Ontogenetic development of highly variable ceratitid ammonoids from the Anisian (Middle Triassic) of Nevada, USA (#54008)

First submission

Guidance from your Editor

Please submit by 3 Dec 2020 for the benefit of the authors (and your $200 publishing discount).

Structure and Criteria
Please read the 'Structure and Criteria' page for general guidance.

Custom checks
Make sure you include the custom checks shown below, in your review.

Raw data check
Review the raw data.

Image check
Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files
Download and review all files from the materials page.

| 11 Figure file(s) |
| 3 Table file(s) |
| 1 Raw data file(s) |

Custom checks

| Field study |
| Have you checked the authors field study permits? |
| Are the field study permits appropriate? |
Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

1. **BASIC REPORTING**
2. **EXPERIMENTAL DESIGN**
3. **VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review when ready. [Submit online.](#)

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
- Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.
Standout reviewing tips

The best reviewers use these techniques

Tip

<table>
<thead>
<tr>
<th>Support criticisms with evidence from the text or from other sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
</tr>
<tr>
<td>Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Give specific suggestions on how to improve the manuscript</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
</tr>
<tr>
<td>Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comment on language and grammar issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
</tr>
<tr>
<td>The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organize by importance of the issues, and number your points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
</tr>
</tbody>
</table>
| 1. Your most important issue
2. The next most important item
3. ...
4. The least important points |

<table>
<thead>
<tr>
<th>Please provide constructive criticism, and avoid personal opinions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
</tr>
<tr>
<td>I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comment on strengths (as well as weaknesses) of the manuscript</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
</tr>
<tr>
<td>I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.</td>
</tr>
</tbody>
</table>
Ontogenetic development of highly variable ceratitid ammonoids from the Anisian (Middle Triassic) of Nevada, USA

Eva Alexandra Bischof Corresp., 1, Nils Schlüter 2, Dieter Korn 2, Jens Lehmann 1

1 Geowissenschaftliche Sammlung, FB5 Geowissenschaften, Universität Bremen, Bremen, Bremen, Germany
2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Humboldt-Universität Berlin, Leibniz-Institut für Evolutions-und-Biodiversitätsforschung, Invalidenstraße, 43, 10115 Berlin, Germany, Berlin, Germany

Corresponding Author: Eva Alexandra Bischof
Email address: bischof@uni-bremen.de

Ammonoids reached their greatest diversity during the Triassic period. In the early Middle Triassic (Anisian) stage ammonoid diversity was mainly dominated by representatives of the family Ceratitidae. This high taxonomic diversity is, however, decoupled from their morphologic disparity. Therefore, the high diversity of ceratitids of the Anisian of Nevada, was initially assumed to be reasoned in artificial over-splitting of this group due to its high phenotypic variability. This study aims to contribute to this issue by applying geometric morphometrics methods, using landmarks and semi-landmarks, in the study of ontogenetic cross-sections of ammonoids for the first time. The results reveal that alterations in ontogenetic trajectories, linked to heterochronic processes, lead to the phenotypic diversification of the species studied herein. Our knowledge, based on these ontogenetic changes, challenge the traditional treatment of species using solely adult characters for their distinction. This study highlights the importance of analyzing inter- and intraspecific variation of ceratitid assemblages considering their ontogenetic development. Furthermore, this study demonstrates that the high diversity of the Anisian ammonoid assemblages of Nevada based on the traditional nomenclatoric approach is regarded to be reasonably accurate.
Ontogenetic development of highly variable ceratitid ammonoids from the Anisian (Middle Triassic) of Nevada, USA

Eva A. Bischof, Nils Schlüter, Dieter Korn, Jens Lehmann

1 Geowissenschaftliche Sammlung, Fachbereich Geowissenschaften, Universität Bremen, Leobener Strasse 8, 28357 Bremen, Germany
2 Naturhistorisches Forschungsinstitut, Museum für Naturkunde, Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany

Corresponding Author:
Eva Bischof
MARUM, Leobener Strasse 8, 28359 Bremen, Germany
Email address: eva.bischof@hotmail.com

Abstract
Ammonoids reached their greatest diversity during the Triassic period. In the early Middle Triassic (Anisian) stage ammonoid diversity was mainly dominated by representatives of the family Ceratitidae. This high taxonomic diversity is, however, decoupled from their morphologic disparity. Therefore, the high diversity of ceratitids of the Anisian of Nevada was initially assumed to be reasoned in artificial over-splitting of this group due to its high phenotypic variability. This study aims to contribute to this issue by applying geometric morphometrics methods, using landmarks and semi-landmarks, in the study of ontogenetic cross-sections of ammonoids for the first time. The results reveal that alterations in ontogenetic trajectories, linked to heterochronic processes, lead to the phenotypic diversification of the species studied herein. Our knowledge, based on these ontogenetic changes, challenge the traditional treatment of species using solely adult characters for their distinction. This study highlights the importance of analyzing inter- and intraspecific variation of ceratitid assemblages considering their ontogenetic development. Furthermore, this study demonstrates that the high diversity of the Anisian ammonoid assemblages of Nevada based on the traditional nomenclatoric approach is regarded to be reasonably accurate.

Introduction
After the Permian-Triassic mass extinction event, ammonoids flourished and spread globally to become an important part of the marine biota (Brayard & Bucher 2015; Brosse et al. 2013; House 1993; Neige 2015). They reached their greatest generic diversity of all times in the Triassic Period (Brayard et al. 2009; Whiteside & Ward 2011). The diversity peak in the late
Anisian is mainly dominated by genera of one family: The Ceratitidae (Brayard et al. 2009; supporting material fig. S2). Not least due to their wide paleogeographic distribution, and high diversity and abundance in the fossil record, ammonoids are an excellent biostratigraphic tool. Especially, the discoidal-shaped members of the family Ceratitidae (Mojsisovics 1879) are namesake for many North-American Anisian biostratigraphic zones and subzones (Jenks et al. 2015); figs. 13.13, 13.14). The fossil material used in this study was collected in the late Anisian Fossil Hill Member of the Star Peak Basin in north-western Nevada, USA. The studied successions are considered to be the world’s most complete low-paleolatitude successions, revealing late Anisian ammonoid assemblages (Monnet & Bucher 2005). The first comprehensive taxonomic work on the Anisian ammonoid communities of the famous fossil locality at Fossil Hill in the Humboldt Range was published by Smith (1914) in his monograph on the North American Middle Triassic marine invertebrates. According to the taxonomic practice of his time, he described or listed a total of 110 ammonoid species from Fossil Hill. More recently, Silberling & Nichols (1982), Bucher (1992) and Monnet & Bucher (2005) refined the original alpha taxonomy and the biostratigraphy with contemporaneous methods and reduced the number to 81 valid species (Brosse et al. 2013). However, it is important to note that succeeding assemblages show a progressive shift in morphology; therefore, the cutoff between contiguous species is essentially arbitrary (Silberling 1962; Silberling & Nichols 1982). This challenges the taxonomic concept and sheds new light on diversity patterns in general. An increasing number of studies suggest that the high diversity could in some cases be artificially inflated by taxonomic over-splitting (De Baets et al. 2013; Forey et al. 2004; Knauss & Yacobucci 2014). Furthermore, taxonomic diversity and morphological disparity of Triassic ammonoids were probably decoupled (Brosse et al. 2013; McGowan 2004; McGowan 2005). At present, only few studies have investigated trends in morphological disparity of Triassic ammonoids (Monnet et al. 2015).

Previous studies have proven that - particularly due to their accretionary planispiral conch growth with conservation of previous growth stages - ammonoids offer a high-resolution data basis for ontogenetic, developmental and also taxonomic studies. While the study of conch ontogeny has a long history in the study of Paleozoic ammonoids (reviews by Korn 2010; Korn & Klug 2007), it was only rarely done with Mesozoic ammonoids (e.g., Bischof & Lehmann 2020; Monnet et al. 2011; Naglik et al. 2015; Rieber 1962; Tajika et al. 2015). So far, the morphology and ontogeny of ammonoids was mainly assessed using descriptive, comparative or traditional morphometric methods (linear measurements). Klug et al. (2015); (Korn 2010); Korn & Klug (2003); and Korn & Klug (2007) developed the so-called Raupian parameters (Raup 1966) that were initially introduced to describe the coiled conch morphospace. However, the shapes of discoidal ammonoids often differ through their characteristic ways of ventral arching and presence or absence of a keel. Both characteristics can hardly be described with linear measurements (Neige 1999). Therefore, the use of traditional morphometric methods is limited when it comes to distinguishing ceratitid species.
In this study, for the first time the morphology and ontogeny of whorl profiles of the late Anisian family Ceratitidae was analyzed using a landmark-based geometric morphometric methods (GMM), instead of linear measurements (traditional morphometrics). This is reasoned in the tremendous advantages of GMM over the latter; landmarks and semi-landmarks cover shape variations of complete morphologies, which are sometimes not to be recognized or overseen with linear measurements of traditional morphometrics methods (Neige 1999). However, GMM can not only be adapted more flexibly to individual requirements, but are also easier to use for statistical analysis and allow to analyze shape and size separately (Hammer & Harper 2005). In addition, landmark-based methods do not introduce artifactual patterns of covariation (Gerber 2017) which is often the case when proportions are studied.

The literature of landmark-based approaches in morphological analyses of molluscs is rather scarce. Although important pioneering works exist, the previous studies are of limited use in an ontogenetic context because they all focus either on the shape of the whole conch or on single (isolated) ontogenetic stages (e.g., Johnston et al. 1991; Knauss & Yacobucci 2014; Neige 1999; Neige & Dommergues 1995; Reyment 2003; Reyment & Kennedy 1998; Stone 1998; Van Bocxlaer & Schultheiß 2010).

The present study is one of the first to analyze ontogenetic series of ammonoid conch cross sections using geometric morphometrics methods. While previous studies used the method of Fourier Analysis for the outline analysis of ammonoid whorl profiles of adult conchs (Courville & Crônier 2005; Korn & Klug 2012; Simon et al. 2010; Simon et al. 2011) and also of ontogenetic stages (Klein & Korn 2014), this study uses a combined landmark and semi-landmark approach.

In order to evaluate the hitherto used taxonomic scheme, ontogenetic patterns within the family Ceratitidae and their changes over time were investigated. Working with ontogenetic cross-sections allows to estimate the relative age of the whorls, which adds an extra dimension to the analysis. The tools presented here are intended to complement traditional descriptions and to objectify and quantify their results. This study should serve as a general motivation to conduct GMM studies on invertebrates with accretionary planispiral growth.

Materials & Methods

Geological setting. The ammonoid material derives from the Fossil Hill Member of Fossil Hill in the Humboldt Range and Muller Canyon in the Augusta Mountains (Pershing County), northwestern Nevada, USA (Fig. 1) and is stored in the Geosciences Collection of the University of Bremen (GSUB), Germany. The material from the Wilderness Study Area of the Augusta Mountains, Pershing County was collected with permission of the U.S. Department of the Interior, Bureau of Land Management (BLM, Nevada State office, Winnemucca District). The Fossil Hill Member is a succession of alternating layers of mudstone with lenticular limestone and calcareous siltstone beds (see Fig. 2). The rich and diverse fossil content consists primarily of halobiid bivalves and ammonoids. Detailed geological and stratigraphic descriptions were
Studied specimens. The fossil material comprises 72 ammonoid specimens of the family of Ceratitidae Mojsisovics 1879. These are representing 12 species in 7 genera (Fig. 2, Tab. 1) that either belong to the subfamily Beyrichitinae Spath 1934 or Paraceratitinae Silberling 1962. Most of the studied species show high intraspecific variation with overlapping morphologies (see Tab. 1 and Figs. 3–5). Members of these genera (Gymnotoceras, Frechites and Parafrechites in particular) are sometimes hard to differentiate. They mainly differ in the ventral conch outline, ornamentation, adult ribbing and maximum growth size. The younger the individuals are, the greater the similarities. Despite their complicated taxonomy, all selected species are index fossils of the late Anisian Fossil Hill Member (see Fig. 2). It was assumed that the individual species have similar coiling rates (i.e., the individual species develop the same number of whorls in the course of their life). The total number of volutions developed by the species varies between five and a half and seven (see Tab. 1–Total number of volutions).

Preparation and data acquisition. We prepared high-precision cross-sections intersecting the protoconch of each specimen, following the methods by Klug et al. (2015) and Korn (2010). Subsequently, we scanned the polished surfaces in high resolution with a flat screen scanner to ensure that all pictures have the same scale. Thereafter the scan images were digitized. CT scan images of Anisian ammonoids from Nevada do not provide sufficient contrast of the internal structures for a reliable analysis (Bischof & Lehmann 2020).

Based on the digitized cross-sections we performed a 2D landmark-based geometric morphometrics analysis. The landmarks were retrieved in tpsDig2 v.2.31 (Rohlf 2010). Sixteen landmarks were digitized per half whorl (i.e. growth stage), which results in 176 landmarks per specimen (16 landmarks on 11 half whorls; Fig. 6). This set of landmarks consists of two single (1, 2) and 7 pairs of landmarks (3–16), of which eight are sliding semi-landmarks. In order to omit missing values in subsequent analyses, the data set was limited to growth stage number 5.5. From a methodological point of view, it is more practical to rotate the shells by 90° compared to conventional orientation (cf. Stridsberg 1990). Since ammonoid conchs are spiral-shaped, each whorl is cut in two parts when preparing the cross sections. Therefore, the conch is divided into a left (whors with odd numbers, here 0.5–5.5; "odd whorls") and a right (whors with even numbers, here 1.0–5.0; "even whorls") part. Homologous landmarks were set in accordance to the axial plane.

Calculation of Procrustes shape. All geometric morphometric analyses were done using the R software v 3.6.3. (R Core Team 2020) packages Morpho v2.8 (Schlager 2017), geomorph v3.3.1. (Adams et al. 2020) and RRPP v0.6.0 (Collyer & Adams 2018; Collyer & Adams 2020). Plots were drawn with the R package ggplot2 (Wickham 2016). Using the Morpho::procSym function, the 2D landmark coordinates were subjected to a full generalized Procrustes alignment (GPA). The full Procrustes fit standardizes size, orientation and position, leaving only the Procrustes shape coordinates (Hammer & Harper 2005). Since the “odd” and “even” whors cannot be made
congruent by any of these operations (i.e. alignment, translation, rotation), all “even” whorls were manually mirrored before the GPA. The individual whorls were regarded as different structures of the ammonoid conch. Therefore, the GPA was performed separately for every whorl. The procSym function performs Procrustes superimposition including sliding of semi-landmarks on curves and accounts for the symmetry of the object. Subsequently, the R function geomorph::combine.subsets was used to normalize the configurations of all growth stages to unit centroid size or with a customized weighting (see “Developmental morphospaces”). The centroid size (CS) is regarded as a proxy for the size of the whors and equals the square root of the summed squared distances of each landmark from the centroid of the landmark configuration before the GPA (Zelditch et al. 2012). To visualize the multivariate data in a two-dimensional morphospaces we ran a principal component analysis (PCA) on the aligned Procrustes shape coordinates using the R function stats::prcomp. Thereby we used two different types of morphospaces: Ontogenetic and developmental morphospaces.

Ontogenetic morphospaces. It is well-known that ammonoids have a very characteristic but also complex ontogenetic development (e.g., Klug 2001). To visualize the ontogenetic development of ammonoids there are different types of morphospaces. Ontogenetic morphospaces, as defined by Bischof & Lehmann (2020, p.2), illustrate the differences in total ontogenetic development of individuals. They show the data in an artificial state of combined morphologies of different ontogenetic stages. To calculate an ontogenetic morphospace, all Procrustes shapes (i.e. whorls) of an individual are re-assembled before running the principal component analysis. This means that, in an ontogenetic morphospace, the ontogenetic trajectory of every individual is reduced to a single data point. Ontogenetic morphospaces are a tool to examine if the ontogenetic pathways of individuals differ, but they do not show how the trajectories vary.

Developmental morphospaces. Developmental morphospaces as defined by Eble (2003, p. 40) are morphospaces that directly contain developmental information. In terms of this study this means that every individual dot in the morphospace reflects a specific ontogenetic stage (i.e. whorl) of an individual. By connecting all points of an individual, the ontogenetic trajectory can be obtained. In contrast to ontogenetic morphospaces, developmental morphospaces show how individual whors differ from each other. As can be seen in Figure 6, size differences between different growth stages are tremendous. The General Procrustes Analysis (GPA) removes all information about size from a given set of data leaving only the pure shape coordinates. If normalized to unit centroid size (i.e. non-weighted morphospace), the earliest whors of ammonoids get enormously enlarged and the last whors scaled down. In general, deviations (measurement uncertainties as well as actual morphological variation) are increased for the initial whors and reduced for older growth stages. Therefore, a second morphospace with weighted Procrustes shape coordinates was calculated. Thereby, the logarithmic centroid size \((\log_{10}\text{CS})\) of all configurations of a growth stage were normalized to the proportional centroid size of the respective stage to the sum of all growth stages \((\log_{10}\text{CS}_{\text{whorl } i}/\text{sum of all growth stages})\).
The principal components of the PCA on the weighted shapes were called wPC (weighted principal components).

If the relative $\log_{10} CS$ is used to normalize the centroid size of the configurations, this approach is extremely similar to a relative warp principal component analysis (RW-PCA) after Mitteroecker et al. (2004). To calculate a RW-PCA the shape matrix of a configuration is augmented by an additional column containing information about the $\log_{10} CS$ of the configurations. Whereas the R function `geomorph::combine.subsets` scales every configuration accordingly, the size information in the RW-shape matrices are stored in the additional variable. The resulting RW size-shape space can be analyzed with an ordinary PCA. Typically, RW size-shapes are strongly dominated by the $\log_{10} CS$ and PC1 therefore often accounts for more than 90% of the variation. If proportional $\log_{10} CS$-values ($\log_{10} CS_{configuration i} / \sum \log_{10} CS_{configurations}$), are used the analysis is less dominated by size, but the eigenvalues are very similar to the ones of the weighted PCA (wPCA). For simplicity the R function was used here.

Because weighting does not change the shapes itself, weighted and non-weighted developmental morphospaces look very similar. The main difference is the placement of the individual configurations within the morphospace. Whether weighted or non-weighted shape coordinates should be used, depends on what the analysis is intended to show. Whereas wPCA adds an allometric component to the analysis and maximizes the morphologic disparity between the growth stages, it minimizes the variation within the individual stages. Furthermore, it may suppress potential variation in the earliest stages.

To model the shapes at the maximum and minimum PC-values, the R function `geomorph::plotRefToTarget` was used. The function is designed to recalculate artificial Procrustes shape variables from the extreme PC-values in a morphospace.

The thin-plate spline deformation grids were calculated using the R function `geomorph::plotRefToTarget`.

Trajectory analysis. In morphometric studies, ontogenetic trajectories represent a series of measurement values of different ontogenetic stages of an individual or a group, called longitudinal data (Klingenberg 1998). To quantify the differences of the ontogenetic trajectories of the individual species, the R function `RRPP::trajectory.analysis` with 999 iterations was used. The function calculates a linear model with at least one categorical interaction variable (here: `Shape ~ Species * GrowthStage`) and assesses differences in path distance (magnitude differences), shape of the trajectories and the angle between the individual trajectories (trajectory correlation) (Collyer & Adams 2013).

If weighted shape-coordinates were used, the artificial size-shape relationship could overlay true differences between the trajectories. Therefore, only non-weighted shape coordinates were analyzed in the trajectory analysis.

Results

Ontogenetic morphospaces. Ontogenetic morphospaces are a mean to visualize whether the ontogenetic development of two or more individuals differ. Thereby, the ontogenetic trajectory...
of each specimen is reduced to one single point in the diagram. The first three components (PCs) of the Principal Component Analysis (PCA) on the shape coordinates with combined ontogenetic stages of an individual account for 58.3 % (PC1 = 38.3 %, PC2 = 13.4 %, PC3 = 6.6 %) of the total variation.

The convex hulls of the ontogenetic morphospace of most species reveal a large overlap (Fig. 7). Considering that there is a total of 352 primary components (x and y coordinates of 176 landmarks), but only 72 specimens, this result can be regarded as satisfactory.

Since PC1 accounts for 38.3 % of the total variation, the most important characteristic is the position of the individuals on the x-axis. In fact, there are certain species that primarily have negative PC1 values (B. vogdesi, F. nevadanus, F. occidentalis, M. spinifer, P. meeki) and some that are more restricted to positive PC1 values (G. blakei, G. mimetus, G. rotelliformis, G. weitschati, P. dunni). B. cordeyi and D. lawsoni, both cover a wider range of different PC1 values, but are generally restricted to negative PC2 and positive PC3 values.

Non-weighted developmental morphospace occupation. The first three components of the Principal Component Analysis (PCA) on the non-weighted shape space account for 93.8 % (PC1 = 78.5 %, PC2 = 11.5 %, PC3 = 3.1 %) of the total variation. The PCA plot (Fig. 8) of PC1 and PC2 shows that the whorls of early ontogenetic stages cover the lower left quadrant of the morphospace (negative PC1 and PC2 values), which characterizes extremely depressed, broad whorls with a flat venter (Fig. 9A). The center of the morphospace (PC1 equals 0 and PC2 is positive) is occupied by intermediate growth stages (juveniles), which have more quadratic outline with an only slightly triangular venter (Fig. 9B). The lower right quadrant (high PC1 and low PC2 values) is associated with the latest ontogenetic stages (adults). Towards maturity, the whorls increase mainly in height and have a clearly triangular and sometimes a keel (Figs. 9C, 10). Overall, there are two extreme adult shapes: Type (A) describes rather depressed, stout conches with only a slight overlap with the preceding whorl that are associated with much shorter ontogenetic trajectories and type (B) describes compressed conches with a clearly triangular venter and a higher degree of overlap. Type B species are associated with longer ontogenetic trajectories. For the assignment of the species to the two types see Tab. 2.

The developmental morphospace of beyrichitine and paraceratitine ammonoids comprises three basic shape stages, which are not separated by sharp borders (Figs. 9): 1) Earliest whorls: broad and very flat; 2) Juveniles: more rounded and depressed; 3) Adults: mostly high and compressed whorls. Since type A species stop their development at more rounded and depressed whorls, their adult whorls resemble the juvenile stages of type B (Fig. 10).

Ontogenetic trajectories in the non-weighted developmental morphospace. The ontogenetic trajectories of species in the non-weighted developmental morphospace share many similarities: They all have the similar direction and a slight parabolic shape (Fig. 8). The variation detected by the trajectory analysis (R function RRPP::trajectory.analysis) revealed significant differences between the trajectories of most species (Additional file 1).

Members of the type A ontogeny have smaller magnitudes of shape change and different trajectory shapes than members from type B ontogeny (path distances A: 0.2005–0.0225a; B:
For the assignment of the species to the two types see Table 2. Only pairwise differences of the path distance and the trajectory shape between type A and type B species are statistically significant (magnitude of shape change: 17 / 66 possible pairs; trajectory shape: 16 / 66 possible pairs).

Most species have statistically significant pairwise differences in trajectory slope (57 / 66 possible pairs). Species of all pairs with non-significant pairwise p-values are in the same ontogenetic group (i.e. both belong to type A or B). The trajectories of the nine pairs with non-significant differences in slope, have non-significant magnitudes and shapes also. However, none of the species that share a common slope have overlapping biostratigraphic ranges.

Weighted developmental morphospace occupation. The first three components of the Principal Component Analysis (PCA) on the weighted shape space account for 94.8 % (wPC$_1$ = 85.8 %, wPC$_2$ = 7 %, wPC$_3$ = 3.0 %) of the total variation. In comparison to the regular PCA, the wPCA is – by definition – more strongly controlled by the centroid size of the configurations, which is mainly expressed by the domination of PC1.

Similar to the regular PCA plot (Fig. 8), the wPCA morphospace (Fig. 11) can be divided into three main parts: 1) The extremely depressed whorls of the earliest whorls cover the lower left quadrant (low PC1 and PC2 values); 2) the center of the plot (PC1 equals 0, PC2 positive) is occupied by the more depressed whorls of juveniles and 3) adult whorls are associated with positive PC1 values. In contrast to the PCA, the wPCA reveals a more distinct separation of the type A and type B groups of adult whorls (see Tab. 2). Representatives of the more depressed type B clearly occupy the lower right quadrant (positive PC1 and negative PC2 values). This division into type A and B can also be seen in the mean shapes of the whorl 5.5 of the respective species (Fig. 10).

Discussion

Members of the family Ceratitidae show high intraspecific variation and strongly overlapping morphospaces (Tab. 1, Figs. 3–5). The ornamentation, which is often regarded as essential for the description of Mesozoic ammonoid groups (Klug et al. 2015), is not a unique characteristic among the family Ceratitidae. A better feature to delineate members of this family appears to be the shape of the whorl section. The latter, however, cannot be quantified adequately by traditional morphometric methods (Neige 1999). Accordingly, the utility of conventional taxonomic and morphological methods is limited in this regard. Here we utilize landmarks and semi-landmarks on ontogenetic cross-sections. The use of geometric morphometric methods (GMM) with respect to their content of ontogenetic developmental information and their usefulness in taxonomic descriptions were investigated.

Ontogenetic patterns in Ceratitidae. The ontogenetic trajectories of the studied species comprise the tri-phasic development from strongly depressed to weakly depressed to compressed whorl profiles (Figs. 8–11). Thereby, the studied species can be divided into two main ontogenetic groups: Type (A) Truncated trajectories that are associated with depressed adult whorls; type (B) longer, complete trajectories that lead to a compressed adult whorl shape. The
process of lengthening and shortening of the trajectories (i.e. related to changes in rate and
timing of the development) account for the ontogenetic differentiation of the species in focus.
This contrasts a previous traditional morphometric analysis by Bischof & Lehmann (2020) of
ptychitids, which revealed that the spherocone-cadicone morphospace is much more distinct. The
highly ontogenetic differentiated genus *Ptychites* directly differed through characteristic
ontogenetic trajectories.
While precise temporal growth rates of ammonoids are unknown (Knauss & Yacobucci 2014), a
basic assumption herein was that the individual species have similar coiling rates (i.e., the
individual species develop the same number of whorls in the course of their life). Modified
rate/timing of shape change in relation to any ancestor, descendent respectively, within an
evolutionary framework is called heterochrony (Zelditch et al. 2012, p.317). Interspecific
variation of the species in focus arises from an acceleration, a special case of peramorphosis; (for
discussion of this term, see Alberch et al. 1979; McNamara 2012) that allows type B species to
occupy an extended portion of the morphospace characterized by more compressed whorls.
Therefore, the studied ceratitids do not primarily differ in shape, but rather in the timing of the
development of individual shapes. Heterochrony as a mechanism in macroevolution is known to
be a key driving factor in phenotypic diversification (i.e., Alberch et al. 1979; Gerber et al. 2007;
quantification of the relationship between size and shape (i.e. heterochrony) will be the subject of
future studies.

Anisian ammonoid diversity. It is widely agreed that ammonoid diversity reached its maximum
during the Triassic period (Brayard et al. 2009; House 1993; Whiteside & Ward 2011). Thereby,
the late Anisian ammonoid diversity peak was mainly dominated by members of the family
Ceratitidae (Brayard et al. 2009; supporting material fig. S2). However, there is a growing
number of studies critically questioning diversity peaks by arguing that - to some extent - the
high diversity might be artificially inflated by taxonomic over-splitting (De Baets et al. 2013;
The results obtained here do justice to the general opinion that ontogenetic trajectories are a
powerful tool to describe (e.g., Korn & Klug 2007) and discriminate ammonoid species (e.g.,
Bischof & Lehmann 2020; Rieber 1962): The newly introduced methods succeeded in
statistically discriminate the pre-defined ceratitid species. Therefore, the high diversity of the
Anisian ammonoid assemblages of Nevada appears not to be artificially inflated and the alpha
taxonomy is regarded to be reasonable. However, the high morphological resemblances of the
investigated species cannot be denied. Therefore, this study supports the main idea of McGowan
(2004); McGowan (2005) and Brosse et al. (2013) that taxonomic diversity and morphological
disparity need not necessarily be closely linked.

Why you should take the trouble. There is no doubt that preparation and analysis of
ontogenetic cross sections involves a lot of work (Korn 2012). However, geometric
morphometric methods (GMMs) open the door to a new world of objectified, statistically
quantifiable descriptions. For example, in the case of the fauna described herein, conventional
descriptions and traditional morphometric methods did not succeed to differentiate species adequately. Landmarks and semi-landmarks, however, enable to statistically quantify shape variations of entire morphologies (Neige 1999) and allow to analyze shape and size separately (Hammer & Harper 2005). However, it is important to be aware of the fact that GMM carry no direct biological information. They help to understand if and how configurations differ, but not what the underlying mechanisms for their morphological development are. Therefore, GMM cannot be considered as being a phylogenetic or taxonomic tool per se. However, in the complex discoidal morphospace landmark-based approaches have proven to be useful to evaluate a priori defined taxonomic groups. The high resolution of the ontogenetic trajectories of the herein studied material was achieved owing to the accretionary planispiral growth of ammonoids with conservation of previous growth stages (Korn 2012), which adds an intuitive and precise time-component to the analysis. Even though it is likely that small-scale ontogenetic changes are overlooked at a measurement density of one measurement per 180 degrees, it can be assumed that no major developmental steps were skipped (Tajika & Klug 2020). Leaving out complete ontogenetic stages would most likely prevent the recognition of ontogenetic processes such as heterochrony. If, for example, only the earliest and latest stages of the ceratitid development were analyzed, representatives of type A and type B would differ fundamentally. The planispiral growth of many ammonoid conches therefore not only adds a time component to the analysis, but more importantly ensures that no important developmental steps were skipped. This reinforces the general opinion that ontogenetic trajectories of ammonoids are a powerful tool to study evolutionary developmental concepts such as ontogeny.

Conclusions

The Anisian ammonoid diversity peak was mainly dominated by the family Ceratitidae (Brayard et al. 2009; supporting material fig. S2). However, the individual ceratitid species show high intraspecific variation and sometimes completely overlapping morphospaces. Using conventional methods, individual ceratitid species are difficult to distinguish. It was therefore assumed that the high Anisian diversity in Nevada is artificially inflated by taxonomic over-splitting. Using a landmark-based geometric morphometric approach this study succeeded to differentiate the pre-defined taxonomic entities in the fossil material from the late Anisian Fossil Hill Member in Nevada, USA. Therefore, the high Anisian ammonoid diversity in western North America appears not to be unreasonably inflated. Furthermore, this study supports the hypothesis that taxonomic diversity and morphologic disparity of Triassic ammonoids were decoupled (Brosse et al. 2013; McGowan 2004; McGowan 2005). The largest interspecific differences of ceratitids are the result of alterations of the ontogenetic trajectories that are likely linked to heterochronic processes (i.e. differences in timing of ontogenetic changes). This means that the individual species of this group are not solely defined by the morphology they attain at a certain growth stage, but rather by the sum and timing of all of their ontogenetic stages. The statistical quantification of the relationship between size and shape (i.e. heterochrony) will be the subject of
future studies. These processes make an ad hoc distinction of the different species particularly challenging.

For a reliable traditional taxonomic identification of the species herein, it is necessary to have several individuals (Silberling 1962) with different ages of the same species from the same stratum. It has proven to be essential to analyze morphological variation of ceratitids not only between species but also across different ontogenetic stages. Therefore, the significance of ontogenetic studies on ammonoids with regard to taxonomic implications cannot be dismissed. The geometric morphometric methods introduced herein represent a big leap towards more quantitative and objective taxonomic descriptions of ammonoids.

Acknowledgements

We would like to thank D. Kuhlmann (now Messel, Germany) as former technician of the Geowissenschaftliche Sammlung Bremen for mechanical preparation of the material collected by our working group. M. Krogmann (Bremen, Germany) is thanked for his broad support in the artwork for this article. We are indebted to K. Boos for statistical support and the introduction to the R software. P. Embree (Orangevale, CA, USA) is thanked for broad support, including organization of field-campaigns, scientific information and the permission to collect on his private property. We thank the U.S. Department of the Interior, Bureau of Land Management (BLM, Nevada State office, Winnemucca District) for permission to collect samples in the Wilderness Study Area of the Augusta Mountains, Pershing County.

References

Collyer ML, and Adams DC. 2020. RRPP: Linear model evaluation with randomized residuals in a permutation procedure. *Available at https://cran.r-project.org/web/packages/RRPP.*

Monnet C, and Bucher H. 2005. New Middle and Late Anisian (Middle Triassic) ammonoid faunas from Northwestern Nevada (USA): Taxonomy and biochronology. *Fossils and Strata* 52:1-121.

540 Nichols KM, and Silberling NJ. 1977. Stratigraphy and depositional history of the Star Peak
541 Group (Triassic), northwestern Nevada. Special Paper Geological Society of America
542 178:1-73.
546 40:1178-1190.
547 Reyment RA. 2003. Morphometric analysis of variability in the shell of some Nigerian Turonian
550 (Ammonoidea, Cenomanian) by geometric morphometric methods. Cretaceous
551 Research 19:25-42.
552 Rieber H. 1962. Beobachtungen an Ammoniten aus dem Ober-Aalénien (Systematik und
554 Rohlf F. 2010. TPSDig2: A program for landmark development and analysisAvailable at:
556 Schlager S. 2017. Morpho and Rvcg – Shape Analysis in R: R-Packages for Geometric
557 Morphometrics, Shape Analysis and Surface Manipulations. In: Zheng G, Li S, and
559 Silberling NJ. 1962. Stratigraphic distribution of Middle Triassic ammonites at Fossil Hill,
561 Silberling NJ, and Nichols DJ. 1982. Middle Triassic molluscan fossils of biostratigraphic
562 significance from the Humboldt Range, northwestern Nevada. US Geological Survey
564 Simon MS, Korn D, and Koenemann S. 2010. Disparity fluctuations in Jurassic ammonoids by
565 means of conch geometry. Palaeogeography, Palaeoclimatology, Palaeoecology
566 292:520-531.
567 Simon MS, Korn D, and Koenemann S. 2011. Temporal patterns in disparity and diversity of the
568 Jurassic ammonoids of southern Germany. Fossil Record 14:77-94.
569 Smith JP. 1914. The Middle Triassic marine invertebrate faunas of North America.
571 Spath LF. 1934. Catalogue of the fossil Cephalopoda in the British Museum (Natural History):
574 Systematic Biology 47:254-263.
576 Tajika A, and Klug C. 2020. How many ontogenetic points are needed to accurately describe
577 the ontogeny of a cephalopod conch? A case study of the modern nautilid Nautilus
578 pompilius. PeerJ 8:e8849.
580 phragmocone chamber volumes throughout ontogeny in the modern nautilid Nautilus
582 Van Bocxlaer B, and Schultheiß R. 2010. Comparison of morphometric techniques for shapes
583 with few homologous landmarks based on machine-learning approaches to biological
585 Whiteside JH, and Ward PD. 2011. Ammonoid diversity and disparity track episodes of chaotic
Figure 1

Location of the study area in NW Nevada, USA. The Fossil Hill and the Muller Canyon localities are marked. Figure adapted from (Bischof & Lehmann 2020; fig. 1).
Figure 2

Biostratigraphic distribution of fossil material and synoptic lithostratigraphic sections of the outcrops in the Muller Canyon and Fossil Hill area. Stratigraphic section of Muller Canyon adapted from (Bischof & Lehmann 2020; fig. 2).

Gray areas in stratigraphic column: Calcareous siltstone; white areas: lenticular limestone, box width refers to weathering profile.
<table>
<thead>
<tr>
<th>Zone Subzone</th>
<th>Biostratigraphic occurrence</th>
<th>Lithostratigraphy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladinian</td>
<td></td>
<td>Fossil Hill ~10 m</td>
</tr>
<tr>
<td>Frechites occidentalis</td>
<td>Paranevadites gabbii</td>
<td>P. occidentalis</td>
</tr>
<tr>
<td></td>
<td>Paraneva. furlongi</td>
<td>P. meeki</td>
</tr>
<tr>
<td></td>
<td>Neva. humboldtensis</td>
<td>P. dunni</td>
</tr>
<tr>
<td></td>
<td>Nevadites hyatti</td>
<td></td>
</tr>
<tr>
<td>Parafrechites meeki</td>
<td>Parafrechites dunni</td>
<td>G. rotelliformis</td>
</tr>
<tr>
<td></td>
<td>Parafrechites meeki</td>
<td>G. blakei</td>
</tr>
<tr>
<td></td>
<td>Frechites nevadanus</td>
<td>G. nevadanus</td>
</tr>
<tr>
<td>late Anisian</td>
<td>Gymnotoceras blakei</td>
<td>M. spinifer</td>
</tr>
<tr>
<td></td>
<td>Brackites vogdesi</td>
<td>G. spinifer</td>
</tr>
<tr>
<td></td>
<td>Marcouxites spinifer</td>
<td>M. cordeyi</td>
</tr>
<tr>
<td></td>
<td>Dixieceras lawsoni</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rieber. transfornis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Billingsites cordeyi</td>
<td></td>
</tr>
</tbody>
</table>

Explanations
- ❄️ >10 specimens
- 10–100 specimens
- ❄️ > 100 specimens
- Triangles Specimens herein

Muller Canyon ~10 m
Ceratitid ammonoids from the Anisian (Middle Triassic) Fossil Hill Member of NW Nevada, USA.

Figure 4

Ceratitid ammonoids from the Anisian (Middle Triassic) Fossil Hill Member of NW Nevada, USA.

A–D) Gymnotoceras blakei (Gabb, 1864), (A, B) GSUB C12243, (C, D) GSUB C12264; E–H: Parafrechites dunni (Smith, 1914), (E, F) GSUB C9946 (G, H) GSUB C12906; I–L: Frechites occidentalis (Smith 1914), (I, J) GSUB C8998, (K, L) GSUB C13251; M–P: Gymnotoceras rotelliformis (Meek, 1877), (M, N) GSUB C11594, (O, P) GSUB C11702.
Figure 5

Ceratitid ammonoids from the Anisian (Middle Triassic) Fossil Hill Member of NW Nevada, USA.

Figure 6

Digitized sketch of high-precision cross-section of an ammonoid specimen meeting the initial chamber (protoconch) with position of landmarks on last two half whorls. Filled crosses: fixed landmarks; empty crosses: sliding landmarks; black numbers: numbers

Definition of fixed landmarks: 1) venter of preceding whorl; 2) venter of whorl; 3 and 4) ventral shoulder or point of highest curvature; 5 and 6) maximum width; 7 and 8) Umbilical seam
Figure 7

Ontogenetic morphospace of all species analyzed. A) Principal Component 1 and 2; B) Principal component 1 and 3.
Figure 8

Developmental morphospace with PCA of Procrustes shape variables. Point size refers to growth stage. Deformation grids of the mean shape to the modeled shapes of the extreme values for PC1 and PC2.
Figure 9

Mean shapes of growth stages 0.5, 3.0 and 5.5.

A) whorl 0.5 B) whorl 3.0 C) whorl 5.5
Figure 10

TPS spline of mean shape of whorl 5.5 of all species in this study (grey) plotted against the mean shape of whorl 5.5 of the respective species (black).
Figure 11

Developmental morphospace with PCA of weighted Procrustes shape variables. Point size refers to growth stage. Deformation grids of the mean shape to the modeled shapes of the extreme values for PC1 and PC2.
Table 1 (on next page)

Morphological comparison of the species in focus. For biostratigraphic distribution see Figure 2.

N: Number of specimens; U: maximum umbilical diameter; W: maximum whorl width; D: maximum diameter of conch. Measurement values and ratios based on material herein. More detailed information on the studied species was published by Silberling & Nichols (1982) and Monnet & Bucher (2005).
<table>
<thead>
<tr>
<th>Species</th>
<th>Total number of volutions</th>
<th>Venter and conch outline</th>
<th>Sculpture</th>
<th>Dmax [mm]</th>
<th>U/D</th>
<th>W/D</th>
<th>Figure herein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beyrichitinae Spath, 1934</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billingsites cordeyi Monnet & Bucher, 2005</td>
<td>6</td>
<td>6–6.5</td>
<td>Slightly angular ventral shoulder, Very weak developed keel</td>
<td>Falcoid, prorsiradiate ribs, sometimes branched, Nodes at branching points</td>
<td>34.3</td>
<td>min: 0.17</td>
<td>max: 0.24</td>
</tr>
<tr>
<td>Dixieceras lawsoni (Smith, 1914)</td>
<td>10</td>
<td>6–7</td>
<td>Stout, discoidal outline, Rounded ventral shoulders</td>
<td>Falcoid, prorsiradiate ribs, sometimes branched, Umbilical thickening of whorls</td>
<td>57.7</td>
<td>min: 0.19</td>
<td>max: 0.25</td>
</tr>
<tr>
<td>Frechites nevadanus (Mojsisovics 1888)</td>
<td>6</td>
<td>5.5–6</td>
<td>Subrectangular outline, Clearly developed keel</td>
<td>Strong, falcoid, prorsiradiate ribs, sometimes branched, Adults: Pronounced tubercles at lower flank</td>
<td>28.9</td>
<td>min: 0.29</td>
<td>max: 0.37</td>
</tr>
<tr>
<td>Frechites occidentalis (Smith 1914)</td>
<td>7</td>
<td>6–7</td>
<td>Angular ventral shoulder, Sometimes very weak developed keel</td>
<td>Strong, slightly prorsiradiate ribs, some rare tubercles, Towards maturity ribbing fades</td>
<td>42.6</td>
<td>min: 0.24</td>
<td>max: 0.27</td>
</tr>
<tr>
<td>Gymnotoceras blakei (Gabb, 1864)</td>
<td>5</td>
<td>5.5–6</td>
<td>Discoidal outline, Rounded ventral shoulders, weak keel</td>
<td>Falcoid, prorsiradiate, unbranched ribs, Towards maturity fading ribs and megastraeae</td>
<td>37.8</td>
<td>min: 0.15</td>
<td>max: 0.28</td>
</tr>
<tr>
<td>Gymnotoceras mimetus Monnet & Bucher 2005</td>
<td>9</td>
<td>6–6.5</td>
<td>Discoidal to subrectangular outline, Rounded ventral shoulders, no keel</td>
<td>Megastraeae and weak falcoid, prorsiradiate ribs, slightly swelling towards umbilicus</td>
<td>43.0</td>
<td>min: 0.14</td>
<td>max: 0.22</td>
</tr>
<tr>
<td>Species</td>
<td>Minimum</td>
<td>Maximum</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnotoceras rotelliformis</td>
<td>6</td>
<td>6</td>
<td>Stout discoidal outline, very weak keel, Rounded ventral shoulders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Regular, slightly prorsiradiate ribs Towards maturity ribbing slightly fades</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34.3 min: 0.17 max: 0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.32 min: 0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4M–P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnotoceras weitschatii</td>
<td>3</td>
<td>6</td>
<td>Compressed, discoidal outline Perfectly rounded shoulders, no keel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monnet & Bucher 2005</td>
<td></td>
<td></td>
<td>Megastriae and weak falcoid, prorsiradiate ribs, slightly swelling towards umbilicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28.4 min: 0.17 max: 0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.29 min: 0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5A–E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parafrechites durni</td>
<td>5</td>
<td>5.5—6.5</td>
<td>Stout discoidal outline, sometimes keel, Rounded to subangular ventral shoulders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, 1914</td>
<td></td>
<td></td>
<td>Regular but weak, slightly prorsiradiate ribs Towards maturity ribbing slightly fades</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35.2 min: 0.18 max: 0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.31 min: 0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4E–H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parafrechites meeki</td>
<td>5</td>
<td>5.5—6.5</td>
<td>Subrectangular outline Strong keel, subangular shoulders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mojsisovics 1888</td>
<td></td>
<td></td>
<td>Strong and regular, falcoid, prorsiradiate ribs, sometimes branched</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32.1 min: 0.22 max: 0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.34 min: 0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5O–R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraceratitinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silberling, 1962</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brackites vogdesi</td>
<td>4</td>
<td>6—7</td>
<td>Subrectangular outline, slightly rounded shoulders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, 1904</td>
<td></td>
<td></td>
<td>Regular, falcoid, branched, prorsiradiate ribs Tubercles at branching point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29.6 min: 0.28 max: 0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.35 min: 0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3E–H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marcouxites spinifer</td>
<td>6</td>
<td>5.5—6.5</td>
<td>Subrectangular outline, angular shoulder Clearly developed keel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, 1914</td>
<td></td>
<td></td>
<td>Strong and regular, falcoid, prorsiradiate ribs Tubercles and spines at branching point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25.8 min: 0.26 max: 0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.38 min: 0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5F–J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 (on next page)

Summary and explanation on the three different ontogenetic types. Heterochronic terms as defined by McNamara (2012).
<table>
<thead>
<tr>
<th>Type</th>
<th>Species</th>
<th>Heterochrony</th>
<th>Adult whorl shapes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>F. nevadanus</td>
<td>Paedomorph</td>
<td>depressed, stout conches, only slight overlap with preceding whorl</td>
</tr>
<tr>
<td></td>
<td>F. occidentalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. spinifer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. vogdesi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. meeki</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B. cordeyi</td>
<td>Peramorph</td>
<td>compressed conches, more pronounced venter, more overlap with preceding whorl</td>
</tr>
<tr>
<td></td>
<td>D. lawsoni</td>
<td>(Acceleration)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. blakei</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. mimetus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. rotelliformis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. weitschati</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. dunni</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1