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Brigita Gylytė*, Sigita Jurkonienė, Reda Cimmperman, Vaidevutis Šveikauskas
and Levonas Manusadžianas*

Institute of Botany, Nature Research Centre, Vilnius, Lithuania
*These authors contributed equally to this work.

ABSTRACT
Cells of characean algae are attractive for plant cell physiologists because of their
large size and their close relation to higher plant cells. The objective of our study
was to evaluate the purity of the compartments (cell wall, cytoplasm with plastids,
mitochondria, nuclei and endomembrane system, and vacuole) separatedmechanically
from the internodal cells ofNitellopsis obtusa using enzymatic markers. These included
α-mannosidase and malate dehydrogenase, vacuolar and cytoplasmic enzymes, respec-
tively. The biomarkers applied revealed the degree of compartment contamination
with the material from unwanted cell parts. The cell wall was contaminated slightly
by vacuole and cytoplasm residuals, respectively by 12.3 and 1.96% of corresponding
biomarker activities. Relatively high activity of vacuolar marker in the cell wall could
be associated with the cell vacuoles in the multicellular structure of the nodes. The
biomarkers confirmed highly purified vacuolar (99.5%) and cytoplasmic (86.7%)
compartments. Purity estimation of the cell fractions enabled reevaluating nCuO
related Cu concentrations in the compartments of charophyte cell. The internalisation
of CuO nanoparticles in N. obtusa cell occurred already after 0.5h. In general, the
approach seems to be useful for assessing the accumulation and distribution of various
xenobiotics and/or metabolites within plant cell. All this justifies N.obtusa internodal
cells as a model organism for modern studies in cell biology and nanotoxicology.

Subjects Biochemistry, Cell Biology, Plant Science, Freshwater Biology
Keywords Biomarkers, Cell compartments, Cell wall, Cytoplasm, Vacuole, Nitellopsis obtusa,
CuO nanoparticles

INTRODUCTION
Starry stonewort Nitellopsis obtusa is a benthic alga which is a bioindicator of clean fresh
and brackish water bodies. The giant internodal stem cells ofN. obtusa species belonging to
the family Characeae are a suitable model for studying various responses to environmental
factors including electrophysiological and enzymatic responses, and for cell survival
experiments (Beilby & Shepherd, 1989; Beilby & Casanova, 2014; Gylytė et al., 2015). The
internodal cell of N. obtusa has a cylindrical shape, typical to all characeans, and can
grow to an approximate length of 30 cm and a diameter of 1–2 mm. Because of their
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large size and the close relation of Characeae to higher plants (Qiu, 2008; Nishiyama et
al., 2018), internodal cells of N. obtusa are an excellent model for plant research (Turmel,
Otis & Lemieux, 2003; Foissner & Wasteneys, 2014). Moreover, due to the huge vacuole
that occupies 90–95% of the mature cell volume, rigid cell wall, and thin protoplasm
layer it is possible mechanically separate these large subcellular compartments. Isolated
compartments of characean cells have been used to study radioactively labelled metal
accumulation (Hampson, 1967; Marčiulioniene et al., 2016), localisation and dynamics
of metabolites in the vacuole (Oikawa et al., 2011) or identification of nanoparticles in
specific cell compartments (Manusadžianas et al., 2017). Recently, internodal cells ofChara
australis, along with other characeans, have been proposed as amodel organism formodern
biological studies at the single-cell level as well (Oikawa et al., 2011; Pertl-Obermeyer et al.,
2018).

Single-cell fractionation is the process used to separate cellular compartments while
preserving the individual functions of each component. Marker enzymes are used for
determining the purity of cell fractions and the degree of contamination with unwanted
parts of the cell: membranes, organelles or debris of nucleus, as well as to conclude whether
isolated compartments remain functional following isolation procedures (Shimaoka,
Ohnishi & Sazuka, 2004; Robert et al., 2007). Giant cells of Characeae have always been
attractive to plant biologists. For example, based on an examination of vacuolar enzymes
in Chara corallina, it has been suggested that the cytoplasmic proteases contribute to
cellular protein turnover contrary to proteases in the central vacuole (Moriyasu, 1995).
Plant vacuoles have various kinds of hydrolytic enzymes, including acid phosphatase,
α-mannosidase, proteinase, carboxypeptidase and RNase (Kimura, Hess & Stur, 1999; Tan
et al., 2019). α-Mannosidase activity has been used as a marker for intact vacuoles isolated
from Arabidopsis suspension-cultured cells to validate the purity of the vacuole for each
analysis (Ohnishi et al., 2018) as well as for vacuoles isolated from mesophyll leaf cells of
tobacco and barley (Saunders & Gillespie, 1984; Kaiser et al., 1986). Chanda et al. (2009)
have also confirmed α-mannosidase as a vacuole marker and showed a 35-fold enrichment
of its activity in the vesicle-vacuole fraction of the filamentous fungusAspergillus parasiticus.
Thus, using this indicative vacuolar marker will allow quantitatively characterise possible
contamination of other cell compartments by vacuolar sap during their isolation.

Generally, enzymes show compartment-specific localisation in plant cells. Dehydroge-
nases, including malate dehydrogenase, are one of the most extensively studied enzymes.
NAD-dependent malate dehydrogenase is an enzyme very commonly occurring in plants
(McMillin & Scandalios, 1980; Yudina, 2012). In particular, malate dehydrogenase activity
is a cytoplasm marker, and its high activity makes the enzyme a reliable and convenient
tool, which can effectively be used in the identification of this cell compartment (Chanda et
al., 2009; Schreier et al., 2018). Besides, the purity of the isolated cytoplasmic solution has
been assayed by malate dehydrogenase as a cytoplasm marker in macrophytic algae cells
of C. australis (Oikawa et al., 2011). NADP-dependent isoforms of malate dehydrogenase
were found in chloroplasts (Gietl, 1992; Selinski & Scheibe, 2019).

In our previous work, several fractions have been mechanically isolated from the cell
of N. obtusa, namely cell wall, vacuole, the cytoplasm with chloroplasts and the mixture
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of vacuole and cytoplasm. Then cell fractionation technique has been applied to assess
the location of accumulated CuO nanoparticles (Manusadžianas et al., 2017). However, to
uphold the findings of this study, further specification of the procedure is needed, since the
degree of possible contamination among themain cell compartments remained unclear. For
example, although vacuolar sap had been verified by its higher acidity (pH5.4–5.5) (Gyenes
et al., 1978) than that of cytoplasm, the presence of cytoplasm residues in the cell wall and/or
vacuole compartments that could occur during the cell fractionation has not been taken
into account. It is important to validate the cell fractionation procedure because charophyte
cell is a suitablemodel for studying the localization of different toxicants and/ormetabolites
in the cell, and is of relevance for researchers working in plant cell physiology/toxicology
(Schwab et al., 2015; Lv, Christie & Zhang, 2019). Therefore, the objective of our study was
to re-examine the fractionation procedure, evaluate the purity of obtained fractions, and
re-estimate the accumulation of the nCuO in the compartments of the internodal cells of
N. obtusa. The enzymatic markers for fraction purity included α-mannosidase and malate
dehydrogenase, vacuolar and cytoplasmic enzymes, respectively.

MATERIALS AND METHODS
Algae material
Macrophytic algae Nitellopsis obtusa (Desv.) J. Groves, was collected from Lake Obelija
(54◦29′N, 23◦83′E), south-east Lithuania. Separated from thallus (Fig. 1A), matured
internodal cells, the 2nd, 3rd or 4th internode from the holdfast (each 10–25 cm in length),
were stored at 18–24 ◦C in glass aquariums filled with equal parts of non-chlorinated tap
water and artificial pond water containing (mM): 0.1 KH2PO4, 1.0 NaHCO3, 0.4 CaCl2,
0.1 Mg(NO3)2 and 0.1 MgSO4 (unbuffered, pH 7.0–7.8).

Fractionation of internodal cells
The fractionation of internodal cell was mainly done as previously described in
Manusadžianas et al. (2017). Specifically, a single cell was placed on a filter paper, air-
dried for∼1 min until the surface was opaque. One end of the internodal cell was cut with
scalpel at approximately 4mmdistance from the node (Figs. 1B–1C), after the loss of turgor
pressure, a condition in which a cell bends on the spatula and loses its cylindrical shape
(Gylytė et al., 2015). One or two drops were obtained from the cell when it was cautiously
held by the non-cut node in a vertical position above the microtube (Fig. 1D). The collected
fraction of colourless sap represents the vacuole compartment. The internodal cells (15–20)
were used to collect 0.51 ± 0.014 mL (mean ± sd, n= 3) of vacuolar sap. Then the rest of
the cell intracellular content was squeezed by fingers along the cell surface up to the cut
end (Fig. 1E). This fraction (0.96 ± 0.044 mL, n= 3) comprises the rest of the vacuole
and cytoplasm with the organelles (Fig. 1F). After centrifugation at 10,000 rpm for 7
min (Beilby & Shepherd, 1989) (Labnet PrismTM R Refrigerated Microcentrifuge, Edison,
NJ, USA), the obtained supernatant and residue (0.12 ± 0.04 mL, n= 3) were used for
biomarker identification. Cell wall fraction consisted of cut nodes and what was left after
the separation of intracellular content. Before enzyme activity measurements, the obtained
cell walls were homogenised with deionised water (0.1 g tissue/0.4 mL water) and then
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Figure 1 Macrophytic algaeNitellopsis obtusa and fractionation steps of the internodal cell. (A) Thal-
lus; arrow shows a stem internodal cell. (B) Intact internodal cell; red dashed line shows an approximate
place of dissection. (C) Internodal cell fragment with the node. (D) Drop of the vacuolar sap at the node-
less cell end. (E) Cell intracellular content extruded on the glass plate by squeezing and the cell wall. (F)
Intact chloroplasts in a squeezed intracellular content.

Full-size DOI: 10.7717/peerj.10930/fig-1

immediately filtered through batiste material. Overall, a single internodal cell was separated
into the following fractions: vacuolar sap, cytoplasm-vacuole mix (squeezed intracellular
content without previously dripped vacuolar sap), the supernatant and the residue of
the centrifuged cytoplasm-vacuolar mix, total intracellular content (all the squeezed cell
interior content), and the cell wall. The pH of each fraction was measured with HI-1330
pH combination electrode (Hanna Instruments, Woonsocket, USA).

Vacuolar marker assay
The purity of vacuolar fraction was examined measuring the activity of the specific marker
enzyme α-mannosidase (Saunders & Gillespie, 1984; Kaiser et al., 1986; Chanda et al., 2009;
Ohnishi et al., 2018). The activity of this enzyme was measured by a method adapted from
Oikawa et al. (2011). 4-Nitrophenyl-a-D-mannopyranoside (PNP-a-Man) was used as a
synthetic substrate for the α-mannosidase assay. Each of the fraction samples (30 µL with
protein content 0.2–1.5 µg) was added to the reaction mix containing 50 µL of 5 mM
PNP-a-Man and 100 mM citrate buffer (pH 5.6). After incubation at 37 ◦C for 1 h, the
reaction was stopped by adding 750 µL of 200 mM Na2CO3 solution. The absorbance of
the released p-nitrophenol was measured at 405 nm (Analytik Jena SPECORD R©210PLUS,
Jena, Germany). The specific activity was expressed in µmol of p-nitrophenol produced
per min per mg of protein content.
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Cytoplasmic marker assay
Malate dehydrogenase activity was assayed as a marker enzyme for cytoplasm (Oikawa
et al., 2011; Chanda et al., 2009). Malate dehydrogenase is an enzyme that catalyses the
interconversion between malate and oxaloacetate by using NAD+/NADH as a cofactor.
Malate dehydrogenase assay for each of the analysed fractions was performed using final
concentrations of 50 mM HEPES (pH 7.5), 350 µM NADH, and 1 mM oxaloacetate in
the reaction medium. The volume of 30 µL of the sample was added to 1 mL of reaction
medium pre-incubated at 30 ◦C. Enzymatic activities were determined according to
the NADH absorbance changes at 340 nm (Analytik Jena SPECORD R©210PLUS, Jena,
Germany) following the addition of the sample. Enzyme specific activity was expressed in
pmol of malate formed per min per mg of protein content.

Protein content measurement
Protein content was measured using the Bradford dye-binding procedure (Bradford, 1976).

Photosynthetic pigments assay
The analysis of the content of photosynthetic pigments (chlorophyll a and b, and total
carotenoids) in vacuolar and centrifuged vacuolar fractions ofN. obtusa cells was performed
after Wellburn (1994). Vacuolar and centrifuged vacuolar fractions were extracted with N,
N-dimethylformamide (Sigma-Aldrich, Germany) at 4 ◦C in the dark for 24 h. The optical
density of the extracts was measured at 480 nm, 647 nm, and 664 nm.

CuO nanoparticles experiment
The suspension of CuO nanoparticles (Sigma-Aldrich, particle size <50 nm, mean 30
nm) was prepared according toManusadžianas et al. (2012). Before fractionation, the cells
were exposed to 100 mg/L nCuO suspensions for 30 min (three independent replicates).
Preparation of algae, exposure conditions and Cu concentration measurements in cell
fractions are described in detail inManusadžianas et al. (2017).

Statistical analysis
The obtained data were based on three individual experiments with three replicates each
performed on different dates. To evaluate the variation in themeasured activities of enzyme
biomarkers in various cell fractions, the mean of the three experiments (n= 3) and 95%
confidence intervals of normal distribution was calculated. Normality was checked by the
Shapiro–Wilk test. To detect biomarker activity differences among the fractions, two data
sets, distinctly for each biomarker, were analysed by one-way ANOVA, and the significance
of the differences between mean values was calculated by Tukey’s post hoc test at p< 0.05.
Before ANOVA, Levene’s test was applied for variance homogeneity. The analysis was
carried out using the software PASW Statistics 18.0 (Predictive Analytics Software, IBM).

RESULTS AND DISCUSSION
Internodal cells of Nitellopsis obtusa were partitioned to obtain a vacuolar sap, the
supernatant of the centrifuged cytoplasm-vacuole mix (without dripped vacuolar sap),
the residue of centrifuged cytoplasm-vacuolar mix (without dripped vacuolar sap), total
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Figure 2 Activities of α-mannosidase in isolated fractions ofNitellopsis obtusa cells (mean± 95% CI).
Vac, vacuole; Cyt-Vac mix (supernatant), supernatant of centrifuged mixture of cytoplasm and vacuole;
Cyt-Vac mix (residue), residue of centrifuged mixture of cytoplasm and vacuole; CW, cell wall. Percent-
ages are presented in relation to α-mannosidase activity in vacuolar fraction (100%). Different letters indi-
cate significant difference among the means (p< 0.05).

Full-size DOI: 10.7717/peerj.10930/fig-2

intracellular content and the cell wall. To confirm the purity of the isolated fractions and
thus to attribute each of them to a particular compartment, the activities of two enzymes,
α-mannosidase vacuolar biomarker (Fig. 2) and malate dehydrogenase cytoplasmic
biomarker (Fig. 3) (Oikawa et al., 2011; Saunders & Gillespie, 1984), were determined
for each fraction. The necessity to validate the compartment separation procedure came
from our previous studies on CuO nanoparticles accumulation in the whole cell (Gylytė et
al., 2015) and its main compartments (Manusadžianas et al., 2017). The effect mechanism
of these nanoparticles to N. obtusa cells included a direct penetration of nCuO into the cell
interior (Manusadžianas et al., 2012). However, the purity of obtained fractions and thus
the procedure that has been used were not assessed quantitatively.
α-Mannosidase activity in vacuolar fraction comprised 278 ± 100 µmol min−1 mg

protein−1 (mean ± 95% CI). The activity decreased more than half in the supernatant of
centrifuged cytoplasm-vacuole mix (Cyt-Vac mix), leaving 47.2% of that of the vacuolar
fraction (Fig. 2). The lowest α-mannosidase activities were measured in the residue of
Cyt-Vac mix and cell wall fractions, respectively 13.3% and 12.3% concerning that of the
vacuole, which shows a low degree of contamination of these fractions by vacuolar sap.

The activity of malate dehydrogenase in the residue of Cyt-Vac mix comprised 163 ±
26 pmol min−1 mg protein−1 (mean ± 95% CI) (Fig. 3). The activities in other fractions
were negligible, i.e., comprising 0.51%, 0.80% and 1.96%, respectively in the vacuole, the
supernatant of Cyt-Vac mix and the cell wall, to that measured in the residue of Cyt-Vac
mix fraction (Fig. 3). The results show very low contamination of vacuole and cell wall
fractions by the cytoplasm material. Concerning the supernatant of Cyt-Vac mix, it has
to be mentioned that marginal activity of malate dehydrogenase measured in this fraction
suggests very low or absence of cytoplasmmaterial in that supernatant. The properties of the
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Figure 3 Activities of malate dehydrogenase in isolated fractions ofNitellopsis obtusa cells (mean±

95% CI). Vac, vacuole; Cyt-Vac mix (supernatant), supernatant of centrifuged mixture of cytoplasm and
vacuole; Cyt-Vac mix (residue), residue of centrifuged mixture of cytoplasm and vacuole; CW, cell wall.
Percentages presented in relation to malate dehydrogenase activity in cytoplasmic fraction (100%). Differ-
ent letters indicate significant difference among the means (p< 0.05).

Full-size DOI: 10.7717/peerj.10930/fig-3

supernatant of the Cyt-Vac mix would largely depend on whether the chloroplasts remain
intact or broken after cell squeezing. Photosynthetic pigments, i.e., chlorophylls a and b,
and total carotenoids (Car), were analysed to determine whether Vac and Cyt-Vac mix
(supernatant) fractions were contaminated with chloroplast debris. The results obtained
showed that the fractions contained only negligible concentrations of some of the analysed
pigments (in µg mL−1, mean ± sd, n= 3): 1.8 ± 0.1 (Chl a) and 6.2 ± 0.4 (Chl b) in Vac
fraction, and 2.3 ± 0.1 (Chl b) in Cyt-Vac fraction. All this allowed assigning the residue
of centrifuged Cyt-Vac mix to the cytoplasm compartment.

Decreased α-mannosidase activity in the supernatant of the cytoplasm-vacuole mix
(Fig. 2) can be partially explained by the shift of pH value from 5.4 to 5.65 during the
isolation procedure. It has been found that the maximum activity of α-mannosidase
isolated from various plants is around pH 5, and the activity decreases sharply with the
decrease in acidity (Hamayasu et al., 1997; Tejavath & Nadimpalli, 2014; Woo et al., 2004).
The α-mannosidase activity in the residue of the Cyt-Vac mix (13.3%, Fig. 2) can be
linked to contamination by vacuolar sap. However, we cannot strictly exclude the presence
of α-mannosidase originating from ER (Van Der Wilden & Chrispeels, 1983) or other
organelles, e.g., Golgi (De Marchis, Bellucci & Pompa, 2013). It should be mentioned that
α-mannosidase activity has been measured in the ER of the seeds of Phaseolus vulgaris
(Van Der Wilden & Chrispeels, 1983), but it has not been confirmed for mature plants.
In our study, corresponding enzyme activities measured in the cell wall fraction revealed
12.3% contamination by vacuolar sap (Fig. 2) and 1.96% contamination by cytoplasm
(Fig. 3). It seems that we overestimated the percent of α-mannosidase activity in the cell
wall fraction compared to that of cytoplasm since the cell wall fraction was considered
to include the nodes. The nodal complex consists of numerous small cells (Fig. 1C) that
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have their vacuoles. To check a possible influence of the vacuoles of the nodal cells, we
explored α-mannosidase activity in the cell wall tubes with or without the nodes. Indeed,
α-mannosidase activity measured in the cell wall tubes was approximately 1.7-fold lower
than that in the cell walls including nodes, respectively, 27.1 ± 13.6 and 46.8 ± 22.2 µmol
min−1 mg protein−1 (mean ± sd, n= 3).

By using similar compartment separation technique and enzymatic markers in the
cells of Chara australis, Oikawa et al. (2011) have reported the isolation of high-purity
vacuolar and cytoplasm content compartments, 99.9% and 93.1%, respectively. Our
results with N. obtusa cells indicated 99.5% and 86.7% purity of vacuolar and cytoplasmic
compartments as well as cell wall compartment contaminated slightly by cytoplasmic
and vacuolar material. It has to be mentioned that the Japanese team has separated the
internodal cell into two parts, the single vacuole, and the rest of the cell, including the
cell wall. Besides, according to our results, the total intracellular content showed 8.50 ±
2.49 pmol min−1.mg protein−1 activity of malate dehydrogenase (mean ± sd, n= 3), i.e.,
comprising 5.2% in relation to malate dehydrogenase activity of that of cytoplasm. Thus,
the volume of the vacuole ofN. obtusa internodal cell can be accounted for 95% of the total
cell volume. The data coincide with the radioactively labelled ion fluxes measurements in
N. obtusa based on which the volume of cytoplasm occupies up to 5% of that of the cell
(MacRobbie & Dainty, 1958). ForNitella, it has been found that cytoplasm occupies at least
10% of the physical volume of the cell (Saltman & Christensen, 1961).

To summarise, after examining the fractionation procedure and evaluating the purity of
isolated cell fractions by using enzymatic markers, we can identify the fractions as belonging
to main cell compartments, i.e., the vacuolar sap (99.5% purity) represents high purity
vacuole; the supernatant of Cyt-Vac mix (without dripped vacuolar sap) represents vacuole
with lowered, due to changing acidity, α-mannosidase activity; the residue of centrifuged
Cyt-Vac mix represents cytoplasm (86.7% purity); total intracellular content represents
5.2% of cytoplasm; and the cell wall (contaminated by 12.3 and 1.96% of vacuole and
cytoplasm, respectively).

In our previous work (Manusadžianas et al., 2017), a similar cell fractionation technique
has been applied to assess the location of accumulated CuO nanoparticles in the
compartments ofN. obtusa cells treated by 100 mg/L nCuO for 3 h. In the present study, we
report data obtained after exposure of the cells for 0.5 h. The calculations in Table 1 have
been done based on 10% cytoplasm volume of the whole cell volume (before re-estimation)
and taking 5.2% of the cytoplasm volume based on the findings of the present study (after
re-estimation). The data confirm that the internalisation of CuO nanoparticles occurs
already after 0.5 h exposure to nCuO and does not significantly differ from that of 3 h
irrespective of the compartment. Re-estimation showed a substantial shift in accumulation
of CuO nanoparticles within the compartments. This is obvious with the cytoplasm where
Cu concentration increased roughly as much as twice at both exposure times.

In general, isolationmethods used in higher plant physiology involvemultistep floatation
gradient-, density gradient- or differential centrifugation. The technique discussed in our
study allows separating internodal cell of N. obtusa into three compartments: vacuolar,
cytoplasmic (with chloroplasts and other membranes) and cell wall. It has some advantage
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Table 1 Copper concentration in the compartments ofN. obtusa cells treated by 100 mg/L nCuO for 30 minutes and 3 hours. Data represent
mean standard deviation of three independent replicates. The data in 4th column (*) are from a previous study (Manusadžianas et al., 2017).

Compartment/Exposure
time

30 min 3 h

before re-estimation after re-estimation before re-estimation* after re-estimation

Cell wall (mg/g DW) 0.93± 0.57 0.93± 0.57 1.22± 0.23 1.22± 0.23
Vacuole (mg/L) 0.14± 0.09 0.13± 0.07 0.12± 0.04 0.18± 0.05
Cytoplasm (mg/L) 1.30± 0.37 2.39± 0.74 1.44± 0.55 2.98± 1.17

over other methods. In particular, the perfusion method (Sakano & Tazawa, 1984) or
isolation of the vacuole from higher plant protoplasts (Robert et al., 2007; Skaliter et al.,
2018) are superior methods for isolating a pure, single vacuole from a single mature cell;
however, the first one is somewhat time-consuming, while another is also quite expensive.
The procedure described in the present study can be conducted on turgorless cells within
seconds.

CONCLUSIONS
Isolating of charophyte cell main compartments, i.e., vacuole, cytoplasm and cell wall by
using mechanical manipulation proved to be a reliable method for separating different
fractions of N. obtusa cell. Application of α-mannosidase and malate dehydrogenase,
vacuolar and cytoplasmic biomarkers, respectively, confirmed high purity of obtained
vacuolar (99.5%) and cytoplasmic (86.7%) fractions. Cell wall fraction was contaminated
slightly by vacuole and cytoplasm residues, respectively 12.3 and 1.96% of corresponding
biomarker activities. The higher contamination by vacuolar component in the cell wall
fraction could be caused by the vacuoles from the numerous small cells in the nodes.
Estimation of the purity of mechanically separated cell fractions enabled reevaluating CuO
related Cu concentrations in the compartments of charophyte cell.
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• Brigita Gylytė conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.
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