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ABSTRACT
Background: Human rotavirus A (RVA) infection is the primary cause of acute
gastroenteritis (AGE) in infants and young children worldwide, especially in children
under 5 years of age and is a major public health problem causing severe diarrhea in
children in Thailand. This study aimed to investigate the prevalence, genotype diversity,
and molecular characterization of rotavirus infection circulating in children under 15
years of age diagnosed with AGE in Thailand from January 2016 to December 2019.
Methods: A total of 2,001 stool samples were collected from children with
gastroenteritis (neonates to children <15 years of age) and tested for RVA by
real-time polymerase chain reaction (RT-PCR). Amplified products were sequenced
and submitted to an online genotyping tool for analysis.
Results: Overall, 301 (15.0%) stool samples were positive for RVA. RVA occurred
most frequently among children aged 0-24 months. The seasonal incidence of
rotavirus infection occurred typically in Thailand during the winter months
(December-March). The G3P[8] genotype was identified as the most prevalent
genotype (33.2%, 100/301), followed by G8P[8] (10.6%, 32/301), G9P[8] (6.3%,
19/301), G2P[4] (6.0%, 18/301), and G1P[6] (5.3%, 16/301). Uncommon G and P
combinations such as G9P[4], G2P[8], G3P[4] and G3P[9] were also detected at low
frequencies. In terms of genetic backbone, the unusual DS-1-like G3P[8] was the
most frequently detected (28.2%, 85/301), and the phylogenetic analysis
demonstrated high nucleotide identity with unusual DS-1-like G3P[8] detected in
Thailand and several countries.
Conclusions: A genetic association between RVA isolates from Thailand and other
countries ought to be investigated given the local and global dissemination of
rotavirus as it is crucial for controlling viral gastroenteritis, and implications for the
national vaccination programs.
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INTRODUCTION
Rotavirus (RV) is the most common etiological agent associated with severe gastroenteritis
in children worldwide. Although vaccinations for RV had been licensed for over a decade,
RV infection was still responsible for an estimated 128,500 deaths worldwide among
children younger than age 5 years in 2016, and the RV-associated mortality rate was
highest in developing countries (Crawford et al., 2017; Troeger et al., 2018). RV surveillance
from 2008 to 2018 found that 40.78% of all diarrheal disease in children in Southeast Asia
was caused by RV infection (Lestari et al., 2020).

Rotaviruses are members of the family Reoviridae, the genus Rotavirus. They are classified
into 10 species designated A through J, based on the antigenic properties of VP6 (Crawford
et al., 2017). Human rotavirus A (RVA) is the most common etiological cause of severe
gastroenteritis in young humans. The RV virion has an icosahedral symmetry with three
concentric protein layers (i.e., an outer capsid, an inner capsid, and an internal core) that
contains 11 double-stranded RNA (dsRNA) segments (McClain et al., 2010). Each segment
is translated into six structural viral proteins (VPs) and six non-structural viral proteins
(NSPs). The RV outer capsid consists of two neutralization antigens, VP7 and VP4, which
are categorized into glycoprotein (G) and protease (P) types, respectively (Fujii et al., 2014).

The Rotavirus Classification Working Group (RCWG) has designated the genotype
constellations for RVA strains for each of the 11 RV genome segments encoding
VP7–VP4–VP6–VP1–VP2–VP3–NSP1–NSP2–NSP3–NSP4–NSP5/6, which corresponds to
genotypes Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx, respectively. Two major genotype
constellations of the non-G, non-P genes; I1–R1–C1–M1–A1–N1–T1–E1–H1 (Wa-like)
and I2–R2–C2–M2–A2–N2–T2–E2–H2, (DS-1-like), have been shown to circulate
worldwide among humans (Matthijnssens et al., 2008). A third (minor) human genotype
constellation, referred to as AU-1-like (I3–R3–C3–M3–A3–N3–T3–E3–H3), is believed to
originate from cats or dogs (Nakagomi & Nakagomi, 1989).

Recently 36 G, 51 P, 26 I, 22 R, 20 C, 20 M, 31 A, 22 N, 22 T, 27 E and 22 H genotypes of
RVA has been identified in humans and animals worldwide (RCGW, 2019). Some specific
G and P genotypes are dominant in individual host species, six G genotypes (G1–G4,
G9 and G12) and 3 P genotypes (P[4], P[6] and P[8]) are frequently found in humans.
The G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8] RVA strains were identified as
the most prevalent G-P genotype combination worldwide (Crawford et al., 2017).

Presently, several commercial RV vaccines have been licensed for use. Two live
attenuated oral vaccines, Rotarix� (a monovalent G1P[8] attenuated human vaccine) and
RotaTeq� (a pentavalent human, bovine reassorted vaccine containing G1, G2, G3, G4 and
P[8]) are administered routinely as part of the national immunization program (NIP)
for the prevention of RV-associated severe gastroenteritis in developed countries (Vesikari,
2012). They have proven highly efficient in reducing the hospitalization of RV-associated
severe gastroenteritis (Tate & Parashar, 2014). In Thailand, RVA is a significant cause
of severe diarrhea in children (Theamboonlers et al., 2005). The surveillance in

Pasittungkul et al. (2021), PeerJ, DOI 10.7717/peerj.10954 2/16

http://dx.doi.org/10.7717/peerj.10954
https://peerj.com/


Thailand has indicated that the peak of RV infection corresponds to the winter months
(December, January and February) (Maneekarn & Ushijima, 2000). In the northern part of
Thailand, where the weather is relatively cold than the rest of the country, RV was detected
in every month of the year (Sakpaisal et al., 2019). From 2009 to 2014, studies revealed
that G1P[8], G2P[4] and G3P[8] were the most frequently detected genotypes in Thailand
and the more uncommon human RV strains such as G3P[9], G4P[6], G5P[6], G8P[8],
G9P[8], G12P[6] and G12P[8] were also detected in some regions of Thailand
(Khananurak et al., 2010; Maiklang et al., 2012; Chieochansin et al., 2016). Starting in
January 2020, universal RV vaccination for infants has been implemented in Thailand
(Lestari et al., 2020).

In this study, we investigated the prevalence, genotype diversity and molecular
characterization of human RVA circulating in children under 15 years of age with acute
gastroenteritis (AGE) in Thailand between January 2016 and December 2019. This study
provides useful data relative to the circulating RV genotypes in the pre-vaccine era in Thailand.

MATERIALS AND METHODS
Study population and stool samples
Between January 2016 and December 2019, a total of 2,001 stool samples were collected
from neonates to children under 15 years of age. The samples were obtained from the
Chulalongkorn Memorial Hospital, Bangpakok 1 International Hospitals, Bangpakok
9 International Hospitals, Chumphae Hospital and Bangkok Hospital Phitsanulok.
The enrolled patients’ presented with AGE characterized by three or more loose, watery
stools within 24 h. The use of stored samples was approved by the director of King
Chulalongkorn Memorial Hospital. The study was approved by the Ethics Committee of
the Faculty of Medicine, Chulalongkorn University (IRB No. 220/63). The Institutional
Review Board waived the need for consent from the participants because the clinical
specimens were anonymous. The study was followed the declaration of Helsinki and Good
Clinical Practice Guidelines (ICH-GCP).

Molecular diagnosis of rotavirus
Viral genome extraction
Viral genome was prepared from a 10% (w/v) stool suspension with phosphate buffer
saline (PBS), centrifuged at 4,000×g for 10 min, and supernatants were collected. Viral
RNA was automatically extracted from a 200 µL supernatant sample using a magLEAD
12gC instrument (Precision System Science, Chiba, Japan) with a magLEAD Consumable
Kit (Precision System Science, Chiba, Japan) according to the manufacturer’s instructions.

Samples were initially tested for the RVA VP6 gene using the QuantiTect SYBR
Green 1-step real-time RT-qPCR Kit (Qiagen, Hilden, Germany). The primers VP6-F
(5′ GACGGVGCRACTACATGGT 3′) and VP6-R (5′ GTCCAATTCATNCCTGGTGG 3′)
a 379-bp region corresponding to nucleotides 747–1,126 of the VP6 gene. Cycling
parameters were reverse transcription at 50 �C for 30 min, initial denaturation at 95 �C
for 15 min, 45 cycles of denaturation at 94 �C for 15 s, annealing at 60 �C for 30 s, and
extension at 72 �C for 30 s. Melting curve analysis was explored from 60 �C to 95 �C with
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1 �C increments to determine the specificity of the reactions (Kang et al., 2004;
Chansaenroj et al., 2020).

Sequence determination of G, P and I genotype of rotavirus
The RV-positive sampleswere subjected to amplification of the VP6, VP7 and VP4 genes
using the SensiFAST one-step RT-PCR kit (Bioline, London, UK). VP6-F1/VP6-R1357
from of Theamboonlers et al. (2005) were used to amplify the VP6 gene, and the primer
pairs BEG9/END9 and con2/con3 were used to amplify VP7 and VP4 genes, respectively.
Table S1 shows the list of primers that were used to detect the RV genotype. The total
reaction mixture was 15 µl, consisted of a 2x reaction mix buffer, 10 µM of each forward
and reverse primer and 2 µL RNA. The RT-PCR conditions for VP6 gene comprised
the reverse transcription step at 45 �C for 45 min, followed by initial denaturation at 95 �C
for 5 min, 40 cycles of denaturation at 94 �C for 30 s, annealing at 55 �C for 30 s, extension
at 72 �C for 2 min, and the reaction concluded with a final extension at 72 �C for
10 min. The RT-PCR conditions of VP7 and VP4 genes were: reverse transcription at
45 �C for 30 min, followed by initial denaturation 94 �C for 5 min, 40 cycles of
denaturation at 94 �C for 45 s, annealing at 48 �C (for BEG9 and END9) or 55 �C (for
con2 and con3) for 30 s, extension at 68 �C for 1 min, and included a final extension step
at 68 �C for 5 min (Chansaenroj et al., 2020). The expected amplicons were agarose
gel-purified and sequenced by FirstBASE Laboratories (SDN BHD, Selangor, Malaysia).

The sequencing data of the VP6, VP7 and VP4 genes were analyzed using Chromas 2.23
(Technelysium, QLD, Australia). The nucleotide sequence identity was annotated by
BLAST, and the rotavirus genotype was identified by using the RotaC2.0 automated
genotyping tool for group A rotaviruses (RotaC version 2).

Phylogenetic analysis
The nucleotide sequences were prepared and multiply-aligned using Clustal Omega
(www.ebi.ac.uk/Tools). Phylogenetic trees and genomic distances were established using
MEGA 6.0 software. The phylograms of VP6, VP7 and VP4 genes were constructed
using the Tamura 3-parameter model, and the maximum likelihood method with 1,000
replicates bootstrapping and bootstrap values >70% considered significant.

Nucleotide sequences were deposited in the GenBank database under the accession
numbers MW058089–MW058379 for VP7, MW058380–MW058573 and MW245377 for
VP4 and MW058574–MW058799 for VP6.

RESULTS
In this study, a total of 2,001 stool samples were collected from children under 15 years of
age diagnosed with AGE from 2016 to 2019. There were 438, 411, 857 and 295 stool
samples in 2016, 2017, 2018 and 2019, respectively. Overall, 301 samples (15.0%) tested
positive for RVA by real-time RT-PCR. The age distribution of rotavirus infected patients
in this study ranged from neonate to children under 15 years of age, with the highest
rate of RV-positive patients (48.2%; 145/301) occurring in children between 0 and 24
months of age (Fig. 1).
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The characterization of 301 RV-positive samples from children diagnosed with AGE in
Thailand between 2016 and 2019 demonstrated that the G3P[8] genotype was the most
dominant genotype (33.2 %, 100/301), followed by G8P[8] (10.6%, 32/301), G9P[8]
(6.3%, 19/301), G2P[4] (6.0%, 18/301), and G1P[6] (5.3%, 16/301). Uncommon G and P
combinations such as G2P[8] (0.7%, 2/301), G3P[4] (0.7%, 2/302), G3P[9] (0.3%, 1/301)
and G9P[4] (0.3%, 1/301) were also detected at low frequencies (Table 1). The incidence of
RV infection in Thailand decreased during the rainy season (June–October). Contrarily, an
outbreak of RV infection was observed in during the winter season (December–March)
and G3P[8] became the most predominant genotype every year. December 2017 to March
2018 marked the period with the highest prevalence of RV infection over a 4-year
observation period, accounting for 157/301 of cases (Fig. 2).

The sequencing of VP6 was performed to differentiate the I type and Wa, DS-1 and Au
genogroups. The results showed that the unusual DS-1-like strain (G3/8/9-P[4/6/8]-I2)
was the most prevalent (42.2%, 127/301), followed by Wa-like strain (G1/3/9-P[4/8]-I1)

Figure 1 Age distribution of RVA infection among children in Thailand from January 2016 to
December 2019. Bar graphs denote the total number of RV-positive samples.

Full-size DOI: 10.7717/peerj.10954/fig-1

Table 1 Distribution of RVA genotypes among children diagnosed with AGE in Thailand during 2016–2019.

Year No. of
specimens
tested

No. of
RVA
positive (%)

No. of G/P combination strain (%)

G1P[6] G1P[8] G2P[4] G2P[8] G3P[8] G3P[4] G3P[6] G3P[9] G8P[8] G9P[4] G9P[8] Untypable*

2016 438 55 (12.6) 0 0 0 0 37 (67.3) 0 0 1 (1.8) 5 (9.1) 0 1 (1.8) 11 (20.0)

2017 411 48 (11.7) 0 0 3 (6.3) 0 19 (39.6) 1 (2.1) 1 (2.1) 0 1 (2.1) 0 3 (6.3) 20 (41.7)

2018 857 172 (20.1) 16 (9.3) 5 (2.9) 15 (8.7) 2 (1.2) 33 (19.2) 1 (0.6) 0 0 26 (15.1) 1 (0.6) 15 (8.7) 58 (33.7)

2019 295 26 (8.8) 0 0 0 0 11 (42.3) 0 0 0 0 0 0 15 (57.7)

Total 2,001 301 (15.1) 16 (5.3) 5 (1.7) 18 (6.0) 2 (0.7) 101 (33.6) 2 (0.7) 1 (0.3) 0 32 (10.6) 1 (0.3) 19 (6.3) 104 (34.6)

Note:
* No amplicon/no PCR product/unsuccessful sequencing.
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(13.0%, 39/301), DS-1-like strain (G2-P[4]-I2) (6.6%, 20/301), the Au-like strain
(G3-P[9]-I3) (0.3%, 1/301), and unclassified types (38.2%, 115/301) (Table 2).

The phylogenetic tree analysis of the VP6 gene (I type) segregated into three groups, the
Wa-like strains (I1) shared 96.3-100% nucleotide identity, the DS-1-like strains (I2) shared
95.7–100% identity, and one Au-like strain (I3) showed closer genetic relatedness to the
RVA strain (KJ412535) previously detected in Paraguay in 2007, with nucleotide and
amino acid similarities of 98.7% (Fig. 3A).

Based on the sequence of the VP7 gene, the majority of G1 strains were similar to strains
JX027828 and MH182444 from Australia and Pakistan, respectively, with 92.8–100%
nucleotide identity. In addition, one strain of the G1 genotype was closely related to the
RotaTeq� vaccine strain (GU565057) with nucleotide similarity of 100%. Analysis with a
phylogenetic tree for the G2 genotype indicated the samples shared nucleotide and amino
acid identity exceeding 95%. Interestingly, the phylogenetic tree analysis of the G3

Figure 2 Distribution of RVA genotypes between January 2016 and December 2019. The monthly
number of samples from children diagnosed with AGE is shown in grey. Bar graphs show the
number of RV-positive cases. Full-size DOI: 10.7717/peerj.10954/fig-2

Table 2 Distribution of G/P/I combination strain of RVA genotypes among children diagnosed with AGE in Thailand during 2016–2019.

Year No. of
specimens
tested

No. of
RVA
positive (%)

No. of G/P/I combination strain (%)

Unusual
DS-1-like
(G1/3/8/9-P[4/6/8]-I2)

DS-1-like
(G2-P[4]-I2)

Wa-like
(G1/3/9-P[4/8]-I1)

Au - like
(G3-P[9]-I3)

Unclassified

2016 438 55 (12.6) 34 (61.8) 0 1 (1.8) 1 (1.8) 19 (34.5)

2017 411 48 (11.7) 20 (41.7) 3 (6.3) 3 (6.3) 0 22 (45.8)

2018 857 172 (20.1) 64 (37.2) 17 (9.9) 32 (18.6) 0 59 (34.3)

2019 295 26 (8.8) 9 (34.6) 0 2 (7.7) 0 15 (57.7)

Total 2,001 301 (15.1) 127 (42.2) 20 (6.6) 38 (12.6) 1 (0.3) 115 (38.2)
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genotype showed a different segregation of Wa-like G3 and unusual DS-1-like G3, with a
nucleotide identity ranging from 80.7% to 82.3%. The analysis of G8 strains indicated they
shared 98.7–100% identity and exceeded 98.9% with the reference strains LC477353,
KY986434 and MN166824 from Japan, Taiwan, and the Czech Republic, respectively.
For the G9 genotype, the strains shared a 92.3–100% nucleotide identity and 92.6–99.8%
nucleotide identity to the reference strains MN552103 and MH182443 from Russia and
Pakistan, respectively (Fig. 3B).

Three P genotypes were identified in this study, the predominance of the P[8] genotype
showed there was a 96.3–100% nucleotide identity across the genotypes, and exceeded
95.8% with the reference strains MN577176 from Russia, KU550281 from Spain and
LC514484 from Thailand. The P[6] strains shared 92.6–100% nucleotide identity and were
similar to the reference strains MN106124 from China, exceeding 93.6% nucleotide
identity. The P[4] strains shared 96.3–100% nucleotide identity among their strains and
exceeded 96.0% with the reference strains MN577206, MH182442 and LC514528 from
Russia, Pakistan and Thailand, respectively. In addition, one strain of the P[9] genotype
was closely related to reference strains JX946171, KX931956 and KR262152 from China,
Japan and Korea, respectively, with 98.0–99.1% nucleotide identity (Fig. 3C).

Figure 3 Phylogenetic tree of the VP6, VP7 and VP4 genes. The tree was constructed using the
Tamura 3-parameter model, and the maximum likelihood method with 1,000 replicates
bootstrapping and bootstrap values >70% considered significant. (A) Partial VP6 gene analyzed in
this tree contained 361 nucleotides, (B) partial VP7 gene analyzed in this tree contained 561 nucleotides
and (C) partial VP four gene analyzed in this tree contained 438 nucleotides.

Full-size DOI: 10.7717/peerj.10954/fig-3
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DISCUSSION
Rotavirus A infection is a major cause of severe diarrhea in Thai children. Between 2007
and 2014, the prevalence of RVA infection in Thailand was found to range from 28.4
to 44.5% (average 34.3%) (Khananurak et al., 2010; Maiklang et al., 2012; Chieochansin
et al., 2016). In this study, we investigated the prevalence and distribution of RVA
genotypes circulating in children under 15 years of age diagnosed with AGE in Thailand
from 2016 to 2019. Among the 2,001 stool samples obtained from infants and young
patients with AGE over a 4-year study period (January 2016 to December 2019), 301
samples (15.0%) tested positive for RVA. Interestingly, there was a large-scale outbreak of
RVA infection in both children and adult between December 2017 and March 2018
(Chansaenroj et al., 2020). The highest frequency of RVA infection in this study occurred
in children aged 0–24 months (48.2%), which corresponded to data from a previous study
in Mexico, in which almost all of the children by 2 years of age had been infected
at least once, and more than two-thirds had experienced at RVA least twice, and more than
10% had experienced five infections (Velázquez et al., 1996). However, in older children
there was a clear reduction in RVA infection. A possible explanation for this could be
the acquisition of protective immunity in older children during prior exposure to RV,
then they became resistant to a subsequent RVA infection (Echeverria et al., 1983; Linhares
et al., 1989). In addition, the rate of RVA infection increased over the winter season in
Thailand (December–March), which corresponded to the seasonal pattern of RVA
infection in Thailand, as described in a previous surveillance study (Maiklang et al., 2012).

In the surveillance of G/P genotype distributions in Thailand between 2000 and 2016,
various G/P genotype combinations were detected. The common G1P[8], G2P[4], G3P[8]
and G9P[8], and uncommon G2P[8], G3P[3], G3P[9], G3P[10], G3P[19], G12P[6] and
G12P[8]. Moreover, a changing pattern of RV genotypes was observed. The G9P[8] had
been reported to be the most predominant genotype from 2000 to 2004, G1P[8] from
2005 to 2009, G3P[8] from 2009 to 2011, G1P[8] from 2012 to 2014 and G9P[8] from 2015
to 2016, and more uncommon genotypes such as G12P[8], G12P[6] and G3P[9] were
also detected (Pongsuwannna et al., 2010; Maneekarn & Khamrin, 2014; Theamboonlers
et al., 2014; Guntapong et al., 2017; Chan-It & Chanta, 2018). In this study, G3P[8] was the
most predominant G/P genotype combination (33.6%, 101/301), followed by G8P[8]
(10.6%, 32/301), G9P[8] (6.3%, 19/301), G2P[4] (6.0%, 18/301) and G1P[6] (5.3%, 16/
301). Moreover, G1P[8], G2P[8], G3P[4], G3P[6], G3P[9] and G9P[8] were found in low
frequency. In the genetic backbone characterization, the DS-1-like strain was detected
in 147 of 301 samples (48.8%), most of which were unusual DS-1-like G3P[8]I2
(57.8%, 85/147), followed by unusual DS-1-like G8P[8]I2 (21.1%, 31/147) and G2P[4]I2
(12.2%, 18/147).

Since 2012, the more uncommon human intergenogroup reassortant strains DS-1-like
G1P[8], were firstly detected in children with severe diarrhea in Japan (Fujii et al., 2014;
Kuzuya et al., 2014; Maneekarn & Khamrin, 2014; Yamamoto et al., 2014), and
subsequently, these strains were also identified in Thailand, the Philippines, Vietnam and
Brazil between 2012 and 2013 (Yamamoto et al., 2017; Komoto et al., 2015;Nakagomi et al.,
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2017; Luchs et al., 2019). In 2013, the DS-1-like G3P[8] strain emerged in Thailand and
Australia (Cowley et al., 2016; Komoto et al., 2016), and these DS-1-like G3P[8] strains
were subsequently detected in the several parts of the world, comprising Hungary,
Germany, Indonesia, Thailand, Japan, Spain, USA, Brazil and Italy (Arana et al., 2016;
Dóró et al., 2016; Guerra et al., 2016; Komoto et al., 2016; Kikuchi et al., 2018; Komoto et al.,
2018; Pietsch & Liebert, 2018;Utsumi et al., 2018; Esposito et al., 2019). Furthermore, in this
study, the unusual DS-1-like G3P[8] strains were identified as the most predominant
strains in infants and young children in Thailand. In the phylogenetic trees analysis, the
VP7 gene of these unusual DS-1-like G3P[8] strains were found to be closely related with
the reference strain MK161359 from Thailand in 2016, with 98.0–99.8% nucleotide
identity. In addition, the VP4 and VP6 genes of these strains also shared a high percentage
of nucleotide similarity with the unusual DS-1-like backbone from Spain, Russia, Japan,
and Thailand. Therefore, these unusual DS-1-like G3P[8] strains isolated in different
locations in Thailand might have originated from a recent common origin. These unusual
DS-1-like G3P[8] strains likely were generated in Thailand and then circulated in this
country, or even they were transmitted from another country to Thailand. However, our
study was constrained by the limited sequencing information from clinical samples
because they sometimes did not yield sufficiently long sequences to provide conclusive
support for genotyping. Unfortunately, it is difficult to extract and amplify enough viral
genetic materials for characterization due to viral loads and time of sampling. Therefore, it
is possible that more complete sequence results may alter our conclusion in this study.
More genome data for global RVA strains are required to gain a better understanding of
the evolution of DS-1-like G3P[8] strains.

In industrialized countries, rotavirus genotype G8 infection is common in cattle but has
been identified in humans sporadically (Moutelíková et al., 2019). However, G8 strains are
highly prevalent among humans in some countries in Africa (Nakagomi et al., 2013)
and were also described in Brazil and Chile (Santos et al., 1998; Gómez et al., 2010; Lucero
et al., 2019). During the past few years, reports of G8 rotavirus-strain detection have been
increasing. Between 2013 and 2014, the novel DS-1-like intergenogroup reassortant
G8P[8] were firstly detected in stool samples from hospitalized children with severe
diarrhea in Thailand, and these DS-1-like G8P[8] strains were subsequently detected in
Japan in 2014, Vietnam in 2015, and Czech Republic in 2016/2019 (Tacharoenmuang
et al., 2016; Kondo et al., 2017; Hoa-Tran et al., 2016; Moutelíková et al., 2019). Moreover,
in this study, the DS-1-like G8P[8] became the second most prevalent genotype. Therefore,
the high prevalence of DS-1-like G8P[8] strains that were described in this study and
other countries indicates that these strains are well-adapted to human–human transmission.
The continuous surveillance of the genotypes of RVA isolates is recommended in order to
monitor circulating wild-type strains, as well as rotavirus genotype constellations, to
understand rotavirus diversity and their evolutionary patterns.

In the pre-vaccine era G1P[8], G2P[4], G3P[8], G4P[8] and G9P[8] represented
approximately 74% of strains causing RV infections in 1996–2008 (Bibera et al., 2020).
The introduction of RotaTeq� was followed by an increase in the prevalence of the G3P[8]
genotype in some places, including the United States and in some Australian states
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(Hull et al., 2011; Kirkwood et al., 2011; Cowley et al., 2016). An increase in the relative
prevalence of the fully heterotypic G2P[4] genotype occurred after the introduction of
Rotarix� (Dóró et al., 2014), particularly in Brazil, Belgium and in some Australian states.
It raised concern about a potential selection pressure induced by vaccine use. Typically,
G1P[8] strains, including the Rotarix� strain (RIX4414), possess a Wa-like genetic
backbone, whereas G2P[4] strains generally have a DS-1-like genotype constellation
(Matthijnssens et al., 2011). In a later trial conducted in Europe (Vesikari et al., 2007) and a
meta-analysis integrating the results from all previous trials (De Vos et al., 2009), the
Rotarix� vaccine provided significant protection against severe RV diarrhea caused by
G2P[4] strains. Annual fluctuations in G2P[4] prevalence seemed to occur naturally, with
no substantial differences between countries adopting Rotarix�, RotaTeq�, or mixed
vaccination programs (Matthijnssens et al., 2011). Before January 2020, RV vaccine was
not included in the national immunization program in Thailand but only introduced in
two provinces, Sukhothai and Petchabun. In October 2011, Sukhothai province began a
routine RV immunization program. The evaluation for first introduction was done in
2017. It was concluded that RV vaccine was highly effective to prevent diarrhea and
provide herd immunity among children who had not been vaccinated (Tharmaphornpilas
et al., 2017). These findings support the continued use of the RV vaccine as an intervention
to reduce severe diarrhea caused by RV strains possessing either Wa-like or DS-1–like
genetic backbones.

CONCLUSIONS
The surveillance of RVA infection in infants and young children diagnosed with AGE in
Thailand between 2016 and 2019 demonstrated that RVA occurred most frequently
primarily among children aged 0–24 months. The increasing detection of RVA infection
during winter months significantly correlated to the seasonal pattern of rotaviruses in
Thailand, as described in a previous surveillance study (Maiklang et al., 2012). The unusual
DS-1-like G3P[8] was identified as the most predominant genotype. A review of global
changes in the overall RV strain prevalence did not show any consistent patterns of selection
pressure resulting from the use of either Rotarix� or RotaTeq� vaccines (Dóró et al., 2016).
Thus, it is important to continue surveillance of rotavirus epidemiology and rotavirus
characterization to obtain useful information for the prevention and control of RVA, and to
gain a better understanding of the effects of strain variation on vaccine efficacy.
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