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In this study, we evaluated the interactive effects of temperature, pH, and nutrients on the
photosynthetic performance in the calcareous tropical macroalga Halimeda scabra. A
significant interaction between these factors on P, was found. The highest values of P,

were reached at the highest temperature, pH, and nutrient enrichment tested. The Q,,

P,..ssvalues confirmed the effect of temperature only under nutrient enrichment scenarios.
Besides the above, bicarbonate (HCO;') absorption was assessed by the content of carbon

stable isotope (6*°C) in algae tissue and by its incorporation into photosynthetic products,
as well as by carbonic anhydrase (CA) inhibitors (Acetazolamide, AZ and Ethoxyzolamide,

EZ) assays. The results of 6°C revealed this species uses both, CO, and HCO, forms of C,

relying on a CCM. These results were validated by the EZ-AZ inhibition assays in which
photosynthesis inhibition was observed, indicating the action of internal CA, whereas AZ

inhibitor did not affect P,_,. The incorporation of °C isotope into aspartate in light and dark

treatments also confirmed photosynthetic and non-photosynthetic the HCO, uptake.
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ABSTRACT

In this study, we evaluated the interactive effects of temperature, pH, and nutrients on the
photosynthetic performance in the calcareous tropical macroalga Halimeda scabra. A significant
interaction between these factors on Pg,,. was found. The highest values of Py, were reached at
the highest temperature, pH, and nutrient enrichment teste .. The Q¢ Py, values confirmed the
effect of temperature only under nutrient enrichment scenarios. Besides the above, bicarbonate
(HCOj") absorption was assessed by the content of carbon stable isotope (8'3C) in algae tissue
and by its incorporation into photosynthetic products, as well as by carbonic anhydrase (CA)
inhibitors (Acetazolamide, AZ and Ethoxyzolamide, EZ) assays. The results of 8'3C revealed this
species uses both, CO, and HCOj;™ forms of C; relying on a CCM. These results were validated
by the EZ-AZ inhibition assays in which photosynthesis inhibition was observed, indicating the
action of internal CA, whereas AZ inhibitor did not affect P,,,,.. The incorporation of 13C isotope
into aspartate in light and dark treatments also confirmed photosynthetic and non-photosynthetic
the HCO; uptake.

Key index words: Carbonic anhydrase, CCM, 13C isotope, 8'3C, Halimeda scabra, interactive
effects, nutrients, pH, photosynthesis, Q;y, temperature.

INTRODUCTION

Kis-knewn-that photosynthetic parameters respond faster to environmental changes than
algae C and N content, hence it usefulness in short-term studies (Figueroa et al., 2009).
Photochemical and biochemical reactions of photosynthesis continually respond to
environmental conditions. Irradiance, temperature, and nutrient concentration including CO,
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levels are among the main environmental factors limiting photosynthesis (Raven & Hurd, 2012;
Zweng, Koch & Bowes, 2018). Algal ecophysiology studies have traditionally quantified
temperature dependence using the metabolic quotient Q,, which describes the metabolic
increase accompanied by an increase of 10°C in an optimal temperature range (Bruno, Carr &
O’Connor, 2015; Vasquez-Elizondo & Enriquez, 2016). This quotient Q;,has also been used as a
proxy to analyze the effect of temperature on nutrient absorption where it was found that by
doubling the temperature the rate of nutrient absorption is doubled (Harrison & Hurd, 2001).

For aquatic plants, another limiting factor for photosynthesis is CO,, since it is the only
source of carbon that can be assimilated by the Ribulose 1,5 bisphosphate carboxylase oxygenase
enzyme (RuBisCO) (Falkowski & Raven, 2007). At seawater pH (8.1 — 8.3) CO, is only between
0.5 — 1% of all dissolved inorganic carbon, while more than 91% is in the form of HCO; and the
remaining 8% is in the form of CO;?- (Hurd et al., 2009; Diaz-Pulido et al., 2016). Moreover,
since the diffusion of CO, through the cell membrane is slower in water than in air; many algae
and higher plants have acquired mechanisms that promote intracellular CO, accumulation,
allowing photosynthetic organisms to reduce carbon limitation by increasing the concentration of
CO;, in the vicinity of RuBisCO (CO, Concentration Mechanisms, CCM). Parallel to this,
CCM’s contribute to decreasing photorespiration due to the oxygenase activity of RuBisCO
(Ogren, 1984; Enriquez & Rodriguez-Roman, 2006; Cornwall, Revill & Hurd, 2015). In general,
most algae can acquire inorganic carbon (C;) for RuBisCO through diffusion and active
absorption of both, CO, and HCO;" (Badger & Price, 1994; Giordano, Beardall & Raven, 2005;
Hurd et al., 2009). In many cases, the activity of CCMs has been associated with the direct or
indirect use of HCO5™ (Reiskind, Seamon & Bowes, 1988; Invers et al., 2001; Enriquez &
Rodriguez-Roman, 2006). Some macroalgae convert bicarbonate (HCO5") into CO,
extracellularly with carbonic anhydrase (CA) thus CO, enters the cell by active transport or
diffusion. Other algae incorporate HCOj;™ actively through the cell membrane and, intracellularly,
an internal CA converts HCOj3™ into CO, (Badger & Price, 1994). The activity of carbonic
anhydrases has been widely documented in algae (Reiskind, Seamon & Bowes, 1988; Invers,
Perez & Romero, 1999; Enriquez & Rodriguez-Roman, 2006) and plays a significant role in
CCM’s.

Many studies have been-performed-to-explain the combined effects of environmental
variables on algae photosynthetic responses: CO, and temperature (Campbell et al., 2016; Kram
et al., 2016; Vasquez-Elizondo & Enriquez, 2016); CO,; and light (Vogel et al., 2015); light and
nutrients (Zubia, Freile-Pelegrin & Robledo, 2014); CO, and nutrients (Hofmann et al., 2014;
Hofmann et al., 2015; Bender-Champ, Diaz-Pulido & Dove, 2017); CO,, nutrients, and
temperature (Stengel et al., 2014), and CO,, nutrients and light (Celis-Pla et al., 2015). Multiple
stressors could have an interactive influence causing complex responses at the physiological and
ecological level (Hofmann et al., 2014), which makes them difficult to interpret. Therefore,
studies that combine ocean acidification scenarios with other factors such as temperature, light,
and nutrient availability are particularly necessary since changes in these parameters are co-
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occurring with changes in carbonate chemistry in the seawater (Harley et al., 2012; Hofmann et
al., 2014).

Halimeda is a calcifying genus of siphonous green algae (Bryopsidales, Chlorophyta)
which are important components of tropical and subtropical reefs and lagoons. Some species of
this genus often appear dominating Caribbean coral reefs (Beach et al., 2003; Hofmann et al.,
2014) where they contribute as primary producers, food source and habitat, sand production, and
coral-reef formation. Halimeda scabra Howe is particularly abundant in the front reef and
shallow rocky areas of the Caribbean Reefs (Alcolado et al., 2003). Despite the ecological
studies above-mentioned, to our knowledge, no previous physiological studies have been
reported for this species.

Photosynthetic responses to the combined effect of environmental variables have been
studied in some Halimeda species, for example in H. opuntia, the effect of nutrients and pH
(Hofmann et al., 2014; Hofmann et al., 2015), in H. incrassata and H. simulans the effect of pH
and temperature (Campbell et al., 2016), and in H. opuntia the effect of pH and light (Vogel et
al., 2015). These studies have suggested that an increase in both, CO, (low pH) and temperature
could have a positive synergistic effect on photosynthetic rates (Kram et al., 2016). However,
Halimeda responses to high CO, have been diverse; while in some species a decrease in
photosynthesis rates with the reduction of pH has been observed (Price et al., 2011; Sinutok et
al., 2012; Meyer et al., 2016) others have shown the opposite effect (Peach, Koch &
Blackwelder, 2016) or a lack of a significant response (Price et al., 2011; Campbell et al,. 2016).
In general, there are still insufficient studies on the physiology of the genus Halimeda that allow
us to understand the diversity of physiological responses to the interactive effects of
environmental variables and the mechanisms involved in those responses.

In this study, we kypethesize that a synergistic increase in environmental factors
(temperature, pH, and nutrients) enhkanees H. scabra photosynthesis, which absorbs bicarbonate
supported by a CCM. We evaluate the interactive effect of temperature, pH, and nutrient ratios
on photosynthetic responses of H. scabra. Additionally, we determined the Ci uptake
mechanisms by measuring the effect of CA inhibitors on P,,,, analyzing 6'3C values, and
evaluating the incorporation of stable isotope 13C into resulting products of photosynthesis.

MATERIALS AND METHODS
Biological material and culture conditions

H. scabra was collected in February 2017 in Xcalacoco, Quintana Roo, Mexico
(20.660035 N, -87.034655 W), where it grows over rocky substrates between 1.5 and 2.0 m
depth. Its taxonomic determination was done according to Hillis-Colinvaux (1980). The algae
were transported to the laboratory inside Ziploc bags under reduced tc 1111 erature. At the
laboratory, samples were cleaned with seawater to remove epiphytes and placed in 12 L
aquarium with filtered seawater (36 PSU, pH 8.2) and kept under constant aeration at 24°C ef
temperature: [rradiance was set at 115 umol photons m s! provided by fluorescent lamps under
a 12:12 hours light-dark photoperiod.
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Photosynthetic measurements

Photosynthetic responses were evaluated by the light-dark bottles method following the
oxygen evolution versus irradiance (P-E curves) according to Thomas (1988) using a YSI 5000
Dissolved Oxygen Meter with YSI 5905 BOD Probe (Y SI Incorporated Yellow Springs, Ohio,
USA). To minimize wound effects, thalli were cut off and weighed 24 hours before oxygen
determinations. Apical fragments (0.1 ¢! v-ere placed in 60 ml Biological Oxygen Demand
(BOD) bottles (n = 8), one bottle was used as a blank filled only with filtered seawater. The algae
were exposed during one hour to each of seven successive irradiances selected (0, 100, 170, 200,
272,436, 770 umol photons m s'') generated by a 500 W halogen lamp and using different
mesh size filters until darkness. The temperature was maintained constant placing the BOD
bottles in a water bath connected to a water recirculation system (Cole-Parmer® Polystat®
Refrigerated Recirculator, USA). Irradiances were measured with a spherical underwater
quantum sensor (LI-193SA) connected to LI-1500 Light Sensor Logger (LI-COR, Nebraska,
USA). The maximum photosynthesis rate (P,,,,) was calculated as the average of the three
highest oxygen production values at saturation irradiances. The dark respiration rate (R;) was
determined as oxygen consumption in total darkness, while the gross photosynthesis (Pg,,) was
determined as net photosynthesis plus light and dark respiration) (Alberte, Hesketh & Baker,
1975). At the end of each assessment the dry weight (DW) was determined, whereby the results
were expressed as mg of oxygen g dry weight h-! in 300 ml. All determinations were performed
using Instant Ocean® synthetic seawater (Marineland, USA), free of nitrate and phosphate
except for nutrient ratio experimental treatments.

To test the effect of temperature, pH, and nutrient concentration ratios on H. scabra
photosynthesis, a three-factorial design with 36 combinations was used (Zar, 1996) (Table S1).
The following factors and levels were tested: 1) temperature at three levels (24, 28 and 33°C); 2)
pH at three levels (7.5, 8.2, and 8.6) obtained by addition HCI/NaOH, and 3) nutrient ratios
(KNO;:K3PO,) evaluated at four levels: low (1:0.1 uM), medium (5:0.5 pM), high (10:1.0 uM)
and 4) a non-enriched level used as a control treatment. Nutrient ratios and pH values were
selected according to prevailing conditions measured at the collecting site, whereas seawater
temperatures correspond to mean values found during contrasting seasons (~24°C February —
~30°C August) (Robledo & Freile-Pelegrin, 2005; Rodriguez-Martinez et al., 2010).

Effect of temperature on Pg.ss. photosyntheticQ,, coefficient

To better understand photosynthetic responses to temperature we calculated the
photosynthetic quotient ;9 of Pg, under different pH and nutrient conditions. The
photosynthetic quotient was determined as the change in the photosynthetic rate within a rise in
temperature of 5°C, from 28°C (T1) to 33°C (T2) according to the following formula:
0,0 = (Rate 2/Rate 1) (10/T2-Th
where, Rate 1 and Rate 2 were reaction rates measured at temperatures T1 and T2, respectively
(Wernberg et al., 2016).

Inorganic carbon pathways
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Bicarbonate (HCOj5) uptake for photosynthesis were assessed through three techniques:
(1) carbon stable isotope (8!3C) values in algal tissue (2) CA inhibitor effects on P, and (3) 3C
stable isotope uptake and its incorporation into resulting products of photosynthesis.

Carbon stable isotope (8'3C) values in tissue from field samples

Whole thalli were carefully washed and decalcified in hydrochloric acid (HCI) at 0.6 M
for 8 hours, with hourly changes until full bubbling cessation. Afterward, the material was rinsed
with distilled water and dried for 24 hours at 70°C. The dried material was ground in a mortar
and sieved. Samples of five mg were weighed on analytical balance (precision of 0.0001 g) and
individually packaged in microcapsules (5 x 9 mm) for mass spectrophotometer isotopic analysis
in the Stable Isotropy laboratory at the University of California at Davis, CA, USA.

Carbonic anhydrase inhibition assays

Two CA inhibitors were used in this study: a) dextran-bound acetazolamide (AZ) that
does not penetrate into the cell and only inhibits extracellular CA (Bjork et al., 1992), and b) 6-
ethoxyzolamide (EZ) that penetrates through the cell wall and membranes, and inhibits both
external and internal CA (Bjork et al., 1992). AZ and EZ were dissolved in 0.05 N NaOH to a
final concentration of 0.1 g ml-! and 10 mM respectively (Bjork et al., 1992). Experimental
treatments were prepared with filtered and sterilized seawater from the collecting area. The
inhibitors were added to the experimental seawater before the incubations to obtain a final
inhibitor concentration of 100 pM (Bjork et al., 1992). Photosynthesis rates were tested under
four treatment; 1) addition of AZ; 2) the addition of EZ; 3) the combination of both, AZ and EZ
and 4) a control treatment with seawater without inhibitors. Maximum photosynthesis (P-E
curves) was measured as previously described but at 28°C of temperature.

13C Labeling for the incorporation of NaH'3CO; into photosynthetic products

Initially, inorganic carbon was removed from filtered and sterilized seawater by reducing
pH to ~ 4 adding HCI1 0.5 M and nitrogen bubbling for 5 hours, subsequently the pH was raised
to 8.2 adding NaOH 0.5 M (Invers et al., 2001; Zou, 2014). Afterward, 1.6 g L' of NaH!3CO;
(isotope 13C 99% Aldrich) was added. H. scabra thalli fragments (2 g) were placed in
hermetically sealed 250 mL BOD bottles containing seawater previously prepared with '3C
isotope and maintained for 24 hours at 28°C of temperature under light saturation (278 pmol
photons m~ s-). Three photoperiod treatments were selected: 1) 24 hours in light, 2) 12:12 hours
light:darkness, and 3) 24 hours in darkness. A control bottle containing seawater without 13C
isotope was used in each treatment. At the end of the incubations the algae were washed with
abundant seawater and rinsed with distilled water to remove the remains of the isotope that were
not absorbed, and later frozen and lyophilized. Lyophilized samples (0.6 g) were depigmented
twice in succession with methanol (100%) after that, low molecular weight carbohydrates were
extracted in distilled water for 24 hours. Finally, the supernatant was frozen and lyophilized to be
used in the NMR analysis.

3C-Nuclear Magnetic Resonance Spectroscopy (NMR) analyses
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To determine the incorporation of NaH'3COj isotope in photosynthetic products,
lyophilized samples (8 mg) were dissolved in 1 mL with 99.8% deuterium oxide (D,0). The
proton (13C) spectra were recorded on a Varian/Agilent Premium Compact 600 NMR
spectrometer (Palo Alto, CA, USA) at a frequency of 150.83 MHz using Sodium [3-
trimethylsilyl 2,2',3,3'-2-H4] propionate (TSP-d4) with internal reference to 0.00 ppm. All NMR
spectra were recorded at room temperature using the following parameters: scans = 50,000; 13C-
pulse width of 3.3 s, an acquisition time of 0.5 s, and a relaxation delay of 0.60 s.

Statistical analyses

To test the interactive effects of temperature, pH, and nutrient levels on Py, a three-
way ANOVA (3 x 3 x 4) was performed. A Two-way ANOVA analyzed the effect 4 09 Pgoss
onpH-andnutrients. One-way ANOVA was applied to test for differences between different
inhibitor assays whereas Newman-Keuls post-hoc multiple comparisons were used to test
between treatments. All statistical tests and analyses were performed using the statistical package
Statistica™ 7. Before analyses, homogeneity of variance (Bartlett) and normality test
(Kolmogorov-Smirnov) were tested, and transformations were applied if necessary, to meet such
criteria.

RESULTS
Photosynthetic responses to the interactive effect of temperature, pH, and nutrient ratios
The three-way ANOVA showed a significant interactive effect of temperature, pH, and
nutrients on H. scabra gross photosynthesis, Pgs (F12;216= 4.57, p = 0.000) (Fig. 1; Table S2).
The highest Py, values (1.83 mg O, g DW h'!) were obtained at the highest nutrient ratie
(10:1.0 uM) under elevated temperature (33°C) at a pH of 8.6 and in the control treatment (no
nutrients added) at 33°C but, at the lowest pH (7.5) (Pgy05s = 1.78 mg O, g DW h!). In contrast,
the lowest P, were observed in &l treatments at the lowest temperature. In general, H. scabra
photosynthetic rates were higher at the highest temperature tested regardless of the nutrient or pH

levels;

Effect of temperature on Pgy,oss (Q10 Pgross)

The two-way ANOVA showed a significant effect of the nutrient levels on the Pgr. 010
Pyross (F2,54=6.721, p = 0.002). This effect was more pronounced with the highest nutrient
concentration (Q;y = 2.42) and decreased gradually as nutrient concentration decreased, from
1.75 to 0.75 in medium and low nutrient concentration, respectively. Fhe pH and its interaction
with nutrient levels did not show any significant effect on the O,/ calculated values (Table 1).

HCO;  Uptake

d13C value found in H. scabra was ef -23.9%o suggesting uptake of both HCO;™ and CO,,
and the presence of a CCM. The carbonic anhydrase assays corroborate the latex; since the
presence of EZ caused a significant inhibition (22.2%) of maximum photosynthesis rates P,
(F3,80 = 18.674, p = 0.000) whereas the combination of both inhibitors produced a similar effect
to that found with EZ (Fig. 2).

Peer] reviewing PDF | (2020:11:55374:0:0:NEW 11 Nov 2020)


Cross-Out

Inserted Text
of pH and nutrients on

Cross-Out

Cross-Out

Inserted Text
concentrations

Cross-Out

Inserted Text
most

Low and medium nutrient level treatments had lowest Pgross at intermediate temperatures.

Cross-Out

Inserted Text
levels, except for the low nutrient treatment, which had high Pgross at the lowest temperature for all pH treatments.

Cross-Out

Cross-Out

Cross-Out

Cross-Out

Cross-Out

Comment on Text
The del13C .....

Comment on Text
Is this a mean value?  If so add SE.

Cross-Out

Inserted Text
latter

Sticky Note
You should include that your assays indicate that the CA is internal since there was no effect of AZ on Pgross.


PeerJ

230
231
232
233
234
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Incorporation of '3C into products of photosynthesis

13C isotope labeling in H. scabra observed by signal multiplicity (coupling) also showed
bicarbonate uptake, since 13C isotope was incorporated into an amino acid akin to aspartate in the
three photoperiod treatments analyzed. The incorporation in darkness indicates a non-
photosynthetic earbexylation-by B-carboxylation. Aspartate also appears in the three control
treatments (simple decoupled signal) highlighting its abundance in the species (Fig. 3).

DISCUSSION

The results of our work support the hypothesis that a synergistic increase in pH,
temperature, and nutrients enhances H. scabra photosynthesis. An increase in temperature could
enhance Py, at high pH if there 15 sufficient avatlability-ef nutrients. Environmental conditions
of high seawater temperature (Robledo & Freile-Pelegrin, 2005; Rodriguez-Martinez et al.,
2010), alkaline pH seawater likely because of the karstic origins of the Yucatan Peninsula
(Cejudo et al., 2020) and, pulsatile nutrient enrichment due to the submarine groundwater
discharge (Hernandez-Terrones et al., 2015), are common in Quintana Roo coastal areas where H
scabra and other Halimeda species colonize sueeessfully shallow environments. Conversely, the
interactive effect of decreasing pH (low and medium) with increases in temperature and nutrient
enrichment kept Py, below its potential eapaeity-and-thus, potential deleterious effects on /.
scabra performance are expected to occur under future scenarios of ocean acidification, global
warming, and their complex interactions with nutrient enrichment due to the continuous coastal
development in the area.

In agreement with our results with H. scabra, significant reductions in gross
photosynthetic rates have been reported for H. macroloba and H. cylindracea when exposed to
elevated CO, combined with elevated temperature, showing an additive negative effect (Sinutok
et al., 2012). In contrast, for H. incrassata, H. simulans, and H. opuntia no significant effects in
net photosynthesis were reported for the interactions between, species, pH, and temperature
(Campbell et al., 2016). While, in H. opuntia no interactive effect of CO, and nutrient
enrichment on net photosynthesis was found (Hofmann et al., 2015).

Regardless-the-interpretation-and-itsrobustaess; the photosynthetic responses to the
interactive effects of several environmental variables are complex since, in addition to the factors
being evaluated, the physiological mechanisms could be responding to other interrelated
processes that were not assessed during assays. For example, Campbell et al. (2016) found in
three Halimeda species that photosynthesis was positively correlated to calcification rates and,
an increase in temperature increased activity of both processes. In this context, processes with
high carbon requirements such as calcification could indirectly stimulate photosynthesis
(Carvalho & Eyre, 2017), generating protons that are used to facilitate the absorption of nutrients
and bicarbonate (McConnaughey & Whelan, 1997). The reduction of NO5™ to NH," is another
process with high energy requirements (Ale, Mikkelsen & Meyer, 2011), and it is related to
carbon fixation (Cabello-Pasini & Figueroa, 2005) so it is likely to be more plausible to affect
photosynthesis rather than calcification since the latter appears to be more dependent on
photosynthetic activity of many calcifying primary producers. Fhe nutrient enrichment supported
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a rapid increase in the physiological performance of H. opuntia (Teichberg, Fricke & Bischof,
2013). Therefore, the photosynthetic increase found with the nutrient addition (KNO;3:K3POy,) in
our experiments could be the result of its effect on processes related to nutrient uptake and these,
to photosynthesis. Moreover, it is also known that nutrient uptake rates increase with temperature
increases (Harrison & Hurd, 2001), consequently, our results not only are a response to the
interactive effect of environmental factors but also, the result of the direct and indirect response
of other metabolic processes on photosynthesis.

Temperature is a significant factor controlling metabolic rates, including photosynthesis;
increasing temperature increases linearly photosynthetic rates up to an optimum rate, beyond this
thermal threshold rates, tend to decline (Bruno, Carr & O’Connor, 2015; Vasquez-Elizondo &
Enriquez, 2016). It is generally accepted that O,y values greater than 2 characterize an active
nutrient absorption process across cell membranes, while Q) ~ 1 values describe passive
processes that are not greatly affected by temperature (Lobban & Harrison, 1994). According to
this, our calculated Q)¢ Pg,., fat-between the range of active nutrient absorption, expected by
organisms living in highly illuminated habitats and with high elevated metabolic activity
(Vasquez-Elizondo & Enriquez, 2016).

On-the-other-hand;-the-earbonpathway, can influence the isotopic composition of organic
matter. Values of 6'3C between -30 and -10% indicate both HCO; and CO, active uptake and
species who fixation fall within this range are classified as species with active CCM (Maberly,
Raven & Johnston, 1992; Raven et al., 2002; Diaz-Pulido et al., 2016; Bender-Champ, Diaz-
Pulido & Dove, 2017). Fhe species with 8'3C signatures between —32% and —22% are considered
as C3 plants while 8'3C between —16% and —10% are typical for C4 plants (Rautenberger et al.,
2015; Valiela et al., 2018). Considering these ranges and the results obtained in this work, H.
scabra could be classified as a C3 plant with a CCM that uses both, HCO3™ and CO, as a
resource of C; for photosynthesis. The 8'3C values of H. scabra found within this study are in the
range of those reported in other Halimeda species, such as H. opuntia (Zweng, Koch & Bowes,
2018), H. tuna (Duarte et al., 2018), and, H. digitata and H. opuntia (Vogel et al., 2015a).

Additionally-te-this; the extracellular CA inhibitor (AZ), did not show any adverse effect
i photosynthesis, evideneing-a-direct-entraneg of HCO;5  while a significant reduction in P,
with EZ, validated-the HCOj; uptake and the presence of a CCM (Badger et al., 1998) along with
the role of internal CA (Badger & Price, 1994). The reduction of photosynthesis under the
activity of EZ was only about 22.2% relative to control samples, likely because there was still
enough CO, in the proximity of RuBisCO allewing to maintain photosynthesis fullyfunetional.
The available CO, may come from the following alternatives: (1) as the result of a CCM; (2)
phoetesynthesisused respiratory CO, (Borowitzka & Larkum, 1976); (3) CO, was supplied from
its-aceumulation interutricular spaces, although this source is not sufficient to sustain
photosynthesis (De Beer & Larkum, 2001); and (4) by CO, diffusion from both, the external
medium and the intercellular space (ICS) (Borowitzka & Larkum, +976; All the previous
explanations could maintain RuBisCO CO, saturated and minimize photosynthetic losses after
inhibiting intracellular CA. This suggests that inorganic carbon supply for photosynthesis in H.
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scabra does not depend entirely on the activity of the CA’s, and might be maintained by several
waysy which may be advantageous during adverse conditions. Bicarbonate (HCOj5") uptake has
also been found in H. discoidea, H. macroloba, and H. tuna (Borowitzka & Larkum, 1976),
while the lack of extracellular CA has been found in H. discoidea (De Beer & Larkum 2001) and
H. cuneata f. digitate (Hofmann et al., 2015a).

Some Halimeda species possess CCM and use bicarbonate as an alternate source of
inorganic carbon for photosynthesis (Borowitzka & Larkum, 1976; Price et al., 2011). Therefore,
this ability may also be responsible for P, enhancement under elevated temperature observed
in this study in H. scabra through a decrease in photorespiration (Ogren, 1984). According to
Giordano, Beardall & Raven (2005), the number of resources that a cell invests in acquiring
carbon through a CCM is likely to be coupled with the availability of nutrients. This could also
explain the increase in Py, observed at the highest nutrient ratio since most CCM’s require the
de novo synthesis of specific proteins, which represents a demand for cellular nitrogen
(Giordano, Beardall & Raven, 2005). The low oxygen production observed at low pH (under
high nutrient concentrations) in H. scabra could be a delay in the induction of the CCM relying
on passive diffusion of CO, alone, thus leading to reduced efficiency of carbon assimilation
(Price et al., 2011; Cornwall et al., 2012; Meyer et al., 2016).

In thls study, H. scabra 1ncorporated 13C isotope into aspartate in the three photoperiod
treatments demenstrating NaH'3CO; assimilation phetesynthetie-and-non-phetesynthetie.
Moreover, the incorporation of 13C isotope in aspartate in 24-hour darkness treatment indicates
B-carboxylation which facilitates a metabolic alternative to inorganic carbon carboxylation
resulting in an important contribution to CCMs (Raven & Osmond, 1992; Enriquez &
Rodriguez-Romén, 2006). In-general; -carboxylation has multiple functions for algal
metabolism such as providing essential compounds for growth that cannot be produced
photosynthetically (Falkowski & Raven, 2007). Carbon fixation of these compounds can be done
in both light and darkness (Axelsson, 1988), and it is generally less than 5% of maximum
photosynthesis (Cabello-Pasini & Alberte, 1997). In marine algae, the end products of this
carbon fixation independent of light are typically organic compounds and amino acids rather
than triose sugars generated during photosynthesis (Cabello-Pasini & Alberte, 1997). Although
the 8'3C values found in H. scabra suggest a C3 pathway, the abundance of aspartate in control
and experimental treatments might suggest the existence of a C4 pathway. In C4 plants, the C4
acids malate and aspartate are the major initial photosynthetic products, these products are
rapidly decarboxylated releasing CO, for its refixation by RuBisCO functioning as
photosynthetic intermediates (Holaday & Bowes, 1980). In this sense, a C4 mechanism could
explain the increase in Pg,,s under all of our high-end treatments (temperature, pH, and nutrient
ratio), as well as the insensitivity of the photosynthetic response of the alga to AZ and, its low
inhibition in the presence of EZ. C4 plants have an active CCM, which is mainly related to the
efficient use of HCOj;™ through an initial carboxylation reaction by a Phosphoenolpyruvate
enzyme (Badger & Price, 1994). C4 mechanisms have been reported in some Chlorophyta,
including the semi-calcified Udotea flabellum, which shows an initial carboxylation by
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phosphoenolpyruvate carboxykinase enzyme (Reiskind, Seamon & Bowes, 1988), whereas in
Ulva prolifera evidence of both C3 and C4 pathway has been found (Xu et al., 2012).

CONCLUSIONS

H. scabra uses both seurees-of-Ci for photosynthesis and it seems to have different
mechanisms for i#s acquisition incorporating bicarbonate through the photosynthetic and non-
photosynthetic pathways. The-evidencefoundinthis-werlg suggest the presence of both C3 and
C4 pathways, thetatter+ely, on B-carboxylation. These strategies give H. scabra physiological
plasticity to acclimate to possible environmental changes in the short term. Our study strongly
suggests that H. scabra acclimatizes better to environmental conditions with-interaetive-effeet-at
high pH and high temperature with enough nutrient enrichment. Although this, could exacerbate
the presence of epiphytes and opportunistic algae, the entraneg of pulsatile nutrients likely plays
a role in maintaining this-balaneg by enhancing algal photosynthetic performance. Such
conditions are typical in the Yucatan peninsula coast where the algae grow in abundance.
Opposite interactive conditions of decreasing pH in combination with increases in temperature
and nutrient availability, could keep photosynthesis at a sub-optimal level which has strong
ecological implications due to the deeline-efthet abundance and the eensequences-efit-over,
sediment production and carbon balance in coral reefs where these algae thrive.
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Figure legends

Figure 1. Interactive effect of temperature, pH, and nutrients on the gross photosynthesis rate
(Pgross) of H. scabra. Three-way-ANOVA: Symbols represent the mean and error bars 0.95
confidence intervals.

Figure 2. Comparison of the effect of two carbonic anhydrase inhibitors on P,,,, percentage. Error
bars represent confidence intervals at 0.95.

Figure 3. NMR Spectra of NaH'3COj incorporation into photosynthetic products of H. scabra in
different light and darkness treatments. A) 24 h at saturation irradiances; B) 12 hours under light
saturation and 12h in darkness and, C) 24 h in darkness. * Indicate consistent signals for aspartate
in control treatment; ** Indicate '3C enrichment (multiple coupling). Letter a indieate control,
Letter b indieate treatment.
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Figure 1

Interactive effect of temperature, pH, and nutrients on the gross photosynthesis rate

(Pyross) Of H. scabra. Faree-way-ANOVA- Symbols represent the mean and error bars 0.95
confidence intervals.
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Figure 2

Comparison of the effect of two carbonic anhydrase inhibitors on P, ., percentage. Error

bars represent confidence intervals at 0.95.
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Figure 3

NMR Spectra of NaH"CO, incorporation into photosynthetic products of H. scabra in
different light and darkness treatments. A) 24 h at saturation irradiances; B) 12 hours
under light saturation and 12h in darkness and, C) 24 h in
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Table 1l(on next page)

Effect of temperature on P, (Qy) in three nutrient concentrations (Two Way-ANOVA).
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1 Table 1:

2 Effect of temperature on Py, (Q)) in three nutrient concentrations (Two Way-ANOVA).

Mean g DF MS F o
O
Nutrient ratio 10.839 2 5.419 6.721 0.002 ***
1.0:0.5 0.75b
5.0:0.5 1.75°
10.0:1.0 2.428
pH 3.137 2 1.568 1.945 0.152ns
nutrients*pH 6.111 4 1.528 1.895 0.125ns
Error 43.543 54 0.806

3 ns: not significant; *** significant
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Comment on Text
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