scoring improves the diagnostic
accuracy of mpMRI (Hamm & Asbach, 2018).

Deep learning and domain knowledge encoding
The recent success of deep learning methodology exploits the concept of end-to-end
models learned directly from data (data-driven modelling). This stands in opposition to
the past dominance of hand-crafted feature engineering (knowledge-based modelling), in
which domain knowledge usually plays a central role, and the majority of the architecture
is manually hard-wired, based on domain expertise (Muralidhar et al., 2018). The question
remains unresolved of how much domain knowledge is necessary for learning in domain-
agnostic situations in which no prior knowledge is assumed, but is rather induced from the
data. Another question arising is how prior knowledge can be encoded within deep neural
networks. In the case of deep learning, the process of domain knowledge incorporation
might relate to the selection of general network architecture. Different classes of neural
network are preferred, depending on the nature of the data being processed, and the
aim of the task being undertaken. For example, recurrent neural networks are frequently
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advocated for data with sequential structures (Muralidhar et al., 2018). At this level of
generality, handling images and video processing tasks usually involves the selection of
convolution neural networks (CNNs). Convolution is a powerful concept for constructing
a robust feature space based on image data.

An alternative approach assumes integration of the knowledge-based theoretical
approach to data-driven empirical modelling (Todorovski & Dzeroski, 2006). Such a
conception of knowledge-based modelling formulated in linguistic terms, with ontological
structures or any other representations embedded in reasoning procedures, aims to improve
knowledge or understanding of a phenomenon. The concept of hybrid modelling has
already been employed in the field of biomedical informatics (Pivovarov & Elhadad, 2012).
The first attempts in the field of neural networks aimed at modifying network architecture
to reflect current domain knowledge were influenced by earlier ideas implemented in
relation to the structures of classic neural networks (Davies, 1991; DeClaris & Su, 1993).
Recently, integration of prior knowledge into deep learning has been enthusiastically
developed, and an interesting trend is becoming apparent in the development of deep
learning models (Diligenti, Roychowdhury & Gori, 2017; Futia & Vetro, 2020).

Lately, research has addressed the problem of deep neural network instability due
to perturbations in visual input, resulting from image processing procedures (such as
compression and cropping), or diversified sources of training data (Zheng et al., 2016;
Strisciuglio, Lopez-Antequera & Petkov, 2020). Data augmentation is frequently insufficient.
Moreover, this form of robustness must be learned from augmented input data, and is
only specific for classes of perturbation which are effectively represented by that data.
The same lack of robustness can be observed in the case of biomedical images (Tasdizen
et al., 2018), in which additional data diversification occurs due to different acquisition
protocols and machine vendors, or as a result of image multi-modality, which increases
the complexity of learning. In Kloenne et al. (2020) the introduction of domain-specific
data pre-processing and augmentation to state-of-the-art CNN architectures improved the
network’s robustness, and stabilised the prediction performance on a range of tasks, such
as liver and kidney segmentation.

Deep learning in prostate cancer—related work
CAD systems used in mpMRI-based examinations play the role of a second observer,
providing a method of reporting the probability of a finding being clinically significant in
an unbiased manner. Presently, deep learning models are establishing a new state of the art
in the field of medical data analysis, and specifically in the area of prostate cancer diagnosis
with mpMRI.

The problem of csPCa detection can be formulated in two different ways: as a
classification problem (Song et al., 2018;Wang et al., 2017;Yang et al., 2017a; Le et al., 2017;
Yang et al., 2017b); or as a semantic-segmentation problem (Ishioka et al., 2018; Alkadi et
al., 2019; Kiraly et al., 2017; Schelb et al., 2019). In the first case, a patch-based classification
of suspected tissue samples is typically performed, which retrospectively exploits annotated
image patches. The second approach utilises a pixel-level classification; the goal of which
is to assign a label to each pixel, indicating its association to a proper class (usually cancer
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tissue, normal organ, or background). The selection of basic architecture depends heavily
on csPCa task formulation. For the classification approach, VGG (Song et al., 2018; Le et al.,
2017), ImageNet (Wang et al., 2017), GoogLeNet (Yang et al., 2017a; Le et al., 2017; Yang
et al., 2017b), and ResNet (Le et al., 2017) have been used. Encoder–decoder architectures
are usually preferred in the semantic-segmentation approach, promoting models such as
U-Net (Ishioka et al., 2018; Schelb et al., 2019), ResNet (Ishioka et al., 2018), SegNet (Kiraly
et al., 2017), and VGG16 (Alkadi et al., 2019).

One crucial aspect which occurs widely in medical imaging is the multi-modality
of image data. In the case of prostate cancer, data multi-modality is expressed in the
multi-parametric form of MRI scans. The problem of multi-modality fusion in CNNs
was analysed extensively by Zhou, Ruan & Canu (2019), in which the authors proposed
various multi-modal fusion strategies. Most of the solutions in the area of prostate cancer
detection exploit the concept of input-level fusion or that of decision-level fusion. In the
input-level fusion strategy, multi-parametric images are fused before being passed to the
network. The most common form of input-level fusion is image registration, in which
co-registeredmulti-parametric image series constitute an input for network training (Kiraly
et al., 2017; Song et al., 2018). The conception of decision-level fusion usually assumes the
use of individual networks for each multi-parametric series (Yang et al., 2017a; Le et al.,
2017; Yang et al., 2017b; Schelb et al., 2019). Each network can learn unique and mutually
complementary information from different multi-parametric images. This allows the
creation of modality-specific feature representations. The results from individual networks
are integrated and fused at the classification stage, and reach a final decision.

In this work, we hypothesise that encoding prior domain knowledge to state-of-the-art
CNN architecture in the task of csPCa detection on mpMRI images can improve the
robustness of a CNN model, and stabilise its learning. We assume that the optimised
architecture of the CNN, which reflects prior knowledge of the diagnostic process encoded
in the PI-RADS rules, can provide an inductive bias, which allows to prioritise interpretation
of diagnostic information according to a lesion’s location in the prostate zone.

MATERIALS AND METHODS
PI-RADS as a source of domain knowledge
PI-RADS v2 introduced the concept of a dominant mpMRI sequence, related to the
original location of a lesion. Peripheral zone (PZ) lesion assessment is based primarily
on DWI evaluation, with DCE playing a supporting role in cases in which the evaluation
is inconclusive. Similarly, for the transition zone (TZ), the T2W evaluation is primary,
and DWI plays a supporting role. Consequently, the assignment of an overall score to a
lesion, indicating the likelihood of clinically significant prostate cancer, is based on scoring
related to the dominant sequence, with the possibility of minor modification, based on the
assessment score of other sequences. Furthermore, the interpretation of DCE is simplified
only to include ‘positive’ or ‘negative’ (Becker et al., 2017). Reporting of lesions located in
other zones, such as in the central zone (CZ), anterior fibromuscular stroma (AFS), or
seminal vesicles (SV) is usually performed according to the rules applying to the nearest
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neighbouring zone, or to the zone from which the lesion appears most likely to have
originated. For the purpose of this study, based on interviews with radiology specialists,
evaluation of lesion in SV and AFS is performed as those in TZ are.

PI-RADS assessment scoring rules for individual mpMRI sequences are based on groups
of significant imaging features, such as those related to signal intensity, lesion margin,
and shape. The criterion for the presence of cancer in T2W is a low-signal intensity mass
or nodule located in the PZ, which is hypointense compared to normal tissue, and has
ill-defined margins (Aydın, Kizilgoz & Tekin, 2015). However, TZ lesions that appear as
focal hypointense areas may mimic PCa. For DWI, the key diagnostic criterion in the
detection of prostate cancer is the focal or conglomerated areas, which are hyperintense in
both DWI and ADC mapping, relative to the surrounding prostate tissue. In the case of
DCE, the presence of PCa is related to asymmetric high-contrast enhancement, particularly
early nodular enhancement (Aydın, Kizilgoz & Tekin, 2015). Determining the individual
nature of suspicious lesions on each of the mpMRI sequences and establishing their mutual
correlation have proved crucial for the effectiveness of PCa diagnosis. They may also play
an important role in developing machine learning algorithms dedicated to the recognition
of prostate cancer.

Data
In this study, a publicly available database of mpMRI data for prostate lesion classification
was used, which was originally created for the PROSTATEx Challenge (SPIE-AAPM-NCI
Prostate MR classification Challenge) held in conjunction with the 2017 SPIE Medical
Imaging Symposium (Litjens et al., 2017). The database incorporates the data of 344
patients, divided into a training set (204 patients with 330 suspicious findings), and a test
set (140 patients with 208 suspicious findings). Suspicious findings in the dataset were
annotated with their locations, prostate zones, and clinical significance. The findings were
located in four separate prostate zones. The dataset was imbalanced, as there were more
insignificant lesions (254; PZ 155 / TZ 73 / AFS 24 / SV 2) than significant ones (76; PZ 36 /
TZ 9 / AFS 31 / SV 0). The clinical significance of each finding onmpMRIwas set on the basis
of the initial PI-RADS assessment, which qualified lesions for further biopsy verification.
Findings with a PI-RADS score of 2 or lower were not biopsied, and marked as clinically
insignificant. Other findings (PI-RADS > 2) were biopsied and assessed using the Gleason
Scoring (GS) system, which offers both prognostic and risk data stratification (Blute et al.,
2001). Findings with a GS score of 7 or above were marked as clinically significant.

Normalization, VOI selection and data augmentation
In order to compensate for the varying parameterisation of medical image acquisition
methods and inter-patient variability, all images were first normalised andmin-max scaled.
A form of median normalisation, originally proposed by Kwak et al. (2015) was utilised,
preceded by the identification and removal of potential outliers. Other normalisation
methods were considered, as proposed in previous research (Sobecki et al., 2017). Median
normalisation, however, achieved the best model performance.

After the normalisation step, the volumes-of-interest (VOIs) surrounding each lesion
were extracted. According to PI-RADS v2.1 standard, lesions greater than 1.5 cm in size are
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to be reported as findings of high probability of clinical significance (the highest PI-RADS
score). We decided to extract 3 cm× 3 cm× 3 cm VOIs located in the centre of the lesions.
Extracting lesions and the surrounding regions offers important contextual information.
The Extracted VOIs were not interpolated; therefore, the volume dimensions from different
multi-parametric image series varied due to the varying voxel spacing between the mpMRI
sequences.

In order to increase the size of the training set, we used both online and offline
data augmentation. Prior to model optimisation (offline augmentation), each VOI was
randomly rotated ten times. The rotation degree was selected randomly within the range,
(−90, +90). The rotated VOIs were stored locally. This allowed the training dataset
to be augmented to 3 300 cases. During training, we used the following augmentation
methods (online augmentation in the training pipeline) applied with random probabilities
and parameterisation: brightness and contrast modification, Gaussian noise addition
and volume flipping. The variables used for parametrisation of those methods were
normal random variables with distributions: N (1.0,0.5625) for contrast factor (σ = 0.75),
N (0,0.01) for brightness shift (σ = 0.1), and N (0,0.001) for white noise addition
(σ = 0.01). The variances of those distributions were selected experimentally. Additionally
small, random translations (up to:±12 voxels in plane for T2W,±4 for DCE,±3 for DWI;
±2 slices for T2W, DWI and DCE) were performed. The approximate distance between
slices is three mm for all T2W, DWI and ADC imaging. The size of single voxel is related
to approximate resolution of each mpMRI imaging modality: 1.5 × 1.5 × 3 mm for DCE,
2× 2× 3 mm for DWI and 0.5× 0.5× 3 mm for T2W. Thus, the translations made were
within the range of ±6 mm in all dimensions.

CNN models
Two CNN models for clinically significant prostate cancer recognition were subjected to
comparative analysis. Due to the characteristics of the PROSTATEx dataset, in which lesion
centre coordinates are defined, a patch-based approach for csPCa detection was proposed.
Both CNN models share a common component of the architecture, which is presented in
Fig. 1.

The common model architecture (CMA) uses individual networks for each multi-
parametric image sequence to calculate modality-specific feature representations. Each
mpMRI image series (T2W, DWI, DCE) is processed using a variant of the VGG network.
The proposedmodel builds upon the VGG-16 core network (Simonyan & Zisserman, 2014)
to a 3Dmodel by introducing 3D convolutional layers instead of 2D ones. One advantage of
the VGG 3D model is the use of small 3×3×1 kernels that allow the architecture to adapt
to diversified input volume dimensions. The proposed VGG 3D architecture is presented
in Fig. 1A, while the detailed parameterisation is presented in Table 1. Dropout (with
0.125 probability) and L2 normalisation were applied on hidden dense layers. In the case
of T2W modality, images from the sagittal, coronal, and transverse planes were processed
independently in individual VGG 3D networks. Moreover, a single VGG 3D consists of
an additional convolutional-pooling block (marked with a dotted line in Fig. 1A), due to
the higher resolution of T2W modality, in which images are acquired with smaller voxel
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Figure 1 Commonmodel architecture (CMA) implementing the data-driven selection of modality-
specific features from functional and anatomical forms of mpMRI (B); the CMA implements the paral-
lel processing of multi-modal mpMRI data in sub-networks, which are variants of the VGG 3Dmodel
(A). The convolution layers marked with a dashed line are used only for T2W images.

Full-size DOI: 10.7717/peerj.11006/fig-1

spacing (0.5 × 0.5 × 3 mm). DWI and ADC images are processed in separate networks.
Similarly, the DCE sequences are processed independently. In practice, we used KTrans

sequences, which allowed us to analyse the quantitative parameters of the DCE MRI time
series. Feature vectors from the individual VGG 3D CNN are concatenated at the level of
individual modalities, with additional information about lesion locations binary encoded
in the form of a five-element vector, with elements corresponding to the prostate zones.
After concatenation, modality-specific features are passed to dense layers. Finally, the CMA
produces three modality-specific 32-element feature vectors.

On the basis of the CMA, two CNN models were formulated (see Fig. 2). Model
M1 represents a CNN architecture with simple decision-level fusion of complementary
information from different modalities. Three modality-specific feature vectors from the
CMA are directly concatenated and passed to a dense softmax layer, which implements the
classification output.

Model M2 implements the concept of domain knowledge encoding in a model
architecture, inspired by PI-RADS assessment, in which the final decision on lesion
malignancy depends on the location of a lesion within the prostate gland, and its
features assessed on location-related dominant sequences. In model M2, three modality-
specific feature vectors from the CMA constitute sub-networks related to individual
mpMRI modalities (T2, DWI-ADC, and DCE). Each sub-network is provided with an
auxiliary classifier appended behind each modality-specific feature extractor, to keep the
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Table 1 Parameterised VGG-inspired modality CNN architecture—where x and y correspond to layer
width and height, z to the layer depth, and c to the number of channels. Conv 0_1, Conv 0_2, and Pool
0 are additional layers used only for T2Wmodality. The first pooling layers have a depth stride of 1, while
the last ones have a depth stride of 2, owing to the DICOM data dimensionality with a different resolution
in the X, Y, and Z axes.

Id Operation Filter Strides Width Height Depth Channels

Conv 0_1 Convolution 3× 3× 1 1× 1× 1 2x 2y z c/2
Conv 0_2 Convolution 3× 3× 1 1× 1× 1 2x 2y z c/2
Pool 0 Max pooling 3× 3× 1 2× 2× 1 x y z c/2
Conv 1_1 Convolution 3× 3× 1 1× 1× 1 x y z c
Conv 1_2 Convolution 3× 3× 1 1× 1× 1 x y z c
Pool 1 Max pooling 3× 3× 1 2× 2× 1 x/2 y/2 z c
Conv 2_1 Convolution 3× 3× 3 1× 1× 1 x/2 y/2 z 2c
Conv 2_2 Convolution 3× 3× 3 1× 1× 1 x/2 y/2 z 2c
Conv 2_3 Convolution 3× 3× 3 1× 1× 1 x/2 y/2 Z 2c
Pool 2 Max pooling 3× 3× 3 2× 2× 2 x/2 y/2 bz/2c+1 2c
FC Average pooling global global – – – 2c

Figure 2 The two CNNmodels used in the experiments.Model M1 (A) implements decision-level fu-
sion of complementary information from different mpMRI modalities. The output of model M2 (B) is
knowledge-based optimised according to the PI-RADS decision rules (the averaged classification results
from selected modality-specific sub-networks related to lesion location in the PZ or TZ zones).

Full-size DOI: 10.7717/peerj.11006/fig-2

independently learned features separated. The utilisation of auxiliary classifiers stems from
the Inception DCNN network architectures (Szegedy et al., 2015). During training, the
losses from these auxiliary classifiers were added to the main classification loss. At the point
of inference, these auxiliary classifiers are discarded. The final M2 model decision is based
on the location of the lesion within the prostate gland. Two stream raw predictions (PZ
and TZ) are created based on the optimised modality-specific sub-networks. The outputs
from the two selected sub-networks are included and averaged (DA-out and DCE-out,
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or T2-out and DA-out for PZ and TZ, respectively) to formulate the final logits for each
stream. The final probability of lesionmalignancy is produced on an output of the soft-max
layer (NET-out), to which logits are routed from a suitable stream. Logits routing to the
output of model M2 express the rules of the PI-RADS decision-making process.

Experiments
Both models were trained on the same training set. Complex loss function, used for the
optimisation of model M2, is composed of the loss values of model sub-networks (Eq. (1)).
In effect, the top-level network, capable of generating predictions based on all modalities
is trained simultaneously with sub-networks basing their predictions on single modalities.
The relatively small dataset and complex model architecture required measures to combat
model overfitting. L2 regularisation loss was introduced at dense layers, and added to the
total loss of the model:

l(x)=
∑ni

i=1 li ∗wi∑ni
i=1wi

+0.1
lL2
nL2

(1)

Effectively, the total loss is the sum of the weighted average of sub-losses, where:
nl—number of minor losses, li –minor loss value, wi—weight of each minor loss, lL2—L2
regularisation loss, and nL2—total number of L2 regulated layers. To calculate the total loss,
we evaluated the weighted average of cross-entropy mini-batch values to obtain the total
cost of the model; the weights depended on the network layer output and lesion location
(Table 2). Those values were set experimentally, and have not been normalised for ease of
fine-tuning.

Model optimisation with mini-batch stochastic gradient descent (with a momentum
value of 0.9) was performed for a maximum number of 500 epochs. Additionally,
the experiments were repeated, learning the model for 25, 50, 75 and 100 epochs
respectively. Other hyperparameters, as shown in Table 3, were tuned empirically to
achieve optimal model generalisation capabilities, and the best accuracy. The selected
optimal hyperparameters were set to the same values between the models analysed to avoid
unnecessary freedom in methodology.

Five-fold cross-validation (CV) was used for the evaluation of each CNN model. The
models were built on 80% of the training data, and the remaining 20% was held out for
each model validation. The whole learning experiment was repeated twice, resulting in
ten fully optimised versions of both models (n= 10). For each training iteration, selected
learning samples were shuffled and queued by ten CPU threads responsible for online data
augmentation, while model optimisation was performed on the GPU. The optimal model
identification was related to the best obtained AUC score on the validation subset for all
CV iterations (the validation samples were not online augmented). The prediction used to
evaluate the test set was the mean probability prediction of the ten best-performing models
from the training phase.

Statistical analysis and implementation
Our results were interpreted using Python 3.6.9 Jupyter Notebooks (Kluyver et al.,
2016), with the SciPy 1.4.1 library (Virtanen et al., 2020) for statistical testing. The two-
sided Wilcoxon signed-rank test was employed to analyse the differences between the
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Table 2 Minor loss weights (w) for CNN sub-networks and lesion locations. The loss for model M1 in-
cludes only the output of the whole network (NET-out). For model M2, sub-network auxiliary losses are
also included. M2 loss varies for lesions located in the TZ and PZ zones, reflecting domain knowledge re-
sulting from the PI-RADS rules. A small weight value is included for complementary setup in order to en-
force the use of the data for training, as well as for comparison purposes.

i subnet zone M1 M2

0 NET – 100 100
1 DCE TZ – 5
2 DCE PZ – 20
3 T2 PZ – 5
4 T2 TZ – 20
5 DWI_ADC PZ – 12.5
6 DWI_ADC TZ – 12.5

Table 3 Hyperparameters tuned in CNNmodel. Bold values are considered optimal.

Parameter Values

Batch size 4, 8, 16, 32, 64
Training optimization algorithm mini-batch SGD, RMSprop, Adam, Adagrad
Learning rate 0.001, 0.01, 0.05, 0.1
Momentum 0.9
Network weight initialization random normal, random uniform, Xavier
Neuron activation function leaky relu, relu
Weight constraint 0, 0.01, 0.1, 0.2
Dropout regularization 0, 0.125, 0.25, 0.5, 0.75

performance of each model. For learning curve comparisons, tests were performed for each
epoch, allowing identification of the epochs for which the model performance differed. We
assumed a significance level of p< .05. Both models were implemented using Tensorflow
1.12.0 (Abadi et al., 2016), and evaluated on a Windows 10 system with a i7-7700K Intel
Core CPU, 32GB RAM, and an NVIDIA GeForce GTX 1080 Ti GPU.

RESULTS
Figure 3 depicts the AUC learning curves for models M1 (A) and M2 (B) evaluated on
training and validation subsets (cross-validation results were averaged). Additionally, a
plot showing the AUC differences between the validation learning curves of both models
is presented (C).

The learning curves for both models achieved the same plateau at approximately 0.85
AUC on the validation set. However, model M1 reached that plateau in around 200 epochs,
while model M2 approached 0.85 AUC even around 50–75 epochs. The difference in AUC
between models M1 and M2 was statistically significant in the first 100 epochs of learning
(p< .05). To avoid overfitting and to monitor the models’ performance, we repeated the
experiment stopping the learning process after 25, 50, 75, and 100 epochs. The mean AUC
results for all stopping epochs are presented in Table 4.
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Figure 3 Learning curves (averaged over all cross-validation trials) for training and validation sets for
models M1 (A) andM2 (B). Additionally, the AUC difference for the validation set betweenmodels M1
andM2 (C) is presented. The bold curves represent epochs with statistically significant differences (p <
.05). The greyed-out area represents the 95% confidence interval.

Full-size DOI: 10.7717/peerj.11006/fig-3

Table 4 The mean AUC results (averaged for all CV trails, n = 10) for both models learned for 25, 50,
75, and 100 epochs.

Model Mean AUC
25 epochs

Mean AUC
50 epochs

Mean AUC
75 epochs

Mean AUC
100 epochs

M1 0.61 0.72 0.76 0.80
M2 0.76 0.82 0.83 0.84

Figure 4 ROC curves (averaged for all CV trails, n = 10) for both models stopped after 25 (A), 50 (B),
75 (C) and 100 (D) epochs.

Full-size DOI: 10.7717/peerj.11006/fig-4

Figure 4 depicts the ROC curves for both models at selected stopping epochs.
Comparison of the AUC difference between both models proved to be statistically
significant for most of the stopping epochs: the 25th epoch (AUCdiff = 0.15, Z = 0,
p < .001), the 50th epoch (AUCdiff = 0.1, Z = 0, p < .001), and the 75th epoch
(AUCdiff = 0.07, Z = 5, p< .05). The difference was not statistically significant for the
100th epoch (AUCdiff = 0.04, Z = 17, p= 0.28).

The optimised models’ AUC results for the validation and test sets are shown in Table 5.
TheWilcoxon signed-rank test indicated that themean of mean CV results (average over all
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Table 5 Validation and test set results for models M1 andM2. The mean maximum CV results are
comparable with the best results obtained on the PROSTATEx learning dataset.

Model Mean of mean
CV results (AUC)

Mean of maximum
CV results (AUC)

Test set
result (AUC)

M1 0.831± 0.019 0.919± 0.016 0.82
M2 0.843± 0.021 0.910± 0.019 0.84

epochs) ofmodelM2was higher than those scored bymodelM1 (Z = 7,p< .05).ModelM2
achieved the best AUC (0.84) on the test dataset. We were unable to perform the necessary
experiments to check the statistically significant differences of model performance on test
set results due to the limitations of the PROSTATEx challenge evaluation platform, which
allows only two submissions a day.

DISCUSSION
PI-RADS assessment reduces variability in mpMRI imaging by establishing guidelines,
summarising suspicion levels, and standardising reports (Zhang et al., 2018). Additionally,
prediction models and risk calculators for prostate cancer can benefit from a combination
of the PI-RADS score with risk factors and other clinical features, thus improving their
predictive value and optimising clinical diagnostic pathways (Zhang et al., 2018). PI-RADS
was proved to have high accuracy for predicting csPCa, and not only radiologists, but also
clinical urologists could improve their diagnostic ability by learning the diagnostic process
of PI-RADS.

We proposed, designed, trained, and compared two CNN models, both of which
supported multi-modal information processing and fusion. In contrast to the M1 model
architecture, in which mpMRI series are processed in parallel, and calculated features
are simply concatenated to produce a final decision, the architecture of model M2 was
optimised to encode domain knowledge, reflecting the PI-RADS diagnostic rules. Analysis
of the learning curves reveals that both proposed CNN models suffer from overfitting
during learning, although different mitigation techniques have been applied to each,
such as data augmentation, regularization, and dropout. Paradoxically, this observation
may be associated with strong data augmentation, the necessity of which resulted from
the concept adopted of learning models from scratch. The number of training samples
exceeded the number of source lesion patterns several times, while artificially generated
samples were too alike to each other, causing both models to fit closely to the training
set. Data augmentation as a source of overfitting is also confirmed by the stability of the
results obtained during model validation, in which additional online data augmentation
was not used. Both models achieved a stable plateau, and the AUC scores remain stable as
the number of epochs increases.

Themost compelling results concern the effectiveness of bothmodels’ learning processes.
It can be observed that model M2 converges faster. Validation of the learning curves shows
that reaching the 100th epoch can be considered an optimal moment to interrupt learning
for model M2; while for model M1, the process should be extended to a minimum of 200
epochs to secure a similar score of 0.85 AUC (the plateau level). It is also noteworthy that
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model M2, which implements the idea of PI-RADS-inspired prior knowledge encoding in
its architecture, scores close to 0.83 AUC after 50 epochs. The AUC difference between the
two models is statistically significant, particularly during the first 100 epochs. Validation
of the AUC results obtained for both models confirm that model M2 rapidly reaches
optimal csPC recognition efficiency, if learned for a limited number of epochs. Model
M2 converges faster because it is able to prioritise some solutions (in relation to a lesion’s
location in the prostate gland) over others, learning the mutual diagnostic relationships
between modalities faster. Model M1 requires more time to discover the same diagnostic
relationships betweenmodalities. This demonstrates that diagnostic knowledge is efficiently
represented in the network architecture, serving to increase the model’s robustness and
stabilise its learning. Faster andmore robust learning, as it provides optimal accuracy after a
lower number of epochs, can improve the performance of hyperparameter tuning, in which
the learning process is repeated many times to discover the hyperparameter combination,
that maximises the model’s predictive accuracy.

The faster convergence of model M2, however, does not clearly translate into increased
effectiveness, as to a maximum of 500 epochs, both models finally converge to the same
AUC value. For the test set, model M2 achieved marginally superior performance, as
expressed in its marginally higher AUC value. Despite this, we cannot clearly state that
knowledge-based modelling of CNN architecture enables significant improvement.

Certain limitations exist in our research. First, the dataset is of insufficient size to
learn from scratch. The resulting problems related to strong data augmentation and
overfitting might overshadow the benefits of domain knowledge encoding in CNN model
architecture. The use of pre-trained CNN models, or a larger inter-centre dataset could
better highlight the advantages of the proposed methodology. Our study would also
benefit from comparison with other CNN models that process multi-modal information
differently—for instance, by initial fusion of the mpMRI series, in which all information
is further processed in a single network, rather than in parallel sub-networks for each
modality.

CONCLUSIONS
Encoding domain knowledge in CNN architectures is an important and compelling
research subject. The model proposed with domain-knowledge-encoded architecture
achieved more stable learning performance and faster convergence to optimal diagnostic
accuracy. Although the PI-RADS-inspired model failed to achieve clearly superior results
of csPCa classification, those pertaining to the effectiveness of the learning process
remain compelling. The results, with some exceptions, also highlight the limitations
of PI-RADS-based knowledge-based modelling of CNN model architectures for prostate
cancer recognition using mpMRI. These limitations might stem from the limitations of our
research, or might indicate that PI-RADS methodology is suboptimal for achieving results
that generalise beyond the training data. Encoding domain knowledge inCNNarchitectures
remains a question for researchers. Future studies could explore the application of prior
knowledge encoding in the CNN model architectures of other diagnostic applications,
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in which domain knowledge is also defined in the form of different reporting and data
systems, including in breast cancer and BI-RADS, and in lung cancer and Lung-RADS.
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