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ABSTRACT 15 

Teff (Eragrostis tef (Zucc.) Trotter) is a staple, ancient food crop in Ethiopia, but its 16 

cultivation may be affected by climate change. It is essential to understand how climatic 17 

changes may alter habitat suitability so that appropriate cultivation countermeasures can be 18 

developed to ensure food security. We predicted the potential distribution of teff under 19 

current and potential future climate scenarios in our analysis using the maximum entropy 20 

(MaxEnt) model. Future climate scenarios were based on four Representative concentration 21 

Pathways (RCP; RCP2.6, RCP4.5, RCP6.0 and RCP8.5) outlined in the fifth assessment 22 

report of the Intergovernmental Panel on Climate Change (IPCC), Twelve climate-related 23 

habitat suitability variables were used as model parameters; variables were introduced into 24 

the model, chosen from 19 variables according to the correlation analysis together with their 25 

contribution rates to the distribution. Simulated results were assessed using operating 26 

characteristic curves (AUC), which were strongly predictive of all future climate scenarios 27 

(RCPs). The primary drivers for teff habitat suitability in our study were precipitation and 28 

mean temperature in the coldest season, seasonal differences in precipitation annually, and 29 

steepness of the slope.  Currently, 58% of total land area in Ethiopia is suitable for teff 30 

cultivation, compared to 58.8%, 57.6%, 59.2%, and 57.4% in RCP2.6, RCP4.5, RCP6.0, and 31 

RCP8.5, respectively. We found that warmer conditions were correlated with decreased land 32 

suitability. As anticipated, temperature- and precipitation-related bioclimatic variables were 33 

highly predictive of teff cultivation suitability. Additionally, the suitability of land for teff 34 

cultivation varied across the landscape under different RCP scenarios, suggesting the use of 35 

different food security countermeasures may be required in different regions depending on 36 

future climate trajectory. A better understanding of the potential effects of climate change on 37 

teff cultivation is critical for Ethiopia’s agricultural strategy and overall food security goals. 38 



Our modelling results may inform adaptive strategies and policies for minimizing the 39 

potentially harmful impacts of climate change on teff production. 40 

 41 
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INTRODUCTION 78 

Climate change has resulted in the warming of global average surface temperatures by 0.8 °C 79 

over the past century (Hansen et al. 2006; Yumbya et al. 2014) and is accelerating, as 80 

demonstrated by a 0.6 °C increase in the last four decades (Hansen et al. 2010; Suwannatrai 81 

et al. 2017). The International Panel on Climate Change (IPCC) has concluded that climate 82 

change is a primary driver of rising surface and ocean temperatures globally (Cabré et al. 83 

2015; Parry et al. 2007; Solomon et al. 2007; Stocker et al. 2014); and estimates that average 84 

overall land and ocean surface temperatures have increased  0.85 ° from 1880 to 2012 0.85 ° 85 

C (Liao & Chang 2014; Pachauri et al. 2014), and that this warming is predicted to increase 86 

rapidly in the future. There is overwhelming evidence that the distribution of countless 87 

species has been, and will continue to be, affected by climate change (Root et al. 2003). 88 

Alterations to precipitation patterns, which are predicted under changing climate conditions, 89 

may affect food production in many African countries - where agricultural systems are 90 

mostly rain-fed. These impacts on livelihood will undoubtedly mean that countries will have 91 

to change their farming policies (Dinar 2007). Africa has been exposed to climate change, 92 

and population increase has led to fragility of geographical location and loss of natural 93 

resources as well as food security (Parry et al. 2007). Yet, many third world countries in 94 

Africa depend on rain water for food production, which has been dominated by small scale 95 

farmers for several decades. The absence of water for irrigation in many African countries 96 

has caused a significantly double dependency on climate for food production. Eventually, 97 

Ethiopia is one country exposed to climate change economic status and geographic location 98 

(Chen et al. 2015). Agriculture comprises nearly half of Ethiopia’s Gross Domestic Product 99 

(GDP) and plays a key role in economic development. (GDP) (Gebrehiwot & Van Der Veen 100 

2013). Eighty-five per cent of Ethiopians are considered rural and depend on agricultural 101 

production as a means of livelihood (Gebrehiwot & Van Der Veen 2013). Moreover, many 102 
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rural Ethiopians face crop failure during long or short droughts, which occur seasonally. 108 

Consequently, crops are often lost during natural vegetation phases (Evangelista et al. 2013). 109 

Changing patterns of drought and precipitation in Ethiopia have already been documented by 110 

other researchers, and greater changes are expected under future conditions (Deressa & 111 

Hassan 2009; Viste et al. 2013; Zeleke & Raes 1999). Moreover, while Ethiopia is one of the 112 

largest producers of cereals in East Africa, it is still not self-sufficient, as several cereal crops 113 

are grown in different agro-climatic areas in Ethiopia. Teff (Eragrostis tef) is one of the 114 

major preferred grown cereals and covers about 2.8 million ha of …. Cereal crops face an 115 

especially critical threat due to climate change (Ledig et al. 2010), which affects the human 116 

population because they rely on only a few edible species for nutrition and sustenance out of 117 

more than 50,000 known edible species available worldwide (Cheng et al. 2017). 118 

Understanding and planning for crop resilience are crucial for the protection of global food 119 

supplies, and therefore research on key crops is needed for decision-makers to plan and 120 

strategize in the face of climate change (Cowie et al. 2018). 121 

Under IPCC predictions from 2007, the effects of climate change in Africa are relatively 122 

uncertain (Solomon et al. 2007). Within Africa, Ethiopia is particularly vulnerable to 123 

changing climate conditions, such as increased surface warming accompanied by inconsistent 124 

rainfall, which may decrease food security (Conway & Schipper 2011).  125 

Teff is a staple, ancient food crop in Ethiopia, accounting for the largest share of land 126 

cultivated for cereal crops (Taffesse et al. 2012). Teff is a warm-season annual crop that 127 

produces very small grains (Figure 1A); is easily interchangeable with other staple grains, 128 

and is also gluten-free (Rosell et al. 2014). From a nutrition standpoint, teff is low in gluten 129 

and high in iron (Stallknecht et al. 1993). Teff crops occupy 988,638.5 square kilometers 130 

(Yumbya et al. 2014), however, due to climate change, it is one of the most vulnerable areas 131 

in the region (Evangelista et al. 2013).  It is estimated that Injera, a food made from teff, 132 
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provides up to two-thirds of the food consumed by Ethiopians (Figure 1B) (Stewart & 134 

Getachew 1962). Understanding and predicting teff distribution across Ethiopia is critical for 135 

developing safe and efficient countermeasures for food security.  This is particularly 136 

important given that climate-induced changes to precipitation and temperature affect teff 137 

yields and viability (Baldwin 2009; Kamilar & Beaudrot 2013). Moreover, researchers have 138 

developed a suite of ecological tools and climate models to explain ecological processes and 139 

relationships between and within spatial and temporal scales (Elith* et al. 2006; Phillips et al. 140 

2006). Such tools have been employed to explore a range of species, habitats, and ecosystem 141 

conditions (Alberto et al. 2013; Bellard et al. 2012; Beltramino et al. 2015; Brown 2014).  142 

Species distribution models (SDMs) are a subset of the approaches outlined above and are 143 

developed by combining current and historical species distribution data with relevant 144 

environment variables to explain both occurrence and abundance of organisms in an 145 

ecosystem (Caminade et al. 2012; Guisan & Thuiller 2005; Guo et al. 2017; Kamilar & 146 

Beaudrot 2013; Peterson 2006; Zimmermann et al. 2010). 147 

A variety of SDMs has been developed to predict species distributions under different climate 148 

scenarios (e.g., RCPs).  Commonly used SDM models include: the genetic algorithm for the 149 

production of rules (GARP), BIOCLIM (the model widely fused tools to predict current and 150 

future species distribution of response) (Beaumont et al. 2005), and ecological niche factor 151 

analysis (ENFA) (Rong et al. 2019; Tognelli et al. 2009). The MaxEnt (maximum entropy) 152 

model has also been widely used due to its prediction accuracy and reliability. It has many 153 

advantages, including its ability to handle incomplete data, small sample sizes, species 154 

presence/absence and abundance, as well as both continuous and categorical environmental 155 

data.  This flexibility makes efficient use of data and facilitates model interpretation (Guo et 156 

al. 2017; Rong et al. 2019). Several studies indicate that MaxEnt is a robust approach for 157 
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predicting species distributions (Elith* et al. 2006; Kumar & Stohlgren 2009; Phillips et al. 158 

2006; Reiss et al. 2011; Tognelli et al. 2009). 159 

In this study, the geographic distribution data of Eragrostis tef occurrence from the Ethiopian 160 

National Meteorological Agency was collected and predicted with the MaxEnt model under 161 

four climate change scenarios. Our major objectives were to: (1) predict the future 162 

distribution of teff species under current climate conditions; (2) forecast suitable areas for teff 163 

species under four future climate scenarios, and (3) evaluate the effects of climate change on 164 

teff distribution. Identifying shifts in the ranges of suitable areas under future scenarios is a 165 

novel approach in the study.  166 

MATERIALS AND METHODS 167 

Study Area   168 

Ethiopia lies in northeast Africa, from longitude 33°E to 55°E and latitude 3.5°N to 15°N. It 169 

covers 1.13 million km2 with various geographical units of mountainous, hilly, and flat 170 

regions encompassing elevations from below sea level to 4,000 meters (Tilahun & Schmidt 171 

2012) (Figure 2). Ethiopia's climate is primarily composed of a tropical steppe or subtropical 172 

forest climate regime. Rainfall in the tropical zone is typically less than 510 mm per year and 173 

average annual temperature varies from 10 to 27 ° C;  , the subtropical zone, covering most of 174 

Ethiopia’s highlands, receives higher levels of precipitation (510 to 1,530 mm) (Hordofa et 175 

al. 2008; Mati 2006). Though agricultural planning is difficult due to variable rainfall, a large 176 

proportion of Ethiopia receives sufficient rain for crop production. The rainfall pattern in the 177 

north part of the country is generally bimodal, with a short duration rain period around March 178 

/ April and a second rain period beginning around June / July. In some areas, rainfall occurs 179 

primarily between June and October, representing more of a unimodal cycle. The primary 180 

cereal crops in Ethiopia are teff, maize (Zea mays) and wheat (Triticum aestivum Linn.). 181 
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Teff Distribution Data 183 

The distribution dataset contains 2490 verified, geo-referenced (latitude, longitude and 184 

altitude) data-points, including germplasms and herbariums from the Institute of Biodiversity 185 

Conservation's gene bank and the Ethiopian National Herbarium at Addis Ababa University. 186 

Teff was present in all sites over the nine Ethiopian regional state administrations, 187 

predominantly in the Oromia, Amhara, Tigray, the Southern Nations, and Harari regions, 188 

with only a few locations in Gambela, Beninshangul-Gumuz, and the Somali Region, and had 189 

no significant presence in Afar.  190 

 191 
Teff grows primarily in the highlands where clouds are forced to release rain. Teff optimal 192 

growing conditions are 430–560 mm of rain per year and a temperature range of 10–30°C 193 

(Roseberg et al. 2005). In Ethiopia, crops are mostly sown from June to October and 194 

harvested from September to February (Taffesse et al. 2012). The primary crop season 195 

corresponds to the summer rainy season, from June to August and in the autumn from 196 

September to November (Yumbya et al. 2014). Light rain also falls during the spring, from 197 

March through May. Some crops—only about 8% of total cropland—are harvested between 198 

March and August, making Ethiopia’s crop season somewhat bimodal (Hordofa et al. 2008; 199 

Mati 2006; Taffesse et al. 2012). 200 

Topographical data 201 

A digital elevation model (DEM) with 90m resolution was acquired from the US Geological 202 

Survey (www.srtm.usgs.gov) (USGS, 1996). Two terrain variables (aspect and slope) from 203 

the DEM were re-sampled into 1 km spatial resolution using nearest neighbor sampling in 204 

ArcGIS 10.5. The two topographical variables were used as model inputs.  205 
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Current and future climate data 206 

Climatic data consisting of 19 bioclimatic variables, here coded bio1 through bio19, were 207 

obtained from the WorldClim data repository.  Climatic data (1-km resolution) were collected 208 

for the study region for the period from 1950 to 2000 (http://www.worldclim.org/) (Fick & 209 

Hijmans 2017; Hijmans et al. 2005). The IPCC's Fourth Assessment Report projects future 210 

climate conditions under different scenarios (Metz et al. 2007). The data were produced by 211 

interpolation of data predictions for 2060 and 2080 to produce an estimate of climate 212 

condition for the year 2070. All four greenhouse gas concentration trajectories provided by 213 

the IPCC were used: Representative Concentration Pathway (RCP) 2.6, RCP 4.5, RCP 6.0, 214 

and RCP 8.0 (I.e., the four scenarios explained for the total radiative forcing values in 2100 215 

will be 2.6W/m2,4.5W/m2, 6.0 W/m2, and 8.5 W/m2 greater than in the preindustrial period) 216 

(Rong et al. 2019; Van Vuuren et al. 2011).  217 

To prevent the inclusion of redundant variables in the model, all 19 climatic variables were 218 

checked for independence via a correlation test. Correlated variables were removed leaving 219 

nine climatic variables with a high degree of independence, and two independent terrain 220 

variables (slope and aspect). We used the 2070 climate projections (the average data from 221 

2060 and 2080) as the basis for evaluating the effects different RCPs on teff cultivation.  222 

Each of the four RCPs represents possible pathways for greenhouse gas emissions, with 223 

emission peaks around 2020, 2040, 2080, and 2100 for RCP2.6, RCP4.5, RCP6.0, and 224 

RCP8.5, respectively. Under each RCP, the global surface temperature is expected to increase 225 

compared to 19th-century levels.  Average surface temperature is anticipated to increase by 226 

1.61, 2.41, 2.81 and 4.31 ° C by 2080, depending on the RCP scenario (Stocker et al. 2014).  227 

Climatic niche Modeling 228 

We used MaxEnt Version 229 

3.4.1(https://www.biodiversityinformatics.amnh.org/open_source/maxent) (Phillips et al. 230 
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2006) to simulate teff distribution across Ethiopia under the different climate scenarios. We 232 

used a default setting of 10,000 for the maximum number of background points; 0.00001 for 233 

convergence threshold, 500 for the maximum number of iterations, and 0.5 for default 234 

prevalence (Phillips & Dudík 2008; Wu et al. 2017); we used a 75%/25% split for training 235 

and test data. We used the 11 variables selected after correlation analysis (9 bioclimatic and 2 236 

terrains) as inputs in the MaxEnt model. We organized variables by Operating Characteristic 237 

Curve (AUC) values using the following five categories: 0.5–0.6 for very poor, 0.6–0.7 for 238 

poor, 0.7–0.8 for fair, 0.8–0.9 for good, and 0.9–1 for excellent (Suwannatrai et al. 2017; Wei 239 

et al. 2018), where the achievable minimum and maximum AUC values are 0 and 1 (Phillips 240 

& Dudík 2008). 241 

MaxEnt has been used by other researchers to model current and future teff distribution using 242 

presence-only data and machine learning methods (Elith et al. 2011). This approach is 243 

particularly useful for smaller datasets, compared to other modelling approaches (Phillips et 244 

al. 2006). Furthermore, it has been demonstrated to be equally accurate under past, current, 245 

and future scenarios (Hijmans & Graham 2006). The accuracy of the MaxEnt model output 246 

was evaluated using Receiver Operating Characteristic (ROC) analysis - which utilizes AUC 247 

values. ROC analysis identifies the occurrence of true positives relative to false positives.  248 

The accuracy of our model results was assessed by inspecting plots of true positive versus 249 

false-positive rates.  250 

RESULTS 251 

Variable Contribution Analysis 252 

The contribution and importance of each of the 11 variables were evaluated for each of the 253 

four climate scenarios (Table 1). The potential teff distribution under current projected 254 

climate change was significantly affected by Bio11 (78.3%), Bio15 (8.3%), Bio19 (3.7%), 255 

Slope (3.3%), Bio7 (2.2%), Bio4 (1.3%), and Bio3 (1.1%).  256 
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The potential teff distribution under the RCP2.6 scenario was influenced mainly by Bio11 258 

(79.7%), Bio15 (7.3%), Slope (3.2%), Bio19 (3%), Bio7 (2.6%), Bio3 (1.3%) and Bio14 259 

(1.1%). The significant variables under the RCP4.5 scenario were Bio11 (80.4%), Bio15 260 

(7.8%), Slope (3.5%) Bio19 (3.5%), Bio7 (2.3%), Bio3 (0.9%), and Bio14 (0.8%) and the 261 

potential teff distribution under RCP6.0 the most constrained scenario was by Bio11 (78.5%), 262 

Bio15 (7.8%), Bio19 (3.9%), Slope (3.1%), Bio7 (2.9%), Bio14 (1.4%), Bio3 1.3%), Bio2 263 

(0.5%), Bio18 (0.1%) and Aspect (0.1%). The potential teff distribution in the RCP8.5 264 

scenario was most strongly related to Bio11 (77.8%), Bio15 (9%) Bio19 (4.3%), Slope 265 

(3.1%), Bio7 (2.4%), Bio14 (1.5%), Bio3 (0.8%), Bio4 (0.4%), Bio2 (0.4%), and Aspect 266 

(0.1%). The Pearson’s correlation coefficients are included in the supplementary material 267 

(Table S1). 268 

Jackknifing was used to assess the relative importance of each variable for explaining teff 269 

distribution using the “leave-one-out” method (Peterson et al. 2011). The jackknife test 270 

indicated that Bio11, Bio14, Bio119, and Bio4 were among the most important variables 271 

(high gain) for explaining teff distribution. Potential teff distribution under current conditions 272 

was significantly affected by Bio11 (gain, 0.61), Bio14 (gain, 0.18), Bio19 (gain, 0.15), and 273 

Bio4 (gain, 0.12) (Fig. 3A). Potential teff distribution under the RCP2.6 scenario was also 274 

similarly impacted by a few key variables, Bio11 (gain, 0.62), Bio14 (gain, 0.18), Bio19 275 

(gain, 0.17), and Bio4 (gain, 0.13), respectively (Figure 3B). In RCP4.5, Bio11 (gain, 0.61), 276 

Bio19 (gain, 0.17), Bio4 (gain, 0.16), and Bio14 (gain, 0.14) were shown in Figure 3C. The 277 

variables most constraining the potential teff distribution under the RCP 6.0 scenario were the 278 

same as that under RCP 4.5 with similar gain except for Bio11(gain, 0.62), Bio4 (gain, 0.17), 279 

Bio19 (gain, 0.16), Bio14 (gain, 0.14) (Figure 3D). The potential distribution of the species 280 

under the RCP8.5 scenario was most strongly associated with Bio11 (gain, 0.59), Bio2 (gain, 281 

0.12), Bio19 (gain, 0.15) and Bio4 (gain, 0.13), respectively (Figure 3E). 282 



The response curves demonstrate the relationship between environmental variables and 283 

habitat suitability and provide information on factors important for cultivating teff. Suitability 284 

ranges for each environmental variable were identified by the threshold of the standard 285 

suitable habitats. Response curves of 8 primary variables explaining teff habitat suitability are 286 

illustrated in Figure 3. Habitat suitability for teff is highest in areas where mean temperature 287 

of the coldest season (Bio11) was 14-19 ◦C, annual precipitation seasonality (Bio15) was > 288 

60% but <122%, precipitation of the coldest season (Bio19) was 8.5-110mm, the slope was 0 289 

to 3◦, temperature annual range (Bio7, Bio5-Bio6) was 11.8 to 26.6 ◦C, temperature 290 

seasonality (standard deviation ×100) Bio(4) was 1000-1550, precipitation of driest period 291 

(Bio14) was 0.3mm to 20 mm, and isothermality (Bio3) above 68  and aspect from 355◦to 0◦ 292 

(Figure 4).  293 

Mean cold-season temperature (Bio11) contributed the most to the model by far, at 78.3%. 294 

The geography of Ethiopia results in a high correlation between rainfall and temperature, due 295 

to western highlands that shape a rain shadow in the eastern half of the country (Dinku et al. 296 

2008; Gebrechorkos et al. 2019; Gleixner et al. 2017), meaning that high precipitation has a 297 

negative relationship with temperature.  298 

Therefore, areas with higher temperature that do not correlate with suitable teff habitat lie on 299 

the eastern side of highlands, and those that do not correlate with higher temperature lie in the 300 

western lowlands (Figure 5).  301 

Mean cold-season temperature was not independent of the mean temperature of the warmest 302 

quarter or mean temperature of the driest quarter. Therefore, temperature generally had the 303 

greatest effect, especially during the growing season, which would logically be the highest. 304 

According to the literature (Evangelista et al. 2013), using a MaxEnt predictive model, teff 305 

distribution depended most on precipitation variables, especially precipitation of the wettest 306 

quarter, having permutation importance of 26.6%. Evangelista et al. (2013) used climatic 307 



variables only, without topographic data. In contrast, in our more comprehensive model, we 308 

found that the mean temperature of the coldest quarter was the most important variable, with 309 

permutation importance of 66.5% (Table 2).  310 

Accuracy of the MaxEnt Model 311 

AUC values were above 0.829 undercurrents and four projected climate scenarios (Table 3).  312 

Prediction accuracy of the MaxEnt model, based on classification standard, was very good; 313 

AUC values for training and testing were 0.84 and 0.83, respectively.  314 

Habitat Suitability  315 

Each teff distribution scenario (current and future RCP projections) from the MaxEnt model 316 

was mapped using ArcGIS 10.5, using the following categorized of teff cultivation 317 

suitability: unsuitable, low, moderate, and highly suitable (Figure 5). Under current climate 318 

conditions, the distribution area with moderate suitability was 296933 km2, low suitability 319 

463453 km2, and high suitability, 14513 km2. The total suitable area occupied 58% of our 320 

research area. In the four future projection scenarios, the total suitable area declined with 321 

climate warming in RCP4.5 and RCP scenarios 8.5 while it increased under other RCP 322 

scenarios (RCP2.6 and RCP6.0) and areas with warmer climate and more unsuitable for the 323 

teff were 774899 km2 (58%), 785957 km2 (58.8%), 770139 km2 (57.6%), 791085 km2 324 

(59.2%) and 767554 km2 (57.4%) under current, RCP2.6, RCP4.5, RCP6.0 and RCP8.5 325 

scenarios, respectively (Table 4). The percentage of the suitable area was 58.8%, 57.6%, 326 

59.2%, and 57.4% of the total research area under the four projection scenarios RCP2.6, 327 

RCP4.5, RCP6.0 and RCP8.5, respectively. A substantial difference was found between the 328 

current suitable area and the predicted suitable area under RCP 2.6 and 6.0 (Figure 6). 329 

Specifically, the area of suitable teff habitat increased in both RCP 2.6 and 6.0 while 330 

significantly decreased in RCP 4.5 (-4760 km2) and RCP 8.5 (-7345 km2) (Table 4).  331 



Surprisingly, projected loss of suitable habitat did not correlate with increasing projected 332 

radiative forcing. Rainfall projections indicate that, rather than an overall increase or decrease 333 

in volume, the primary precipitation change in Ethiopia will be a decrease in rainfall 334 

consistency. That means that year-to-year projections will capture that variation, and is 335 

reflected in the projected higher losses under RCP 4.5 and RCP 8.5. As a result, the range of 336 

projected losses should be taken as a possibility under multiple scenarios, and not as an 337 

indication that higher, rather than lower radiative forcing is better.  338 

The area of suitable habitat between moderately and highly suitable areas remained roughly 339 

the same in each future scenario. Taking the ratio of highly suitable habitat to moderately 340 

suitable habitat, the largest projected deviation was under the RCP 4.5 scenario, resulting in a 341 

relative decrease of highly suitable area, while the other scenarios indicated a slight increase 342 

of highly suitable, relative to a moderately suitable area. 343 

Unsuitable area under future climate conditions declines in RCP 2.6 and RCP 6.0 compared 344 

to the current unsuitable area while it rises in RCP4.5 and RCP 8.5. Also, low suitability 345 

areas decrease under RCP 2.6, RCP 4.5 and RCP 8.5 while they increase under the RCP 6.0 346 

scenario. Moderate suitability areas increase in RCP 2.6, RCP 4.5 and RCP 6.0 but decline in 347 

RCP 8.5. Again, high suitability areas compared with the current situation increase in area in 348 

RCP 4.5, RCP 6.0 and RCP 8.5 but not RCP 2.6 scenario (Table 4). 349 

On the regional scale, the largest projected shifts in habitat suitability occur in the northwest 350 

corner of the country under the most extreme radiative forcing case of RCP 8.5, where a 351 

patch of currently unsuitable area becomes moderately suitable. Despite this single projected 352 

increase in area, overall, suitable land area is expected to decline under RCP 4.5 and RCP 353 

8.5, including a decrease in total moderately suitable land. The result of a shift in suitable 354 

land towards the west and away from the east contrasts with the path of rainclouds travelling 355 

from west to east (Figure 5). 356 



Based on the current teff distribution, low suitability areas accounts for 46.88%, moderately 357 

suitable 30.03%, and highly suitable 1.47%, making a total suitable area of 78.38%. In 358 

RCP2.6, low, moderate, and high suitability areas account for 46.84%, 31.34%, and 1.33% of 359 

the actual teff distribution area, respectively. Therefore, proportional areas for the current and 360 

RCP2.6 scenarios are very similar. In RCP4.5, the proportion in low suitability decreases, but 361 

increases in moderate and high suitability proportions compared with RCP2.6. In RCP6.0, 362 

low and moderately suitable proportions are similar, and a little higher than in the highly 363 

suitable class. In RCP8.5, the proportions are similar to RCP6.0 but slightly lower in low and 364 

moderate, and higher in the highly suitable area (Table 5). Therefore, the proportion of highly 365 

suitable area will increase with warming, but areas of low and moderate suitability will 366 

remain somewhat similar. 367 

DISCUSSION 368 

Future climate scenarios RCP 2.6 and RCP 6.0 provided the most favorable conditions for 369 

maintaining suitable teff habitat. However, of the two scenarios, RCP 2.6 resulted in a greater 370 

loss of highly suitable habitat, thus projections from RCP 6.0 show the highest preservation 371 

of total potential crop area. While climate change is likely to affect rainfall consistency in the 372 

region, the geography will continue to define rainfall locations. With inconsistent rainfall 373 

patterns, habitat suitability will change from year to year, which explains the up and down 374 

nature of our results under increasing radiative forcing.  375 

Evangelista et al. (2013) predicted a 350,000 km2 loss of suitable crop area by 2050. 376 

However, our results highlight different trends under different future climate change 377 

scenarios, some increasing, and others decreasing. In the Evangelista et al. (2013) model, 378 

rainfall was the primary climate driver (and not coupled with a mean temperature of the 379 

coldest season), so model outcomes were heavily dependent on the specific rainfall 380 

predictions of the climate data. We see a similar dependency here with predictions that do not 381 



correlate linearly with radiative forcing. The main difference in the models lies in the 382 

confidence of an environmental variable versus the prediction of a climatic variable.  383 

Previous research has shown that in some parts of Ethiopia, future teff distributional changes 384 

and yield would decrease due to climate changes. The expected average loss by 2050 was 385 

approximately 24% of the current suitable teff area (Evangelista et al. 2013). This prediction 386 

was based on a teff suitability area in 2050 having a low of 15 ◦C, and a high of 27◦C 387 

temperature, and a compensating increase in a minimum of 600mm and a maximum of 388 

1900mm rainfall, respectively. Previous studies in Ethiopia have demonstrated that rain-fed 389 

agriculture is heavily affected by changes in rainfall, temperature and seasonality  390 

(Alemayehu & Bewket 2017; Asfaw et al. 2018; Bewket 2009; Evangelista et al. 2013; Gebre 391 

et al. 2013; Seleshi & Zanke 2004; Worku et al. 2019). 392 

Currently in Ethiopia teff supply does not meet teff demand, and continued teff cultivation 393 

could worsen by the effects of climate change. Teff is an essential food in Ethiopia, thus any 394 

negative impact on suitable areas for its production, such as impacts due to climate change, 395 

have a direct impact on food security. Previous studies have used four environmental 396 

predictors to model teff suitability: precipitation of wettest quarter (Bio16), annual 397 

precipitation (Bio12), precipitation of the coldest quarter (Bio19), and precipitation 398 

seasonality (Bio15). Their permutation is 26.6% for Bio16 (AUC = 0.79), while our results 399 

show that the mean temperature of the coldest quarter (Bio11) has a permutation of 66.5%.  400 

This model includes six additional environmental predictors: Isothermality (mean diurnal 401 

range/temperature annual range (Bio3), temperature annual range (Bio7), precipitation 402 

seasonality (Bio15), slope, precipitation of coldest quarter (Bio19), and temperature 403 

seasonality (Bio4); the average test AUC for our model was 0.83. The highest permutation 404 

was Bio11, having a contribution of 66.5%. The second most important factor was 405 

precipitation of the driest period (Bio14). 406 
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Our model provided reasonably strong AUC predictions for models of teff distribution in 408 

Ethiopia under different climate projections. Our model adequately predicted current teff 409 

conditions thus indicating our approach was sufficiently robust to model teff suitability under 410 

future scenarios. We used the MaxEnt model to show current teff distribution and to predict 411 

future climate impacts on it. Teff crop distribution differs by geographical setting in Ethiopia, 412 

which our model shows in AUC test evaluation. Furthermore, the model relies on predicted 413 

future climate scenarios. Yet literature (Barnett et al. 2000) suggests that the model should 414 

integrate multiple realization form climate and literature (Cheng et al. 2017) concluded that 415 

though bioclimatic models have a number of benefits, they need to be implemented.  416 

Climate change affects the teff crop distribution both in current and future scenarios. 417 

Moreover, results show that the differing future distributions are not consistently affected by 418 

predicted changes in climate. Overall, data indicates that teff crop potential area decreased 419 

from 41% to 27% by climate change in Ethiopia (Tan et al. 2016). Moreover, the predicted 420 

future damage is so severe that the existence of the Ethiopian agricultural sector, in which 421 

teff, one of a staple food in the country, will be at stake unless adaptive policies are 422 

implemented. Many East African countries are facing the erratic effects of climate change, of 423 

which Ethiopia is one (Deressa & Hassan 2009; Di Falco & Veronesi 2013).  424 

We should have considered including management, soil and other teff varieties which grow 425 

in Ethiopia in our model analysis. However, it wasn’t easy to find these data for our research. 426 

While we strongly believe that our research could be improved by including management of 427 

farming practice and preparation for teff harvesting components, we believe that the lack of 428 

soil and other data in our analysis did not affect the results.  429 

Teff has been a critical agricultural product historically, and will likely continue to be 430 

important for food security in Ethiopia. Teff is highly nutritious and is tolerant of extremes 431 

such as drought, waterlogging, pests, and diseases (Cheng et al. 2017). Ultimately, several 432 

Commented [KOH23]: ?? revise 

Commented [KOH24]: not at all? Perhaps it’s better to say 
“did not significantly affect the results” 



studies and our own research results show it is necessary to understand the impact of climate 433 

change on teff distribution – such information is key for informing policymakers and 434 

implementing adaptive management to minimize the impact of climate change.  435 

CONCLUSIONS 436 

Climate change does not pose a substantial threat to the future ability to grow teff as a staple 437 

crop thanks to its ability to grow in an extensive range of conditions. A total projected loss of 438 

8,000–17,000 km2 of suitable habitat for growing teff due to climate change is undesirable, 439 

but ultimately not catastrophic. We recommend using the average temperature of local 440 

growing seasons for crop projections in agricultural modelling.  441 

However, suitable teff habitats defined only by environmental parameters do not account for 442 

physical accessibility to areas, nor sociopolitical effects on land access. Suitable crop areas 443 

still need to be a protected resource, as other changes may indirectly affect total available 444 

land area. For example, increasing average temperature is expected to expedite population 445 

migrations to urban areas. Addis Ababa lies squarely within the suitable habitat for teff, and 446 

an increased population there may require a shift in neighboring land from agricultural to 447 

urban use. Advanced planning to ensure functional urban density and enforcement of land use 448 

regulations is recommended. 449 

Our model presents an opportunity for the agricultural sector, modeler’s and policymakers to 450 

examine the effect of climate change on teff to inform development of strategy and policy to 451 

minimize negative impacts. In Ethiopia today there remains widespread cultural food 452 

insecurity, but the country depends on these cereals as a staple food. Policymakers should pay 453 

attention to areas with low habitat suitability and resilience for teff, and implement a strategy 454 

to foster diversification to avoid over-reliance as it is important to maintain nutrition and 455 

sustainable food security for the Ethiopian people. 456 
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 658 

Table captions 659 

Table 1. Percent contributions of the variables to teff distribution in the MaxEnt model.  660 
Note: The variables in bold were key variables selected by their contribution rates and 661 

multicollinearity test. RCP: (Representative Concentration Pathway). 662 

Table 2. Estimates of relative contributions and permutation importance of the predictor 663 

environmental variables to the MaxEnt model. 664 

Table 3. Results of receiver operating characteristic (ROC) analysis under current climate 665 
and four future projected scenarios. 666 
 667 
Table 4. The total area of suitable and unsuitable teff habitats based on current distribution 668 
data and projected four future climate scenarios.  669 

Table 5. Area of teff distribution in different classes under current and projected climate 670 
scenarios and ratios of the area to current actual teff distribution area 671 
 672 

Figure captions 673 

Figure.1 Left: The crop teff, a fine-grain annual cereal. (Source: FAO 674 
http://www.fao.org/traditional-crops/teff/en/) Right: Injera made from teff is a staple food 675 
product in Ethiopia.  676 
 677 

Figure 2. Locations of sampling sites and land elevation within the nine Ethiopian regional 678 
state administrations: Oromia, Amhara, Tigray, Afar, Benishangul-Gamuz, Gambella, Harari, 679 
Southern Region, and Somali Region. 680 

Figure 3. Jackknife test variables contributions to potential distribution of teff distribution 681 

under (A) current climate condition scenario, (B) RCP 2.6 scenario, (C) RCP 4.5 scenario, 682 

(D) RCP 6.0 scenario, and (E) RCP 8.5 scenario. (The regularized training benefit explains 683 



how much better the simulated distribution is compared to a uniform distribution that 684 

matches present data. The dark blue bars indicate the gain from using each variable in 685 

isolation, the light blue bars indicate the gain lost by removing the single variable from the 686 

full model, and the red bar indicates the gain using all of the variables).  687 

Figure 4. Response curves of 8 environmental variables in the teff habitat distribution model. 688 

Bio11: Mean temperature of the coldest season (°C*10); Bio15: Precipitation seasonality 689 

(CV); Bio7: Temperature annual range (Bio5–Bio6); Bio19: Precipitation of coldest season 690 

(mm*10); Bio14: Precipitation of driest period (mm*10); Bio3: Isothermality 691 

(Bio2/Bio7×100); Bio4: Temperature seasonality (standard deviation×100) (°C*10); Slope 692 

(º). 693 

Figure. 5 Average annual rainfall (left) and average annual temperature (right) in Ethiopia 694 
over three decades. 695 

Figure 6. Distribution of unsuitable, and low, moderate, and highly suitable teff habitats 696 

based on current distribution and under four future climate scenarios. 697 

Supplementary table 698 

Supplementary table S1. Correlation of environmental variables. Variables bio2, bio3, 699 

bio4, bio7, bio11, bio14, bio15, bio18, and bio19 were deemed independent and used in 700 

subsequent analyses. 701 

 702 
Pearson’s correlation coefficient attached (see Table S1) 703 


