EFFECT OF *BACILLUS SUBTILIS* ON THE ANTIOXIDANT ENZYME ACTIVITY ON GRAFTING OF TOMATO PLANTS

Maria D. Arias Padró¹, Emilia Caboni², Karla Azucena Salazar Morín¹, Víctor Olalde Portugal¹

1 Departamento de Biotecnología y Bioquímica, CINVESTAV-IPN, Irapuato, GTO., México 2 Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Olivicoltura, Frutticoltura e Agrumicoltura (OFA), Roma, Italia

Corresponding Author: Víctor Olalde Portugal¹ v_olalde@yahoo.com.mx **EFFECT** OF **BACILLUS SUBTILIS** ON THE∙ ANTIOXIDANT ENZYME ACTIVITY IN GRAFTING OF

TOMATO PLANTS

Maria D. Arias Padró¹, Emilia Caboni², Karla Azucena Salazar Morín¹, Víctor Olalde Portugal¹

¹ Departamento de Biotecnología y Bioquímica, CINVESTAV-IPN, Irapuato, GTO., México

² Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Olivicoltura, Frutticoltura e Agrumicoltura (OFA), Roma, Italia

10 11

14

15

9

3 4 5

6 7 8

12 Corresponding Author:

13 Víctor Olalde Portugal¹

> Departamento de Biotecnología y Bioquímica. CINVESTAV-IPN Unidad Irapuato. Libramiento norte carretera Irapuato-León, km 9.6. Irapuato, GTO. C.P. 36500, v olalde@yahoo.com.mx

16 17 18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36 37

38

Abstract

Grafting generally means stress to a plant and this triggers antioxidant defense systems. An imbalance in reactive oxygen species may negatively affect the grafting success. Several research projects have studied the association with plant growth-promoting rhizobacteria (PGPR) and it has been documented that they enhance nutrient acquisition, regulate hormone levels, and influence the antioxidant response in crops. However, little is known about the strategy of inoculating grafted herbaceous plants with PGPR and its effect on the antioxidant response.

The effects of inoculating a strain of Bacillus subtilis on the antioxidant metabolism of grafted tomato were evaluated. In this study, two different rootstocks were used for tomato (Solanum lycopersicum L. var. Rio Grande (RG)): [S. lycopersicum L. var. cerasiforme (Ch)] and eggplant [(Solanum melanogena L. (Ber)] to establish a compatible graft (RGCh) and a semi-compatible graft (RGBer). Enzyme activities involved in the antioxidant defense system: superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), and total phenols were measured during 4 weeks after grafting.

The results show that for RGCh, regardless of the day when it was measured, the tendency was a decrease of the enzyme activity for SOD, CAT, PAL when inoculated with B. subtilis; while in the semi_compatible graft RGBer, PPO and PAL decreased their activity after inoculation- For both combinations, the quantity of total phenols decreased. These findings, give-indicateions that B. subtilis induced antioxidant mechanisms in grafted plants and suggest that inoculation with this growth-promoting bacterium can represent a biotechnological approach to improve success in tomato grafting-.

Formatted: Justified

Formatted: Highlight

Formatted: Highlight

41 42 43

44 45

56

51

57 58 59

60

69 70

> 71 72

73 74

75 76

> 77 78

These findings, together with the in vitro assays performed on B. subtilis regarding its scavenging properties, give indications that B. subtilis promote grafting influencesalterates antioxidant mechanisms in grafted plants. Thus, inoculation with this growth promoting bacterium could provide a biotechnological way to improve grafting success and to put in evidence, as well, the properties of this bacterium in promoting grafting.

Introduction

Grafting is a horticultural technique that has been practiced since ancient times (Mudge et al., 2009). It is very important for woody plants but, in the last century, grafting has become important in the Cucurbitaceae (i.e. watermelon, melon, cucumber) and Solanaceae family (i.e., tomato, eggplant, and pepper) (Bletsos et al., 2008). Grafting is also widely used in tomatoes to confer resistance to biotic and abiotic stresses (Singh et al., 2017). Successful grafting may be influenced by factors such as time of grafting, hormonal application, compatibility of the species (Gainza et al., 2015), as well as level of the mechanical damage. The latter factor, in particular, can generate an antioxidant response due to the formation of ROS (Reactive Oxygen Species) (Suzuki et al., 2012). Superoxide radical (O²) and hydroxyl radical (OH₂) of these reactive species are free radicals that can oxidize important cellular components and cause alterations in DNA, protein, lipids, and carbohydrates or inactivation of enzymes which can lead to cell death (Baxter et al., 2014). Therefore, the control of tissue damage and, consequently, the success of the grafting may be related to variation in the activity of enzymes or content of other non-enzymatic molecules related to the antioxidant metabolism. The enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) can be biochemical markers of oxidative damage and their level of activity higher concentrations could be a sign of resistance to stress (Gill & Tuteja, 2010; Maksimovic et al., 2013). However, there are other non-proteic substances, such as polyphenols, that are involved in the scavenging of ROS (Foyer & Noctor, 2013). Phenolic compounds are products of the secondary metabolism of plants. Some enzymes such as polyphenol oxidase (PPO) and peroxidase (POD) are related to the oxidation of phenolic compounds, catalyzing the oxidation of phenols into quinones, which can spontaneously polymerize to form dark pigments (Constabel & Barbehenn, 2008). POD, PPO as well as pPhenylalanine ammonia lyase (PAL), the first enzyme involved in the phenyl propanoid pathway and, therefore, in the biosynthesis of the polyphenol compounds, also and polyphenoloxidase (PPO) activities play a relevant role in are also related to plant resistance to stress (Finger, 1994; Soares et al., 2005)

A considerable number of bacterial species, mostly associated with the plant rhizosphere, have been tested and found to be beneficial for plant growth, yield, and crop quality. They have been called "plant growth-promoting rhizobacteria (PGPR)" and include strains of the genus Bacillus (Rodríguez & Fraga, 1999; Sturz and Nowak, 2000; Sudhakar et al., 2000; Ruzzi & Aroca, 2015). Microbial cells have several antioxidant defense mechanisms. Bacillus species and many other bacteria exert antioxidant activity producing a range of enzymes (Kaizu et al., 1993; Ahotupa et al., 1996; Amanatidou et al., 2000, Lin & Chang, 2000). Among these, Bacillus subtilis produces Formatted: Justified

Formatted: Strikethrough, Highlight

Formatted: Strikethrough

Formatted: Superscript

Formatted: Superscript

itself—two CATs (Lowen & Switala, 1987) and SOD (Murphy *et al.*,1987) as well as other metabolites (Kaspar *et al.*, 2019). In detail, *Bacillus* spp. induce in colonized plants; antioxidant enzymes, such as SOD, CAT, POD, PPO, PAL, and phenolic acids favoring plant response to stress conditions (Radhakrishnan *et al.*, 2017; Rais *et al.*, 2017). The positive impact of *B. subtilis* has also been shown in tomato plants in biocontrol of bacterial wilt caused by *Ralstonia solanacearum*, through a role in increasing activities of PAL, PPO, POD, and SOD (Li *et al.*, 2008), as well as in growth stimulation and induction of systemic resistance in tomato against early and late blight by inducing defense defense-related enzymes such as PPO, POD, and SOD (Chowdappa *et al.*, 2013). Recent reports suggest that grafting onto suitable rootstocks can alleviate the damage caused by soilborne pathogens and the adverse effects of abiotic stresses besides enhancing the efficiency of water and nutrient use of tomato plants (Singh *et al.* 2017). In addition, grafting tomato on eggplant is a potential tool for improving waterlogging tolerance and related resistance to tomato bacterial wilt disease (Bahadur *et al.* 2015; Kariada Dan & Aribawa, 2017).

Thus, this study was focused on defining the effects of the PGPR, *B. subtilis*, on grafting of tomato plants on tomato (compatible rootstock) and on eggplant (semi_compatible rootstock) by assessing modifications in the enzyme activity of SOD, CAT, PAL, POD, PPO, and in phenol content. To the aim, a preliminary *in vitro* antioxidant activity of *B. subtilis* was performed, then the scions of a tomato variety were immersed into the bacterial solution of *B. subtilis* and grafted on the different rootstocks. Then activities of enzymes, SOD, CAT, PAL, POD, PPO, total phenols were measured during a period of 4 weeks after grafting, to characterize their involvement in the antioxidant defense system during the plant response to the grafting process.

Materials & Methods

Preparation of inoculum of strains

Eight strains of *B. subtilis* provided by Biotecnología Microbiana S.A. de C.V. were used. Inoculum of the eight strains was prepared for all experiments by harvesting cells from <u>cultures</u> previously grown on potato dextrose (PD) broth <u>cultures grown</u> at 28 °C for 24 h on an orbital shaker at 150 rpm. The concentration of the inoculum was adjusted <u>using a spectrophotometer</u> to $10^6 \text{ CFU/mL} \approx 0.1 \text{ OD}_{535} \text{ nm}$ by using a spectrophotometer reading (Thompson *et al.*, 1996)

In vitro antioxidant activity of B. subtilis

- 110 Resistance to hydrogen peroxide (H₂O₂)
- 111 The method of Kadaikunnan et al. (2015) was used with some modifications. 10^6 CFU/mL ≈ 0.1
- 112 OD₅₃₅ nm of strains of Bacillus cells were grown in 500 mL Erlenmeyer flasks containing 250 mL
- 113 PD broth supplemented with 0.2, 0.4, 0.6, 0.8, or 1 mM H₂O₂ at 28 °C on an orbital shaker at 150
- 114 rpm for 24 h. The control treatment consisted of the growing medium inoculated with B. subtilis
- hydrogen peroxide-free. Cell growth was measured spectrophotometrically at 535 nm every hour
- and increases in cell growth were measured as increases in optical density (OD)
- 117118 Hydroxyl radical scavenging activity (OH')

Commented [rev1]:

Once the strain growth corresponding to 10⁶ CFU/mL ≈ 0.1 OD₅₃₅ nm was achieved, neutralization of the OH radicals was determined using the Fenton reaction, according to Kadaikunnan *et al.* (2015). Briefly, 1 mL of bright green reagent (0.435 mM), 2 mL-of FeSO₄ (0.5 mM) and -1.5 mL of H₂O₂ (3% w/v) were mixed with different volumes of each strain (0.5, 1.0, 1.5, 2.0 and 2.5 mL). The <u>suspensionsy</u> were incubated at room temperature for 15 min, and then the absorbance was spectrophotometrically measured at 624 nm. The ability of the bacteria to scavenge hydroxyl radicals was determined according to the following equation.

Scavenging activity (%) = $\left[\frac{(A_s - A_0)}{(A - A_0)}\right] \times 100$

where, A_g is the absorbance of the sample, A_0 is the absorbance of the control in the absence of the sample, and A is the absorbance without the sample and the Fenton reaction system.

The change in the absorbance of the reaction mixture indicated the scavenging ability of *B. subtilis* for hydroxyl radicals.

Total antioxidant activity (DPPH free radical scavenging activity)

The total antioxidant activity (TAC) of *B. subtilis* strains was evaluated by the method described by Kadaikunnan *et al.* (2015). Once an OD of 0.1 (10⁶ CFU/mL) of *B. subtilis* cells at 535 nm was obtained, 0.5, 1.0, 1.5, 2.0₂ and 2.5 mL of the bacterial cells were mixed with 1 mL of the DPPH (Diphenyl-1-picryl-dydrazylhydroxyl????) solution (0.05 mM). The mixture was stirred and incubated in the dark for 30 min at room temperature. The controls were deionized water and DPPH solution and the blanks contained only methanol and bacterial cells. The absorbance of the solution was measured at 517 nm after centrifugation of the samples at 16₂218 g for 10 min. TAC was determined by the following equation:

Total antioxidant activity (%) = $\left[1 - \frac{(A_{sample} - A_{blank})}{A_{control}}\right] \times 100$

where A_{sample} is the absorbance of the sample, A_{plank} is the absorbance of methanol with bacterial cells and $A_{sontrol}$ is the absorbance of deionized water and DPPH reagent (Brand-Williams *et al.*,1995).

Plant material

Solanum lycopersicum L. (tomato, var. Rio Grande and var. Ceerasiforme) and Solanum melongena L. (eggplant) seedlings were grown in the experimental greenhouse of the Ecological Biochemistry Laboratory at CINVESTAV (Advanced Research Center of the National Polytechnic Institute, Irapuato, Guanajuato, Mexico).

The commercial variety Rio Grande was used as a scion. This is one of the industrial varieties mostly cultivated in Mexico. The tomato "Ceherry" and the eggplant were used as rootstocks.

The choice of the rootstocks was made on the basis of based on a similar spectrum of resistance/tolerance to biotic addiversities as well as on the degree of compatibility.

Formatted: Subscript

Formatted: Font: Italic, Subscript

Formatted: Font: Italic, Subscript

Formatted: Font: Italic, Subscript

Formatted: Superscript

The plants were germinated in trays containing a mixture of lime, vermiculite, perlite, leaf mold, and Sunshine. Mixture no. 3 (1:1:1:1:2:3). After 30 and 40 days of growth, respectively (late spring) when the seedlings had developed four or five true leaves in the case of tomato and two or three true leaves in the case of eggplant, plants were <u>used for graftinged as follows</u>: tomato, var. Rio Grande, was grafted on tomato var. cherry (RGCh) and eggplant (RGBer).

Plant inoculation and grafting

Bacillus subtilis strain BMB 44 was prepared for inoculation by harvesting cells from potate dextrose (PD) broth cultures grown at 28 °C for 24 h on an orbital shaker at 150 rpm. The concentration of the inoculum was adjusted using a spectrophotometer to 10^6 CFU/mL ≈ 0.1 OD₅₃₅ nm (Thompson *et al.*, 1996). The adopted strain was chosen among those preliminary tested and giving the highest antioxidant response.

The seedlings chosen for grafting had all the same diameter (1.5-2.0 mm). The graft cut was made with a half-size double-edge razor blade. The splice grafting technique was used: the rootstock was cut at a 45 °C angle above the cotyledons and the scion was cut at the same angle as the rootstock. The height of the rootstock and the scion were 2.0-2.5 cm and 4-4.5 cm, respectively.

The plants were divided into two treatment groups. One group was used for inoculation and the second group for non inoculated control plants. Aln the first group, after cutting the scion parts, inoculation was performed by immediately immersing 1 cm of the basal part of the scion s by 1 cm in bacteria suspension (or tap water for the control) and incubated at room temperature for 15 min. After treatments, grafting was performed immediately performed and both parts of the plants were held with a silicone grafting clip.

For this study, completely randomized design was used: 2 (treatments) x 3 (analyses times) x 2 (grafting combinations). Each treatment was repeated three times (replicates). Each replicate consisted of 30 grafted plants.

Post-graft plant healing and grafting success rate

The post-grafting healing was held in containers with a plastic dome 23×15×14.5 cm (L×W×H), in a growing chamber of the Department of Biotechnology and Biochemistry of CINVESTAV. The conditions of the growing chamber were 25 ± 1 °C₂ with a photoperiod of 16 h, 117μmol s⁻¹ m⁻², and relative humidity was between 85 % - 95 %, according to the humidity data logger. Seven days after grafting the seedlings were irrigated again but the dome was opened partially opened to gradually reduce humidity up to 70 %. Plantlets were kept under these conditions for 28 days. Lateral rootstock suckers were removed by hand when necessary. The observations for evaluation of grafting success wereas performed at 15 and 28 days after grafting (DAG). At 15 days observations were focused on whether the scion would separate from the rootstock when removing the clip. At 28 days graft success rate was evaluated.

To <u>determineprove</u> the presence of *B. subitlis* in grafted plants, a preliminary experiment was conducted based on the protocol proposed by Falcao *et al.*, (2014). Fragments of leaves, stems (scion and rootstocks), and shoot apexes from 1, 15, and 28-day-old inoculated grafted plants were used. Non-inoculated grafted plants were used as control.

Formatted: Superscript

Formatted: Strikethrough

Formatted: Justified

Sample collection and enzyme extraction and assays

To evaluate eAlterations of defense enzymes activities and total phenol content was assessed in the stem sections of the treated and control plants were used. For each treatment, the samples were represented by 2 mm stem sections (1mm above and 1 mm below the grafting point) per replication. These were collected after 1, 15 and 28 DAG. After each collection time, Collected samples were frozen in liquid nitrogen and stored at -80 °C for subsequent determination of enzyme activity and total phenol content. The method described by Giannipolits & Ries (1977) was adopted for the extraction of antioxidanttive enzymes SOD, CAT, POD and PPO. The stem samples (0.1 g) were homogenized in pre-chilled pestle and mortar. 450 μL of ice-cold 50 mM phosphate buffer, pH 7.0 and 50 μL of 10 mM EDTA

solution (1:5 w/v) were added to the homogenate and centrifuged at 18000 g at 4 °C for 15 min. The supernatants were immediately used for the determination of the activities of the enzymes. All steps in the enzyme extraction were carried out at 0-4 °C. Enzyme activities were expressed as U/mg protein.

The method described by Beaudoin-Eagan & Thorpe (1985) was used for the extraction of enzyme PAL. The stem samples (0.1 g) were homogenized in pre-chilled pestle and mortar. 200 μL of ice-cold and 0.5M Tris-HCl₂ 0.5M pH 8₂ (1:2 w/v) were added to the hhomogenized sampleomogenate and centrifuged at 15000 g at 4 °C for 10 min. Enzyme activity was expressed as U/mg protein.

Enzyme activity assays

Superoxide dismutase (SOD)

This activity was determined according to Giannopolitis & Ries (1977) with modifications. The activity eassay was based on was determined by the ability of the enzyme to inhibit the reduction of Nitroblue tetrazolium (NBT) in a reaction mixture composed of 13 mM L-methionine, 100 μ mol NBT, 0.1 mM EDTA, 16.7 μ mol ef-riboflavin, and 50 mM potassium phosphate buffer (pH 7.8). The production of blue formazan, resulting from the photo-reduction of NBT, was determined by monitoring the sample absorption at 560 nm with a spectrophotometer (xMark M BIO-RAD). An unit (U) of SOD was defined as the amount of enzyme required to inhibit 50 % of NBT photo-reduction. The enzymatic activity was expressed in U/mg protein.

Catalase (CAT)

The CAT activity evaluation was based on Beers & Sizer (1952) $\underline{\text{method}}$ using the following reaction: $\underline{\text{t}}$ The reaction mixture was composed of a solution of 25 mM $\underline{\text{H}_2\text{O}_2}$ hydrogen peroxide, 50 mM potassium phosphate buffer, and 10 μL of the enzyme extract. Readings were made spectrophotometrically (xMark $^{\text{TM}}$ BIO-RAD) at 240 nm-(xMark $^{\text{TM}}$ BIO-RAD). The enzyme activity was determined by the kinetics of H_2O_2 degradation and expressed in U/mg protein.

239 Peroxidase (POD)

Peroxidase was determined by the procedure described by Sadasivam & Manickam (1996) with modifications. Guaiacol was used as a substrate for the peroxidase. The assay was performed using 50 mM phosphate buffer, a 20 mM guaiacol solution, and a 25 mM H₂O₂ solution. In a 96-well microplate (Microtiter TM), 300, 5, and 10 μL of the above solutions were placed, respectively, and, finally, 10 μL of the enzyme extract was added. The absorbance was read spectrophotometrically (xMark TM BIO-RAD) at 436 nm. The reading of the reaction started began when the reaction absorbance was 0.05 and stopped when it reached an absorbance of 0.1. The enzymatic activity was determined by the production level kinetics—of tetraguaiacol. The results were expressed in U/mg protein.

Polyphenol oxidase (PPO)

The activity of this enzyme was determined according to the protocol described in Mayer, Harel, & Ben Shaul et al, (1995) with some modifications. In this case, catechol was the substrate of the enzyme. 50 mM phosphate buffer, solutions pH 7, and 0.1 M catechol were used. In a 96-well microplate (Microtiter TM) 150 μL of the a-buffer, 20 μL of catechol, and 20 μL of the sample enzyme source were placed. Absorbance was read at 495 nm at intervals for 3 min. The specific enzymatic activity was determined by the kinetics of quinone production. The activity was expressed in U/mg protein.

Phenylalanine ammonia lyase (PAL)

The activity of this enzyme was determined by the protocol described in Beaudoin-Eagan & Thorpe (1985), with some modifications. Three solutions were <u>usedprepared:</u> a <u>buffer 0.5 M</u> Tris-HCl <u>buffer 0.5 M</u>, pH 8, one of 10 mM L-phenylalanine, and one of 5 M HCl. For the reaction, 250 μL of phenylalanine solution, 125 μL of distilled water, 500 μL of the buffer, and 125 μL of the enzyme extract were added. Absorbance was <u>spectrophotometrically</u> measured in a 300 μL 96-well microplate (Microtiter TM) at 290 nm. The mixture was then incubated at 37 °C in a thermostatic bath for one hour, after this time 100 μL of-HCl wereas added to stop the reaction and the absorbance was again measured at the same wavelength. The specific activity of the enzyme was determined by the kinetics of the trans-cinnamic acid production and expressed in U/mg protein.

Total phenols

Total phenols were determined according to Mng'omba, du Toit & Akinnifesi (2008). The stem samples (0.05_g) were homogenized in pre-chilled pestle and mortar. 1 mL of ice-cold methanol-acetone-water solution was added (7: 7: 1) to the homogenate and centrifuged at 10_000 g at 4 °C for 4 min. The supernatant was used for the quantification of total phenols-was performed by using 50 μL of the supernatant and adding 200 μL of distilled water and 250 μL of Folin-Ciocalteau reagent. The mixture was shaken at 800 rpm for 3 min. Then, 500 μL of a 7.5 % (w/v) NaCO3 solution were added. The mixture was homogenized for 1 min at 800 rpm and incubated for 15 min at 45 °C in a thermostatic shaker. Absorbance was measured in a 300 μL 96-well microplate (Microtiter TM) at 760 nm. The concentration of phenols was expressed as mEeq gallic acid/mg protein.

Statistical analysis

 Principal component analysis (PCA) was performed. R software (3.5.1) was used to plot the PCA map of 15 days after grafting samples.

For this study, a completely randomized design was used.: 2 (treatments) x 3 (analyses times) x 2 (grafting combinations). Each treatment was repeated three times (replicates). Each replicate consisted of 30 grafted plants.

To determine whether the observed differences in enzyme activity and total phenols were significant, tThe data for each graft combination—wereas evaluated separately by analysis of variance (ANOVA) and significance among within treatments was analyzed by Least Significant Differences (LSD) test at the 5% level (P<0.05). Data were analyzed using R statistical software (3.5.1).

Results

The bacterial antioxidant activity was studied using free radical scavenging and a ferric reducing power assay. The tests were performed on eight strains (data not shown). The following results were obtained for strain BMB 44 which was the best performing strain.

In vitro antioxidant activity of B. subtilis

Resistance to hydrogen peroxide (H_2O_2)

In Fig. 1, the effect of $\underline{\text{H}_2\text{O}_2}$ hydrogen peroxide on the growth of the *B. subtilis* strain BMB 44 is shown. The results showed that all concentrations reached their maximum OD after 18 hours. The highest OD, 1.6, corresponded to the control. However, despite the increasing increase of H_2O_2 concentrations, the lowest OD registered was 1.2. Surprisingly, at the highest concentration of H_2O_2 , an OD of 1.4 was measured.

Hydroxyl radical scavenging activity (OH')

The scavenging activity for hydroxyl radicals of by the strain BMB 44 of *B. subtilis* is shown in Fig. 2A. It was observed that the increase in the scavenging activity was directly proportional to the concentration of the cells. At 2.5 mL of cells at 10⁶ CFU/mL, there was a 37 % scavenging rate while the lowest percentage was found in the control with a 5 % scavenging ability.

Total antioxidant activity (DPPH free radical scavenging activity)

The *B. subtilis*, strain BMB 44, was also checked for its DPPH reducing capability. The DPPH free radical scavenging activity was measured by the reduction of stable DPPH radical to non-radical DPPH-H. The scavenging activity was highly dependent and directly proportional to the concentration of cells (Fig. 2B). The highest inhibition activity was found at 2.5 mL (10⁶ CFU/mL)

Formatted: Normal, Justified

with 100 % inhibition but even at a lower concentration (0.5 mL), *B. subtilis* showed about 30 % of scavenging activity.

Effect of Bacillus subtilis BMB 44 on tomato grafting

In order tTo confirmprove the ability of *B. subtilis* to colonize the tomato grafted plants, a preliminary experiment was conducted. In all examined tissues of the inoculated plants, *B. subtilis* was observed (data not shown). Thus, the subsequent results are based on these findings.

Grafting success rate

B41

To evaluate the effects of *B. subtilis* on the tomato-grafting success rate in the two combinations,* the strain was used in the grafting procedure and compared to the use of water (Table 1). The data of the treatments were analyzed by (...) Fifteen days after grafting, the success rate of plants treated with BMB 44 was evaluated based on whether the graft union was secured even after removing the silicone clip. In the case of inoculated RGCh plants, the grafting success rate was 6% higher than the rate of plants treated with water, while for RGBer, it was 10% higher.

On day 28, the grafting success rate was evaluated as the result of the overall grafting procedure. For the bacterized and control RGCh plants, there were no significant differences, while for RGBer the inoculated plants showed 5% higher grafting success rate

Alteration in Eenzyme activity and total phenols

The *in vitro* methods used in this investigation for measuring the antioxidant scavenging activity are based on the measurement of the variation of enzymatic antioxidant activities of the sample. In detail, the variations of antioxidant enzyme activities were assessed to oxidative stress produced in the tissues when a plant is grafted and the variation in the activity of the enzymes SOD, CAT, POD, PAL, and PPO were measured in the plants grafted with the different scion/rootstock combinations.

In this study the variations of antioxidant enzyme activities were assessed in relation to oxidative stress produced in the tissues when a plant is grafted: the variation in activity of the enzymes SOD, CAT, POD, PAL, and PPO were measured in the plants grafted with the different scion /rootstock combinations in relationship to the *B. subtilis* inoculation.

To explore the relationship between enzyme activity, total phenols and survival rate with the graft combination and the effect of *B. subtilis*, a PCA analysis was performed using the enzyme activity, total phenol content and the survival rate as descriptors. As shown in Figure 3, the two principal components (PC1 and PC2) represented 83.98% of the data variance. The first component accounted for 53.1% of variance and the second one to 30.88% of variance.

PC1 is strongly correlated with five of the original variables. The first principal component increases with decreasing CAT, SOD, POD, PPO and tTotal phenols scores but PC1 correlates most strongly with CAT and POD (Table S1). Dominant variables for the second component (PC2) were PAL, PPO, SOD and survivors. PC2 increases with increasing SOD and PAL and with decreasing PPO and survivors (Table S1).

Formatted: Strikethrough

Formatted: Justified

Formatted: Strikethrough, Highlight

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Justified

Commented [rev2]:

Formatted: Strikethrough, Highlight

Formatted: Strikethrough, Highlight

As shown in the PCA plot (Figure 3), the grafted plants were divided in four clusters. Based on PC1, clusters RGCh and RGBer (control) are clearly separated from inoculated RGCh and RGBer clusters. Such differences are likely to be due to the enzymes that have heavy influences on PC1. Based on PC2, there are also four clusters: RGCh (control) and RGCh (inoculated) and, RGBer (control) and RGBer (inoculated). Such differences are likely to be due to the enzymes that have heavy influences on PC2. Given that PC1 reveals the most variation, differences among clusters along PC1 are larger than PC2 differences.

<u>In In order to understand whether the measured enzyme activity and total phenol quantity</u> between treatments and graft combinations is significant, in Ttable 2 are reported the activities of SOD and CAT <u>inef</u> grafted plants treated with *B. subtilis*. In the case of SOD, 1 day after grafting, in the RGCh combination, the compatible one, there is a lower activity (difference of 51 units) in *B. subtilis* treated plants in respect to the control. On the other hand, in the case of the semi-compatible graft (RGBer) there is a significant increase of 40 units at day 1. On day 15, the RGCh activity in the control was significantly higher in respect to the inoculated plants (difference of 238 units), while in the case of RGBer the bacterized plants showed higher

On day 28, an increase of SOD activity was observed in RGCh, while in the semicompatible graft* (RGBer) the increase in activity in the inoculated plants in respect to the control was not observed. The variation in the activity of enzyme CAT with the different graft combinations is reported in Table 2. On day 1 day after grafting, in the RGCh combination, a higher enzyme activity can be observed in the non-inoculated plants presenting a difference of 671 units in respect to the grafted plants treated with *B. subtilis*. On the other hand, in the case of RGBer, the inoculated plants present higher enzyme activity (573 units) in respect to the control.

activity in respect to the non-inoculated plants.

Fifteen days after grafting, in contrast with RGCh, the RGBer graft showed higher activity when inoculated. On day 28 after grafting, higher activity was observed in compatible grafted plants treated with the bacterium in respect to the non-inoculated plants, while, a reduction of activity was observed in grafted plants of RGBer treated with the bacterium in respect to the control.

Considering PPO, on day 1 after grafting (Table 2) the enzyme activity is higher in the case of the inoculated plants of RGCh, presenting a difference of 3.8 units, while in the other cases there is only a slight tendency to increase the activity of 0.1 and 0.3 units, respectively, on the control plants of RGBer. On day 15, the activity of the non-inoculated grafted plants was higher for the RGBer combination, while the bacterized plants presented the highest activity for the compatible graft and the lowest activity for the RGBer combination. On day 28, the activity is slightly higher in the control grafts.

The variation in the activity of POD with the different graft combinations is reported in Table 3. On day 1 after grafting, the greatest difference in activity was found in the RGBer combination where the bacterized plants present a higher activity of more than 47 units with respect to for the control. The POD activity for RGCh is similar in the inoculated and non-inoculated plants. On day 15, RGCh and RGBer grafted plants had the highest activity when non-inoculated, while the

Commented [rev3]:

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Justified

Formatted: Justified

inoculated plants showed higher activity with respect to for the control only when comparing the compatible graft. On day 28 the RGCh and RGBer inoculated plants had higher activity.

Concerning the enzyme PAL (Table 4), one 4 day after grafting, regardless of the graft combination, lower activity in bacterized grafted plants in respect to the controls was observed. The control in the RGCh graft showed the highest difference (7.2 units) in respect to the inoculated graft, while the semi_compatible combinations have a difference of 3.8 units.

On day 15, the non-inoculated grafted plants presented the highest activity, regardless of the combination. On day 28, the control grafted plants of RGBer combinations present a slightly higher activity than the inoculated plants but with a difference of only 0.5, while no difference was found in RGCh.

In the case of total phenols (Table 4), one 4 day after grafting, the non-inoculated plants presented higher content of phenols for both RGCh and RGBer; on day 15, a greater content of phenols was measured in the controls for the semi-compatible (6.15 units) grafts with respect tofor the bacterized grafts presenting a tendency to increase as incompatibility also increased. On the other hand, in the case of the inoculated grafts, the phenol content for RGBer presented a lower content (4.05 units). The opposite pattern was observed on day 28 where the non-inoculated RGCh and RGBer grafted plants have a lower content of total phenols, even if the differences are limited.

A summary of the effect of *B. subtilis* is shown on the bar graph (Fig. 4). The bars are the result of the difference between the enzyme concentration of inoculated grafted plants and control grafted plants. Positive values mean that the difference in concentration is given by the inoculated plants. Negative values mean that the control plants have a greater concentration. The same applies for total phenols.

For RGCh day 1 and 15, negative values can be observed for CAT and SOD while on day 28, for the same enzymes have a positive value including POD. In the case of RGBer, on day 1, remarkable positive values can be observed for CAT, SOD, and POD while on day 15, this happens only in the case of POD. On day 28, CAT and POD have positive values while SOD has a negative value. A positive value for the total phenols is registered on day 1 in the RGCh combination and on day 28 of the RGBer combination.

To better describe and quantify the association within the enzymes and between the enzymes and the total phenols, the Pearson's correlation coefficient was used (Figure S1). Considering RGCh day 1, CAT and POD showed a strong positive correlation while on day 15, SOD and PAL have a strong negative correlation. On day 28, PPO and Total phenols are strongly negatively correlated. In the case of RGBer, such as for RGCh, CAT and POD presented a positive correlation on day 1. On the contrary, PPO and PAL presented a negative correlation. On day 15, POD and Total phenols, are negatively correlated as well as POD and PPO, on day 28.

To explore the relationship between enzyme activity, total phenols, and survival rate with the graft combination and the effect of *B. subtilis*, a PCA analysis was also performed using the enzyme activity, total phenol content and the survival rate as descriptors. As shown in Figure 3, the two

Formatted: Justified

Formatted: Highlight

Formatted: Highlight

principal components (PC1 and PC2) represented 83.98% of the data variance. The first component accounted for 53.1% of the variance and the second one to 30.88% of the variance.

PC1 is strongly correlated with five of the original variables. The first principal component increases with decreasing CAT, SOD, POD, PPO, and total phenols scores but PC1 correlates most strongly with CAT and POD (Table S1). Dominant variables for the second component (PC2) were PAL, PPO, SOD, and survivors. PC2 increases with increasing SOD and PAL and with decreasing PPO and survivors (Table S1).

As shown in the PCA plot (Figure 3), the grafted plants were divided into four clusters. Based on PC1, clusters RGCh and RGBer (control) are clearly separated from inoculated RGCh and RGBer clusters. Such differences are likely to be due to the enzymes that have heavy influences on PC1. Based on PC2, there are also four clusters: RGCh (control) and RGCh (inoculated) and, RGBer (control) and RGBer (inoculated). Such differences are likely to be due to the enzymes that have heavy influences on PC2. Given that PC1 reveals the most variation, differences among clusters

along PC1 are larger than PC2 differences.

Discussion

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460 461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481 482

In vitro antioxidant activity of B. subtilis

Microbial cells have several defense mechanisms. To prevent damage by ROS, organisms haves evolved multiple detoxification mechanisms including various enzymatic or non-enzymatic systems (Asada, 1994; Ahmad et al., 2010). Among these enzymes, the combined action of SOD and CAT is critical in mitigating the effects of oxidative stress. They maintain the free radicals at levels that are not toxic to the cells. However, the ability of bacteria to overcome oxidative stress is related to the levels and types of antioxidant enzymes that they possess (Amantidou et al., 2001; Poole, 2012). Several growth-promoting bacteria have been reported to possess antioxidant activity (Han & Lee, 2005; Upadhyay et al., 2012; Kang et al., 2014). B. subtilis has been extensively studied (Hecker & Völker, 2001) and is shown to possess an adaptation mechanism against H₂O₂. This bacterium undergoes a typical bacterial stress response when exposed to low concentrations (0.1 mM) of hydrogen peroxide but protection was also shown to be induced at higher concentrations (10 mM) and many proteins are induced including the scavenging enzymes, CAT (Loewen & Switala, 1987; Dowds, 1994), SOD and POD (Mols & Abee, 2011). Our results are encouraging and confirm the capacity of B. subtilis to react to stress conditions. At very high concentrations (1.0 mM) of hydrogen peroxide, the bacteria are unaffected by the H₂O₂ treatment and it is only after 18 hours that it reaches a plateau. In the same way, our results confirm previous results of Yan et al. (2006) showing that B. subtilis has the capacity of scavenging radicals presenting a scavenging activity of more than 35 %. In a biological system, no enzyme specifically destroys OH⁻. The most effective defense against OH⁻ induced damage is to reduce the intracellular concentration of components in the Fenton reaction such as H₂O₂ and iron. This can be achieved by enzymes which that directly breakdown H₂O₂ such as CAT or sequestration of transition metal

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Commented [rev4]: ?

Formatted: Justified

and repression of iron uptake (Hameed & Lee, 2009). In our study, 37 % scavenging activity was obtained.

In this sense, the results of DPPH antioxidant capacity measured in our study, were similar to other studies (Kadaikunnan *et al.*, 2015). In our study, *B. subtilis* already scavenges 30 % even at low concentrations and is capable of neutralizing 100 % of the radicals at greater concentrations. This suggested that its the antioxidant properties may help to reduce the level of oxidative stress associated with mechanical injuries created during grafting and different physiological stages.

Effect of B. subtilis on grafted plants

Graft compatibility may influence the antioxidant response when subjected to certain conditions such as the initial wound response and the subsequent physiological stages that the grafted plant goes through to reconnect the vascular tissue. Therefore, in order to find out the average grafting success rate in the presence or absence of *B. subtilis* a visual observation of the graft survival and the graft success rate was performed. In the case of RGCh, 15 DAG, the survival success percentage reached up to 86% when the plants were inoculated, that is, 6% higher compared to the control plants. The compatibility of this graft combination as well as the beneficial characteristics of *B. subtilis* (Sabir, 2013; Falcao *et al.*, 2014) may be promoting a greater graft survival. In the case of the semi_compatible combination, RGBer, the survival rate is higher (10%) even though the non-inoculated plants have an initial lower survival rate with respect to the compatible combination. This result gives an indication indicates that despite the lower compatibility, *B. subtilis* hais a positive influence.

On day 28, there were no significant differences between the inoculated and the control RGCh plants as there was 100 and 99% graft success, respectively. However, for the inoculated RGBer plants, there was an overall 95% graft success rate with respect to the 90% success rate reached by the control plants.

Many developmental stages can be recognized in the formation of a graft union. The early stage in herbaceous plants begins within 4 days and is characterized by the death of cell layers at the graft interface as a wound reaction (Moore, 1984; Tiedemann, 1989). The differentiation of callus parenchyma to form new cambial initials and the subsequent union of the newly formed vascular strand with the original vascular bundle in both rootstock and scion begins between days 4 and 8 and is fully developed after 15 d (Fernandez-Garcia *et al.*, 2004). After that, the graft assemblage between the cells of the rootstock and scion was developed, differentiation of the new vascular system begins. Thus, enzymes are differently regulated during the different stages and the effect that *B. subtilis* may have on this regulation was also studied.

518 Several studies demonstrated the benefits of inoculating bacteria in plants (Bonaterra *et al.*, 2003; 519 Vardharajula *et al.*, 2011). Inoculation of plants with *B. subtilis* growth and mitigation of abiotic

and biotic stress effects (Gajbhiye et al., 2010; Singh et al., 2012).

In this study a PCA analyses was also performed in order to analyze which of the measured enzymes was more important and the influence of the total phenols on the inoculated e non-

Formatted: Strikethrough

inoculated compatible and semicompatible grafted plants. In Figure 3, it is possible to observe that all measured variables had a strong effect.

It should be noted that there exists an inverse relationship between CAT, SOD, POD, PPO, and Total phenols and the first component (PC1) (Table S1). This indicates that *B. subtilis* might be affecting the enzyme and total phenols at this stage (15 DAG) which could be important for the graft survival. The dominant variables for PC2 were PAL PPO, SOD and survivors. However, SOD and PAL are directly related to PC2 while PPO and survivors are inversely related to the second principal component.

The inoculated plants are clearly influenced by *B. subtilis*. As it is shown in Figure 3, if the PC1 is considered, grafted plants form separated clusters, two regarding the inoculated plants and two regarding the control plants. On the contrary, respect to PC2 four clusters can also be observed but in respect to the graft combination: RGCh and RGBer. This confirms that also compatibility confers specific characteristics based on the graft combination.

In order to analyze whether the enzyme activity measured and the total phenols are significantly different, I we report in this study, that plants inoculated with B. subtilis presented an increase in the antioxidant enzymes such as CAT, POD, PPO, PAL, and in total phenols levels. In another previous study, Bacillus spp. were also assessed to induce an increase in activity of antioxidant enzymes against Pyricularia oryizae (Rais et al., 2017). The application of Bacillus enhanced PPO and PAL activity but also changes in SOD and POD were observed in that study as response to the fungal infection. It has also been demonstrated that in the case of abiotic stresses, such as salinity stress, the activity of antioxidant enzymes in wheat increase with the increasing of salinity stress but plants treated with PGPR, such as B. subtilis and Arthrobacter, showed a reduction of activity of antioxidant measured enzymes as compared to uninoculated plants and among all antioxidants activities studied, the maximum reduction was recorded in CAT activity (Upadhyay et al., 2012). Initially, when the mechanical damage is induced in the grafted plants, there is a burst of free radicals (Savatin et al., 2014) and the antioxidant machinery activates. Later on, when the graft union has been reestablished, the lignification processes may intervene (Aloni et al., 2008).

Superoxide dismutase is an important antioxidant enzyme and constitutes the first level of defense against superoxide radicals in plants. SOD catalyzes the dismutation of O_2 to H_2O_2 and O_2 . Although exposing plants to stress situations, such as grafting, would trigger the antioxidant defense systems, there are indications that in incompatible rootstock/scion combination either the level of reactive oxygen species can be increased or decreased if a less efficient detoxification system is initiated (Aloni *et al.*, 2008; Nocito *et al.*, 2010).

Our results give an indication of indicate the response in tomato grafting when comparing the two grafting combinations with different compatibility. In the case of RGPep there is a higher activity at day 1 and the bacterized plants showed an even higher activity which could mean a higher protecting activity. During the following days, the tendency in both cases is to diminish but the bacterized plants keep the units of SOD even lower. Our results indicate that this could be the case when comparing the two graft combinations. In the case of the RGCh and RGBer

combinations where there is an efficient antioxidant system the bacterized plants tend to decrease the enzyme activity compared to the control plants.

The highest level of CAT activity was observed in the compatible graft on day 1 after grafting, while the opposite response was observed in the incompatible graft. These results confirm findings of Fernandez-Garcia *et al.* (2004) who reported that in-tomato catalase is the enzyme more involved in the cell controlling process of H₂O₂ production that takes place after grafting. In addition, the most noticeable effect of *B. subtilis* was seen on day 1 in the compatible graft where the activity is considerably reduced in respect to the control. On day 28 the CAT activity increases but mainly could be due to the degradation process of the tissues which explains the low activity and maybe less efficient antioxidant system of the control grafts respect the bacterized plants.

It is known that genes encoding for the enzymes like PAL, PPO, and POD are developmentally and tissue-specifically regulated and may be induced by environmental stresses (Pina & Errea, 2008). PAL is has generally recognized as a marker of environmental stress and an important step a potential site forin the pathway regulating on during the synthesis of flavonoid compounds, xylogenesis, and formation of lignin, one of the main cell wall polymers (Rogers & Campbell, 2004). Pina & Errea (2008) demonstrated for the first time that the enhancement of the level of PAL transcription is enhanced resultsing in an accumulation of phenol and —Ouour observations on, described for the two graft combinations, are consistent with the above_mentioned studies. In the case of the bacterized grafted plants enzyme activity is always lower than in the controls suggesting that, in the case of the inoculated plants, the control of the stressful conditions by B. subtilis could have reduced the activity of PAL.

POD is also reported as an important antioxidant enzyme involved in stress response by previous studies. Nevertheless, in the case of the bacterized grafted plants enzyme activity is always lower. In the case of the inoculated plants, the stressful conditions could have reduced indirectly the activity of PAL.

POD is reported as a stress enzyme by previous researchers (Has-Schön *et al.*, 2005; Rajeswari *et al.*, 2008). Assuming that grafting is a relevant stress factor for herbaceous plants, the increasing increase of peroxidase activity following grafting may explain this idea. In our study, it was observed that there was an increasing in POD ed peroxidase activity 15 days after graftingafter day 15. Some researchers also reported that in tomato grafts, peroxidase activity increased day by day after the graft (Fernandez-Garcia *et al.*, 2004). Similarly, in another study compared peroxidase activity increase was found in melon at 14 and 24 days after grafting (Aloni *et al.*, 2008). Some researchers suggested that different graft combinations give different reactions to grafting (Feucht *et al.*, 1983; Hudina *et al.*, 2014; Pina & Errea., 2005). The POD activity in the bacterized plants tends to be lower in the semi-compatible graft, and this response suggests that it may have a radical scavenging effect in this graft combination.

PThe POD activity has also been associated with the lignification process (Olson & Varner, 1993; Quiroga et al., 2000), the possibility thus that the higher activity in the incompatible grafts may be due to the more active lignification process which might take longer in the incompatible grafts. The POD in the bacterized plants generally tends to be lower the activity of the enzyme except for the compatible graft suggests that it may have a radical scavenging effect.

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Strikethrough

POD is also considered thea catalyzer in the of-polyphenol biosynthesis and, however, together with POD and PPO, enzymes arise responsible for the production of phenolic compounds which contribute to the reinforcement of cell barriers and therefore they confer a-resistance against diseases. In addition, they are involved in the stress and wounding stress response (Gainza et al., 2015; Saltveit et al., 2015). Recent data demonstrate that several biochemical pathways are affected during graft union formation (Koepke & Dhingra, 2013). One of these is the metabolism of phenolic compounds (Mng'omba et al., 2008). As expected in a normal wound reaction, an intense production of new phenolic compounds has been reported during the establishment of a graft union (Tiedemann, 1989; Hartmann, Kesler & Geneve, 2002). Phenolic compounds are uncommon in bacteria bacteria, but their accumulation is a distinctive characteristic of plant response to stress. Our results show higher total phenol content for the compatible grafts on day 1 even though on the following days the content tends to decrease. This response may be due to the nature of the scion and rootstock itself. The inoculated plants, however, in both cases have a lower phenol content. This could be due to the antioxidant effect of Bacillus which takes the plant to a lower stress condition of B. subtilis which takes the plant to a lower stress condition. PPO physiologically has an important role in plant defense and is also involved in the lignification of plant cells. This could explain the peaks that can be observed after 15 days in the RGCh control combination. Tn while the inoculated plants have higher activity than in the control in the compatible grafts but tend to decrease the activity tend to decrease in the case of the semicompatible grafts and this response could be also related to modulation of the response

In the present research, the activity was enhanced or reduced depending on the enzyme, the time whenre the activity was measured, and the graft combination. In general, *B. subtilis* decreased the activity of SOD, CAT, and PAL as well as the quantity of total phenols, on day 1 on the compatible grafts. In the case of the semi_compatible grafts, the activity of the PAL, PPO, and the total phenols quantity was decreased. On day 28, CAT, PAL, and PPO showed reduced activity for RGCh but in the case of RGBer, the SOD, CAT, and PAL showed reduced activity as well as the total phenols. Krishna *et al.* in 2011 also tested *B. subtilis* for antioxidant activity by enzymatic and non-enzymatic parameters and changes of antioxidant activity were observed. These results can be considered are implications implication of the same positive effect and suggestindicate that inoculated plants were subjected to less stress as compared to non-inoculated plants. Moreover, in the at this last stage, the grafted plants are should supposed to have their vascular connections formed, and, therefore, the enzymatic activity could change accordingly to the graft union formation.

Taken together, the above results, showed that the mechanical damage, such as the one caused by wounding in grafted plants, generates <u>ROS</u>reactive oxygen species. In the present study, the activity of the measured antioxidant enzymes SOD, CAT, PAL, PPO, and POD in the graft union of different graft combinations treated with strain BMB 44 of *B. subtilis* was significantly reduced or increased as compared to control plants (non-inoculated). The most evident effect can be noticed indeed on day 1 where for the SOD, CAT and PAL enzymes the activity was significantly decreased while it was elicited for the PPO and, while there was not a significant change in POD.

Formatted: Font color: Red

This can be attributed to the ability of bacteria to limit producing ROS through modulation of the enzymatic defense system by increasing or decreasing antioxidant enzyme activities according to the physiological stage of the graft and the compatibility level of the graft combination. This can be attributed to the ability of bacteria to limit producing types of active oxygen species through stimulating enzymatic defense system by increasing antioxidant enzyme activity or on the contrary decreasing the antioxidant enzyme activity of the plant suggesting the positive effects that plant growth promoting bacteria may have depending on the physiological stage of the graft and the compatibility of both the variety and the rootstock. The total soluble phenols and the variation may exist and could be related to the PAL and PPO activity influenced by the presence or absence of B. subtilis. However, further research is needed to better clarify this mechanism. In order to better understand the visually the effect of B. subtilis a comparative analysis is also proposed (Figure 4). The result is given by calculating the difference of the enzyme activity (or total phenols) in the inoculated plants minus the enzyme activity (or total phenols) of the control plants. For the RGCh combination, on days 1 and 15, the inoculated plants present a lower enzyme activity (CAT and SOD) but on day 28 this effect is reverted. For the RGBer combination the inoculated plants on day, present a greater activity or concentration for CAT, SOD, POD, and total phenols. However, on day 28, only the POD and total phenols. The SOD is characterized by a-lower enzyme activity. In this study, a PCA analyses was also performed in order to analyze which of the measured enzymes was more important and the influence of the total phenols on the inoculated e noninoculated compatible and semi-compatible grafted plants. In Figure 3, it is possible to observe that all measured variables had a strong effect. It should be noted that there exists an inverse relationship between CAT, SOD, POD, PPO, and Total phenols and the first component (PC1) (Table S1). This indicates that B. subtilis might be affecting the enzyme and total phenols at this stage (15 DAG) which could be important for the graft survival. The dominant variables for PC2 were PAL PPO, SOD, and survivors. However, SOD and PAL are directly related to PC2 while PPO and survivors are inversely related to the second principal component. The inoculated plants are elearly influenced by B. subtilis. As it is shown in Figure 3, if the PC1 is considered, grafted plants form separated clusters, two regarding the inoculated plants and two

regarding the control plants. On the contrary, respect to PC2 four clusters can also be observed

but inwith respect to the graft combination: RGCh and RGBer. This confirms that also

compatibility confers specific characteristics based on the graft combination.

Formatted: Highlight
Formatted: Highlight

Formatted: Highlight

Commented [rev5]: .

Formatted: Highlight

Conclusions

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

684

Bacillus subtilis, strain BMB 44 was shown, through *in vitro* evaluation, to have high antioxidant capacity. The *in vivo* application of this strain on grafting tomato plants showed its relevant effect on the modulation of enzyme activities and total phenols level *B. subtilis* strain BMB 44 was tested for its effect on tomato grafting by evaluation of its capacity of modulate antioxidant response in colonized plants. The study confirmed its *in vitro* antioxidant capacity. In addition, the studies on *in vivo* effects on grafted plants showed seavenging activity immediately after grafting when there is an outburst of free radicals as well as in the other stages of the graft recovery period whenre the oxidative stress can be associated towith the reconnection of the vascular tissue. In both cases it can be inferred that the enzyme activity and the total phenols in plants changed due to the presence of the bacteria. Moreover, it was observed that the capacity of the bacteriuma have the capacity of lowering or increasing the enzyme activity and total phenols level in plants and that this response also depends on whether graft combination is compatible or semi-compatible.

The results of this study suggest that *B. subtilis*_L acting on the modulation of the antioxidant response_L may represent a useful tool for mitigation of the adverse effect of grafting enhancing graft success and survival rate.

Acknowledgements

Horacio Claudio Morales Torres and Marco Antonio Meraz Mercado for their help in the statistical analysis. Emanuel de Jesús Guzman Valdez and Anita Camacho Ramírez for technical assistance. Consejo Nacional de Ciencia y Tecnología (CONACYT) for providing the Ph.D. scholarship.

References

Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical reviews in biotechnology, 30(3), 161-175. DOI: 10.3109/07388550903524243.

Ahotupa, M., Saxelin, M., & Korpela, R. (1996). Antioxidative properties of Lactobacillus GG. Nutrition Today, 31(6), 51S.

Aloni, B., Karni, L., Deventurero, G., Levin, Z., Cohen, R., Katzir, N., ... & Joel, D. M. (2008).
Physiological and biochemical changes at the rootstock-scion interface in graft as between
Cucurbita rootstocks and a melon scion. The Journal of Horticultural Science and Biotechnology,
83(6), 777-783. DOI: 10.1080/14620316.2008.11512460

Amanatidou, A., Schlüter, O., Lemkau, K., Gorris, L. G. M., Smid, E. J., & Knorr, D. (2000).
 Effect of combined application of high pressure treatment and modified atmospheres on the shelf
 life of fresh Atlantic salmon. Innovative Food Science & Emerging Technologies, 1(2), 87-98.

727

726 Amanatidou, A., Smid, E. J., Bennik, M. H., & Gorris, L. G. (2001). Antioxidative properties of

Lactobacillus sake upon exposure to elevated oxygen concentrations. FEMS microbiology letters,

203(1), 87-94. DOI:10.1111/j.1574-6968.2001.tb10825.x

728 729

730 Asada, K. (1994). Production and action of active oxygen species in photosynthetic tissues.

731 Causes of photooxidative stress and amelioration of defense systems in plants, CRC Press, Boca

732 Raton 77-104.

733 734

Bahadur, A., Rai, N., Kumar, R., Tiwari, S. K., Singh, A. K., Rai, A. K., ... & Singh, M. (2015).

735 Grafting tomato on eggplant as a potential tool to improve waterlogging tolerance in hybrid

tomato. Vegetable Science, 42(2), 82-87. DOI: 10.13140/RG.2.1.1298.2645

736 737

738 Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signaling. Journal 739

of experimental botany, 65(5), 1229-1240. DOI: 10.1093/jxb/ert375

740 741

742

Beaudoin-Eagan, L. D., & Thorpe, T. A. (1985). Tyrosine and phenylalanine ammonia lyase

activities during shoot initiation in tobacco callus cultures. Plant Physiology, 78(3), 438-441.

743 DOI: 10.1104/pp.78.3.438

744 745

Beers, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown

of hydrogen peroxide by catalase. J Biol chem, 195(1), 133-140.

746 747

748 Bletsos, F. A., & Olympios, C. M. (2008). Rootstocks and grafting of tomatoes, peppers and

749 eggplants for soil-borne disease resistance, improved yield and quality. The European Journal of

Plant Science and Biotechnology, 2(1), 62-73. 750

751

752 Bonaterra, A., Ruz, L., Badosa, E., Pinochet, J., & Montesinos, E. (2003). Growth promotion of

753 Prunus rootstocks by root treatment with specific bacterial strains. Plant and soil, 255(2), 555-

569. DOI: 10.1023/A:1026033115984

754 755

Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method 756

757 to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30. DOI:

10.1016/S0023-6438(95)80008-5

758 759

> Chowdappa, P., Kumar, S. M., Lakshmi, M. J., & Upreti, K. K. (2013). Growth stimulation and 760

761 induction of systemic resistance in tomato against early and late blight by Bacillus subtilis

OTPB1 or Trichoderma harzianum OTPB3. Biological control, 65(1), 109-117. 762

763

- 764 Constabel C.P. & Barbehenn R. (2008) Defensive Roles of Polyphenol Oxidase in Plants. In:
- 765 Schaller A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. DOI: 10.1007/978-
- 766 1-4020-8182-8 12

Dowds, B. C. (1994). The oxidative stress response in *Bacillus subtilis*. FEMS microbiology
 letters, 124(3), 255-263. DOI: 10.1111/j.1574-6968.1994.tb07294.x.

770

Fernández-García, N. Carvajal, M., & Olmos, E. (2004). Graft union formation in tomato plants: peroxidase and catalase involvement. Annals of Botany, 93(1), 53-60. DOI: 10.1093/aob/mch014

773

Feucht, W., Schmid, P. P. S., & Christ, E. (1983). Compatibility in *Prunus avium/Prunus cerasus* grafts during initial phase. II. Reduction of cell number and peroxidases in the rootstock
 cambium. Scientia Horticulturae, 21(3), 225-231. DOI: 10.1016/0304-4238(83)90095-X

777

Finger, A. (1994). In-vitro studies on the effect of polyphenol oxidase and peroxidase on the
 formation of polyphenolic black tea constituents. Journal of the Science of Food and Agriculture,
 66(3), 293-305. DOI: 10.1002/jsfa.2740660306

781

Foyer C.H. & Noctor G. (2013). Redox signaling in plants. Antioxid Redox Signal.
 1;18(16):2087-90. DOI:10.1089/ars.2013.5278

784

Gainza, F., Opazo, I., & Muñoz, C. (2015). Graft incompatibility in plants: Metabolic changes
 during formation and establishment of the rootstock/scion union with emphasis on Prunus
 species. Chilean journal of agricultural research, 75, 28-34. DOI: 10.4067/S0718 58392015000300004

789

Gajbhiye, A., Rai, A. R., Meshram, S. U., & Dongre, A. B. (2010). Isolation, evaluation and
 characterization of *Bacillus subtilis* from cotton rhizospheric soil with biocontrol activity against
 Fusarium oxysporum. World Journal of Microbiology and Biotechnology, 26(7), 1187-1194.
 DOI: 10.1007/s11274-009-0287-9

794

Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higherplants. Plant physiology, 59(2), 309-314. DOI: 10.1104/pp.59.2.309

797

798 Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic
 799 stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), 909-930. DOI:
 800 10.1016/j.plaphy.2010.08.016

801

- Hameed, B. H., & Lee, T. W. (2009). Degradation of malachite green in aqueous solution by
- Fenton process. Journal of hazardous materials, 164(2-3), 468-472. DOI:
- 804 10.1016/j.jhazmat.2008.08.018

Han, H. S., & Lee, K. D. (2005). Plant growth promoting rhizobacteria effect on antioxidant
status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol
Sci, 1(3), 210-215.

Hartmann, H.T., D.E. Kesler, F.T. Davies, & R.L. Geneve. 2002. Plant propagation. Principles
and practices. Vol. 849 p. 7th ed. Prentice Hall, Upper Saddle River, New Jersey, USA.

809

812

813

814 815

816

823

828

831

836

839

843

Has-Schön, E., Lepeduš, H., Jerabek, L., & Cesar, V. (2005). Influence of storage temperature on total peroxidase activity in crude extracts from *Picea abies* L. Karst. needles. Croatica chemica acta, 78(3), 349-353.

Hecker, M., & Völker, U. (2001). General stress response of *Bacillus subtilis* and other bacteria.
Advances in Microbial Physiology, 44, 35-91. DOI: 10.1016/S0065-2911(01)44011-2

Hudina, M., Orazem, P., Jakopic, J., & Stampar, F. (2014). The phenolic content and its
involvement in the graft incompatibility process of various pear rootstocks (*Pyrus communis* L.).
Journal of plant physiology, 171(5), 76-84. DOI: 10.1016/j.jplph.2013.10.022

Kadaikunnan, S., Rejiniemon, T. S., Khaled, J. M., Alharbi, N. S., & Mothana, R. (2015). Invitro antibacterial, antifungal, antioxidant and functional properties of *Bacillus amyloliquefaciens*. Annals of clinical microbiology and antimicrobials, 14(1), 9. DOI:
 10.1186/s12941-015-0069-1

Kaizu, H., Sasaki, M., Nakajima, H., & Suzuki, Y. (1993). Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. Journal of Dairy Science, 76(9), 2493-2499.

Kang, S. M., Khan, A. L., Waqas, M., You, Y. H., Kim, J. H., Kim, J. G., ... & Lee, I. J. (2014).
Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by
regulating phytohormones and antioxidants in *Cucumis sativus*. Journal of Plant Interactions,
9(1), 673-682. DOI: 10.1080/17429145.2014.894587

Kariada, I. K., & Aribawa, I. B. (2017). Grafting of Tomato with Eggplant Rootstock at Penyabangan Village Payangan Subdistrict of Gianyar Bali. KnE Life Sciences, 625-630.

Kaspar, F., Neubauer, P., & Gimpel, M. (2019). Bioactive secondary metabolites *from Bacillus subtilis*: a comprehensive review. Journal of natural products, 82(7), 2038-2053. DOI:
10.1021/acs.jnatprod.9b00110

Koepke, T., & Dhingra, A. (2013). Rootstock scion somatogenetic interactions in perennial
composite plants. Plant cell reports, 32(9), 1321-1337. DOI: 10.1007/s00299-013-1471-9

Krishna, E. R., Kumar, P. S., & Kumar, B. V. (2011). Study on antioxidant activity and strain development of Bacillus subtilis (MTCC No. 10619). J Agric Technol, 7, 1693-1703.

Lin, M. Y., & Chang, F. J. (2000). Antioxidative effect of intestinal bacteria Bifidobacterium

Maksimović, J. D., Zhang, J., Zeng, F., Živanović, B. D., Shabala, L., Zhou, M., & Shabala, S.

comparison of methods. Phytochemistry, 5(4), 783-789. DOI: 10.1016/S0031-9422(00)83660-2

incompatibility and phenols in *Uapaca kirkiana* Müell Arg. Scientia Horticulturae, 117(3), 212-

Mols, M., & Abee, T. (2011). Primary and secondary oxidative stress in Bacillus. Environmental

Moore, R. (1984). A model for graft compatibility-incompatibility in higher plants. American

Mudge K., Janick J., Scofield S., & Goldschmidt E. E. (2009). A history of grafting. Hortic.

Murphy, P., Dowds, B. C., McConnell, D. J., & Devine, K. M. (1987). Oxidative stress and

growth temperature in *Bacillus subtilis*. Journal of bacteriology, 169(12), 5766-5770.

Mng'omba, S. A., du Toit, E. S., & Akinnifesi, F. K. (2008). The relationship between graft

(2013). Linking oxidative and salinity stress tolerance in barley: can root antioxidant enzyme

activity be used as a measure of stress tolerance? Plant and Soil, 365(1-2), 141-155. DOI:

Mayer, A. M., Harel, E., & Ben-Shaul, R. (1966). Assay of catechol oxidase - a critical

Loewen, P. C., & Switala, J. (1987). Multiple catalases in Bacillus subtilis. Journal of

Bacteriology, 169(8), 3601-3607. DOI: 10.1128/jb.169.8.3601-3607.1987

microbiology, 13(6), 1387-1394. DOI: 10.1111/j.1462-2920.2011.02433.x

848

849

850

851 longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digestive diseases and 852 sciences, 45(8), 1617-1622. DOI: 10.1023/A:1005577330695

853

854

855

856

857

858

859

10.1007/s11104-012-1366-5

218. DOI: 10.1016/j.scienta.2008.03.031

860

861

862

863

864

865 866

867 868

869 870

871 872

> 873 874

> > 875

876 877

878 879 880

881

885

882

883 884

Nocito, F. F., Espen, L., Fedeli, C., Lancilli, C., Musacchi, S., Serra, S., ... & Sacchi, G. A. (2010). Oxidative stress and senescence-like status of pear calli co-cultured on suspensions of

DOI: 10.1128/jb.169.12.5766-5770.1987

Rev. 35 437-493. DOI:10.1002/9780470593776.ch9

Journal of Botany, 71(5), 752-758. DOI: 10.2307/2443372

incompatible quince microcalli. Tree Physiology, 30(4), 450-458. DOI: 10.1093/treephys/tpq006

- Olson, P. D., & Varner, J. E. (1993). Hydrogen peroxide and lignification. The Plant Journal, 886
- 887 4(5), 887-892. DOI: 10.1046/j.1365-313X.1993.04050887.x
- 888 889
 - Pina, A., & Errea, P. (2005). A review of new advances in mechanism of graft compatibility-890 incompatibility. Scientia Horticulturae, 106(1), 1-11. DOI: 10.1016/j.scienta.2005.04.003
- 892 Pina, A., & Errea, P. (2008). Differential induction of phenylalanine ammonia-lyase gene
- 893 expression in response to in vitro callus unions of Prunus spp. Journal of Plant Physiology,
- 165(7), 705-714. DOI: 10.1016/j.jplph.2007.05.015 894
- 895

906

891

- 896 Poole, K. (2012). Bacterial stress responses as determinants of antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 67(9), 2069-2089. DOI: 10.1093/jac/dks196 897
- 898
- 899 Quiroga, M., Guerrero, C., Botella, M. A., Barceló, A., Amaya, I., Medina, M. I., ... & Valpuesta,
- V. (2000). A tomato peroxidase involved in the synthesis of lignin and suberin. Plant physiology, 900
- 122(4), 1119-1128. DOI: 10.1104/pp.122.4.1119 901
- 903 Radhakrishnan, R., Hashem, A., & Abd Allah, E. F. (2017). Bacillus: a biological tool for crop
- improvement through bio-molecular changes in adverse environments. Frontiers in physiology, 8, 904
- 905 667. DOI: 10.3389/fphys.2017.00667
- Rais, A., Jabeen, Z., Shair, F., Hafeez, F. Y., & Hassan, M. N. (2017). Bacillus spp., a bio-control 907
- 908 agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae.
- PLoS One, 12(11), e0187412. DOI: 10.1371/journal.pone.0187412 909
- 910
- Rajeswari, V., & Paliwal, K. (2008). Peroxidase and catalase changes during in vitro adventitious 911
- shoot organogenesis from hypocotyls of Albizia odoratissima Lf (Benth). Acta Physiologiae 912
- 913 Plantarum, 30(6), 825-832. DOI: 10.1007/s11738-008-0187-x
- 914
- 915 Rodríguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth
- 916 promotion. Biotechnology advances, 17(4-5), 319-339. DOI: 10.1016/s0734-9750(99)00014-2. 917
- 918 Rogers, L. A., & Campbell, M. M. (2004). The genetic control of lignin deposition during plant
- 919 growth and development. New phytologist, 164(1), 17-30. DOI: 10.1111/j.1469-
- 8137.2004.01143.x 920
- 921

924

- 922 Ruzzi, M., & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in
- 923 horticulture. Scientia Horticulturae, 196, 124-134. DOI: 10.1016/j.scienta.2015.08.042
- 925 Sadasivam S. & Manickam A. (1996) Biochemical method: Polyphenol oxidase. New Age
- 926 International (P) Limited, New Delhi; 2, 108-110.

927 928 Saltveit, M. E. (2015). The three responses of plant tissue to wounding. In III International 929 Conference on Fresh-Cut Produce: Maintaining Quality and Safety 1141 (pp. 13-20). DOI: 930 10.17660/ActaHortic.2016.1141.2 931 Savatin, D. V., Gramegna, G., Modesti, V., & Cervone, F. (2014). Wounding in the plant tissue: 932 933 the defense of a dangerous passage. Frontiers in plant science, 5, 470. DOI: 934 10.3389/fpls.2014.00470 935 936 Singh, D., Yadav, D. K., Sinha, S., & Upadhyay, S. K. (2012). Utilization of plant growth promoting Bacillus subtilis isolates for the management of bacterial wilt incidence in tomato 937 caused by Ralstonia solanacearum race 1 biovar 3. Indian Phytopath, 65(1), 18-24. 938 939 940 Singh, H., Kumar, P., Chaudhari, S., & Edelstein, M. (2017). Tomato grafting: a global perspective. HortScience, 52(10), 1328-1336. DOI: 10.21273/HORTSCI11996-17 941 942 943 Soares, A. G., Trugo, L. C., Botrel, N., & da Silva Souza, L. F. (2005). Reduction of internal 944 browning of pineapple fruit (Ananas comusus L.) by preharvest soil application of potassium. Postharvest Biology and Technology, 35(2), 201-207.DOI: 10.1016/j.postharvbio.2004.07.005 945 946 Sturz, A. V., & Nowak, J. (2000). Endophytic communities of rhizobacteria and the strategies 947 required to create yield enhancing associations with crops. Applied soil ecology, 15(2), 183-190. 948 949 DOI: 10.1016/S0929-1393(00)00094-9 950 951 Sudhakar, P., Chattopadhyay, G. N., Gangwar, S. K., & Ghosh, J. K. (2000). Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry 952 (Morus alba). The Journal of Agricultural Science, 134(2), 227-234. DOI: 953 954 10.1017/S0021859699007376 955 956 Suzuki, N., & Mittler, R. (2012). Reactive oxygen species-dependent wound responses in animals 957 and plants. Free Radical Biology and Medicine, 53(12), 2269-2276. DOI: 958 10.1016/j.freeradbiomed.2012.10.538 959 960 Thompson, D. C., Clarke, B., & Kobayashi, D. (1996). Evaluation of bacterial antagonists for reduction of summer patch symptoms in Kentucky bluegrass. Plant disease, 80(8), 856-862. 961 962

Tiedemann, R. (1989). Graft union development and symplastic phloem contact in the heterograft

Cucumis sativus on Cucurbita ficifolia. Journal of Plant Physiology, 134(4), 427-440. DOI:

963

964

965 966 10.1016/S0176-1617(89)80006-9

on growth and antioxidant status of wheat under saline conditions. Plant Biology, 14(4), 605-611. 968 969 DOI: 10.1111/j.1438-8677.2011.00533.x 970 971 Vardharajula, S., Zulfikar Ali, S., Grover, M., Reddy, G., & Bandi, V. (2011). Drought-tolerant 972 plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6(1), 1-14. DOI: 973 974 10.1080/17429145.2010.535178975 976 Yan, G., Hua, Z., Du, G., & Chen, J. (2006). Adaptive response of Bacillus sp. F26 to hydrogen

Upadhyay, S. K., Singh, J. S., Saxena, A. K., & Singh, D. P. (2012). Impact of PGPR inoculation

977 peroxide and menadione. Current microbiology, 52(3), 238-242. DOI: 10.1007/s00284-005 978 0313-6

979

967