

1 Putative carboxylesterase gene identification and their
2 expression patterns in *Hyphantria cunea* (Drury)

3 Jia Ye^{1†}, Dingze Mang^{2†}, Ke Kang^{1,3}, Cheng Chen¹, Xiaoqing Zhang¹, Yanping Tang¹,

4 Endang R. Purba⁴, Liwen Song⁵, Qing-He Zhang⁶, Longwa Zhang^{1*}

5 ¹ Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of

6 Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture,

7 Anhui Agricultural University, Hefei, 230036, China

8 ² Graduate School of Bio-Applications and Systems Engineering, Tokyo University of

9 Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan

10 ³ Anhui Forestry Bureau, Hefei, 230001, China

11 ⁴ Structural Cellular Biology Unit, Okinawa Institute of Science and Technology Graduate

12 University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan

13 ⁵ Jilin Provincial Academy of Forestry Sciences, Changchun, 130031, China

14 ⁶ Sterling International, Inc., Spokane, WA, 99216-1616, USA

15 [†]: These authors contributed equally to this work.

16 Corresponding Author:

17 Longwa Zhang

18 School of Forestry & Landscape Architecture, Anhui Agricultural University, No. 130,

19 Changjiang West Road, Hefei 230036, P. R. China.

20 E-mail: zhanglw@ahau.edu.cn

21 **Abstract**

22 The olfactory system is important for behavioral activities of insects to recognize internal and
23 external volatile stimuli in the environment. Insect odorant degrading enzymes (ODEs),
24 including antennal-specific carboxylesterases (CXEs), are known to degrade redundant
25 odorant molecules or to hydrolyze important olfactory sex pheromone components and plant
26 volatiles. Compared to many well-studied Type-I sex pheromone-producing lepidopteran
27 species, the molecular mechanisms of the olfactory system of Type-II sex pheromone-
28 producing *Hyphantria cunea* (Drury) remain poorly understood. In the current study, we first
29 identified a total of ten CXE genes based on our previous *H. cunea* antennal transcriptomic
30 data. We constructed a phylogenetic tree to, compared motif patterns *H. cunea* and other –
31 between lepidopteran insect CXEs, and used quantitative PCR to investigate the gene
32 expression of *H. cunea* CXEs (HcunCXEs). Our results indicate that HcunCXEs are highly
33 expressed in antennae, legs and wings, suggesting a potential function in degrading sex
34 pheromone components, host plant volatiles, and other xenobiotics. This study not only
35 provides a theoretical basis for subsequent olfactory mechanism studies on *H. cunea*, but also
36 offers some new insights into functions and evolutionary characteristics of CXEs in
37 lepidopteran insects. From a practical point of view, these HcunCXEs might represent
38 meaningful targets for developing behavioral interference control strategies against *H. cunea*.
39
40
41

42 **Introduction**

Commented [MB1]: This doesn't read properly. Right now, it reads like the behavioral activities of insects recognize the stimuli, not the insects themselves. Suggest, "The olfactory system of insects is important for behavioral activities as it recognizes internal and external volatile stimuli in the environment."

Commented [MB2]: This doesn't really tell us anything.
What was the phylogenetic tree used for?

Commented [MB3]: This was removed from the manuscript with the previous revision.

43 A complete insect olfactory process requires the participation and cooperation of various
44 olfaction-related proteins (Scott *et al.*, 2001; Vogt, 2003; Leal, 2013). During the process,
45 external liposoluble odor molecules first pass through the polar pores on the sensillum
46 surface, then enter the lymph under the integument where they further combine with odorant
47 binding proteins (OBPs) before being transferred to the dendritic membrane of olfactory
48 receptor neurons (ORNs) (Tegoni, Campanacci & Cambillau, 2004; Leal, 2013; Pelosi *et al.*,
49 2018). The molecule-bound odorant receptors (ORs) then convert the chemical signals into
50 electrical signals that are transmitted to the central nervous system through axons of the
51 ORNs (Song *et al.*, 2008). This whole process guides insects to make relevant physiological
52 responses and behavioral decisions. Once the signal transmission is completed, redundant
53 odorant molecules need to be degraded or inactivated by odorant degrading enzymes (ODEs)
54 in the antennal sensilla; otherwise, the odorant receptors will remain in a stimulated state,
55 which may lead to poor spatio-temporal resolution of the odor signal, and pose fatal hazards
56 to the insects (Vogt & Riddiford, 1981; Steinbrecht, 1998; Durand *et al.*, 2010b; Leal, 2013).
57 ODEs degrade redundant odorant molecules in the lymph of antennal sensilla and within the
58 cells (He *et al.*, 2014a). Traditionally, ODEs can be divided into five categories based on the
59 structural difference of various target substances: carboxylesterase (CXE), cytochrome P450
60 (CYP), alcohol dehydrogenase (AD), aldehyde oxidase (AOX) and glutathione *S*-transferase
61 (GST) (Rybaczynski, Reagan & Lerner, 1989; Ishida & Leal, 2005; Pelletier *et al.*, 2007;
62 Durand *et al.*, 2010a). However, ODEs of different categories have been shown to
63 catalytically interact with odor molecules of the same type and structure. It is currently

64 believed that the different enzyme families of ODEs may work together in degradation and
65 clearing of the same type of odor molecule (Steiner *et al.* 2019).

66 As primary metabolic enzymes, CXEs are widely distributed among insects, microbes and
67 plants (Guo & Wong, 2020). The active site contains several conserved serines, which
68 promote the cleavage and formation of ester bonds (Bornscheuer, 2002) and play an
69 important role in the metabolism of heterologous substances, pheromone degradation,
70 neurogenesis, developmental regulation and many other functions (Yu *et al.*, 2009). In
71 addition to the metabolism and detoxification of endobiotics and xenobiotics, another
72 important role of CXEs is to maintain the sensitivity of ORNs. The CXEs enable rapid
73 degradation of stray odors and prevent vulnerable ORNs from being continuously invaded by
74 harmful volatile xenobiotics (Li *et al.*, 2013). So far, a large number of genes encoding CXEs
75 have been identified and their functions in insect olfaction have also been investigated in
76 various insects, including *Drosophila melanogaster*, *Mamestra brassicae*, *Antheraea*
77 *polyphemus*, *Sesamia nonagrioides*, *Popillia japonica*, *Spodoptera littoralis*, *Epiphya*
78 *postvittana*, *Agrilus planipennis*, *S. litura*, *S. exigua*. (Vogt, Riddiford & Prestwich, 1985;
79 Maibèche-Coisne *et al.*, 2004; Ishida & Leal, 2005; Merlin *et al.*, 2007; Ishida & Leal 2008;
80 Jordan *et al.*, 2008; Durand *et al.*, 2010b; Mamidala *et al.*, 2013; He *et al.*, 2014a; He *et al.*,
81 2014b; He *et al.*, 2014c; He *et al.*, 2015; Chertemps *et al.* 2015). For instance, the *A.*
82 *polyphemus* pheromone-degrading enzyme CXE (*ApolPDE*) was shown to effectively
83 degrade its sex pheromone acetate component (Maibèche-Coisne *et al.*, 2004; Ishida & Leal,
84 2005). In *P. japonica* and *D. melanogaster*, the purified native or recombinant antennal CXEs
85 were found to degrade their sex pheromone constituents (Ishida & Leal, 2008; Younus *et al.*,

86 2014). In addition, some of CXEs from *S. exigua*, *S. littoralis* and *S. litura* were also found to
87 degrade both their sex pheromones and plant volatiles, as well as hydrolyze volatile esters
88 released from their natural food sources (Gomi, Inudo & Yamada, 2003; Durand et al., 2011;
89 Chertemps et al. 2015).

90 The fall webworm, *Hyphantria cunea* (Drury) (Lepidoptera; Erebidae), native to North
91 America, is a worldwide quarantine pest insect. This moth has now spread to most European
92 countries (except the Nordics), South Korea, North Korea and China, and lately to Central
93 Asia (Itô & Miyashita, 1968; Gomi, 2007). As an invasive pest, *H. cunea* was first found in
94 Dandong (Liaoning province, China) and has rapidly spread to Hebei and adjacent provinces
95 in China (Gomi, 2007; Yang et al., 2008; Tang, Su & Zhang, 2012a). In 2012, the State
96 Forestry Administration's Forest Pest Inspection and Identification Center identified the first
97 outbreak of *H. cunea* in Sanshan district, Wuhu City, Anhui Province, which was the
98 southernmost known outbreak of *H. cunea*. Its invasion has caused serious damage to local
99 forests, agricultural crops and landscaping/ornamental trees, resulting in great economic and
100 ecological losses. Thus, effective quarantine programs and environmentally safe pest
101 management solutions are needed to combat this serious invasive pest insect. More
102 importantly, a better understanding of its chemical ecology may facilitate more effective pest
103 management strategies. Previous studies have described four sex pheromone components,
104 including two straight chain aldehydes, (9Z,12Z)-octadecadienal (Z9, Z12-18Ald) and
105 (9Z,12Z,15Z)-octadecatrienal (Z9, Z12, Z15-18Ald), and two epoxides, (3Z,6Z,9S,10R)-9,10-
106 epoxy-3,6-heneicosadiene (Z3, Z6-9S, 10R-epoxy-21Hy) and (3Z,6Z,9S,10R)-9,10-epoxy-
107 1,3,6-heneicosatriene (1, Z3, Z6-9S, 10R-epoxy-21Hy), which are produced by female *H.*

108 *cunea* (M. et al., 1989). There are two major groups of moth sex pheromones: Type I
109 pheromones and Type II pheromones (M. et al., 1989; Millar, 2000; Ando et al., 2004). Type
110 I pheromones mostly contain C₁₀-C₁₈ unsaturated hydrocarbons and a terminal functional
111 group (>75% moth species). Type II pheromones lack a terminal functional group and
112 contain C₁₇-C₂₃ unsaturated hydrocarbons and epoxy derivatives (Millar, 2000, Ando et al.,
113 2004). Compared to many well-studied Type-I sex pheromone-producing moth species, the
114 molecular mechanisms of olfaction in the Type-II sex pheromone-producing *H. cunea* are
115 poorly understood. In the current study, a total of 10 CXE genes were identified based on our
116 previous *H. cunea* antennal transcriptomic data (Zhang et al., 2016). To understand the
117 potential physiological roles of these HcunCXEs, we constructed a phylogenetic tree to-
118 compare *H. cunea* and other motif patterns between different lepidopteran insect CXEs and
119 used reverse transcription-quantitative PCR (RT-qPCR) and reverse transcription PCR (RT-
120 PCR) to investigate the expression of these genes. We found that HcunCXEs displayed either
121 antennae- or leg/wing-biased expression. The differential expression pattern of HcunCXEs
122 suggests a potential function in degrading pesticides and/or other xenobiotics.

123

124

125 **Materials and Methods**

126 **Insect rearing and tissue collection**

127 *H. cunea* pupae were collected from a first-generation population at Baimao Town, Jiujiang
128 District, Wuhu City, Anhui province. Insect cages were used for rearing *H. cunea* pupae at
129 25°C, 70-80% RH and 14L:10D hour photoperiod. After eclosion, adults were provided with

Formatted: Font: 12 pt

Formatted: Font: 10 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

130 1% honey water. In the fourth hour of the second dark period, antennae, thoraxes, abdomens,
131 legs, and wings of virgin males and females were dissected under the microscope and pooled
132 by sex and body part. Male and female pupae and fourth instar larvae were also sampled.
133 Five samples were taken for each body part with the exception of antennae, of which 30 pairs
134 were collected by pulling out from the base of the antennae with tweezers. Dissected body
135 parts or whole-body samples were flash frozen in liquid nitrogen and stored at -80°C until
136 use.

137

138 **Gene annotation**

139 The *H. cunea* antennal transcriptome (PRJNA605323) (Zhang *et al.*, 2016) was used as a
140 reference sequence for mapping clean reads for each tested sample. Genet*tie* annotation was
141 carried out using Nr (NCBI non-redundant protein sequences), Nt (NCBI nucleotide), Pfam
142 (Protein family), KOG/COG (Clusters of Orthologous Groups of proteins/enKaryotic
143 Ortholog Groups), Swiss-Prot (A manually annotated and reviewed protein sequence
144 database), KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology)
145 databases (Fig. S3-6). Based on the results of gene annotation and BLAST comparison, the
146 candidate genes of HcunCXE were determined and named according to the identification
147 order from the antennal transcriptomic data.

148

149 **Homologous search and sequencing analysis of CXE genes in *H. cunea***

150 The *H. cunea* CXE genes were identified according to the BLAST results on NCBI. The
151 Open Reading Frame finder (ORF Finder) (<https://www.ncbi.nlm.nih.gov/orffinder/>) was

Commented [MB4]: Supplementary Figures should be labelled as they first appear. These should be 1-4, and those following should be relabeled.

152 used to search for the open reading frame of these CXE genes. An ExPASy tool
153 (http://web.expasy.org/compute_pi/) (Petersen *et al.*, 2011) was used to calculate their
154 theoretical isoelectric points (pI) and molecular weights (MW) of the full-length HcunCXEs
155 gene candidates, and SignalP-5.0 (<https://services.healthtech.dtu.dk/service.php?SignalP>) was
156 used to predict signal peptides of the CXE genes (Petersen *et al.*, 2011).

157

158 **Phylogenetic analysis of CXE genes in *H. cunea***

159 Genes related to the ODEs CXEs of *H. cunea* and other reported insects (*Seasamia inferens*,
160 *Spodoptera littoralis*, *Spodoptera exigua*, *Cnaphalocrocis medinalis*, *Bombyx mori*,
161 *Drosophila melanogaster*, *Tribolium castaneum*, *Mamestra brassicae* and *Antheraea*
162 *polyphemus*) were subjected to multi-sequence alignment withon MAFFT (Wong *et al.*,
163 2008). The most suitable evolutionary model was calculated with "X" program. The strategy
164 adopts the automatic mode and carries out multiple sequence alignment without attached
165 parameters. The phylogenetic tree was constructed using MEGA-X (Tamura *et al.*, 2011)
166 software and maximum likelihood method (1000 bootstrap repetitions) for systematic
167 evolution analysis. The adopted model was LG-G+I, and all sites were used for Gap/Missing
168 Data Treatment. Lastly, the phylogenetic tree was edited on the website iTOL
169 (<https://itol.embl.de/>). The genes of insect ODEs required for the phylogenetic tree are shown
170 in Supplementary Table S1.

171

172 **RNA extraction and synthesis of the first-strand cDNA**

Commented [MB5]: This doesn't make sense. What is "X" program? The reviewer was using "X" to refer you to name the program.

Commented [MB6]: I don't think there is an automatic mode in MAFFT. There are default settings. Is this what you mean? I am struggling to make sense of this. Can you please clarify?

173 The sampled body tissues were ground using a Tissue-Tearor which rapidly homogenized the
174 samples in DEPC-treated sterile water. TRIzol reagent (Invitrogen, USA) was used for
175 extraction and purification of total RNA from each sample according to the manufacturer's
176 instructions. The degradation and contamination of RNA was monitored on 1% agarose gels,
177 and purity was checked using a NanoPhotometer® spectrophotometer (IMPLEN, CA, USA).
178 First-stranded cDNA templates were synthesized using 1 µg of RNA template with the
179 PrimeScript™ RT reagent Kit according the manufacturer's instructions (TaKaRa, Japan).

Formatted: Font: 12 pt

180

181 RT-qPCR and RT-PCR analysis

182 Expression profiles of the identified *H. cunea* CXE genes in different body parts of adults
183 and two other life stages were analyzed. Tissues included antenna of 30 adults, legs of 5
184 adults of each sex, wings of 5 adults of each sex, thoraxes and abdomens of 5 adults of each
185 sex, 5 whole pupae of each sex and 5 larvae (fourth instar).

Commented [MB7]: Where these males or females?

186 The RT-qPCR and RT-PCR assays were employed for production of multiple copies of
187 DNA. RT-qPCR reaction was conducted in a 25µL reaction mixture system containing
188 12.5µL of SYBR® Premix Ex Taq II (Tli RNaseH Plus) (TaKaRa, Japan), 1µL of each
189 primer, 2µL of sample cDNA, and 8.5µL of sterilized H₂O.

190 The RT-qPCR cycles were set at 95°C for 30 sec, followed by 40 cycles at 95°C for 5
191 sec, 60°C for 30 sec. Each experiment was carried out in a CFX96 real-time PCR detection
192 instrument (Bio-rad, USA) using 8-strip PCR tubes (Bio-rad, USA). The reaction data were
193 recorded, and the dissolution curves were appended. Both Elongation factor-1 alpha (EF1-a)
194 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used as internal references.

195 Three biological replicates were performed, and the reproducibility confirmation of each RT-
196 qPCR reaction was replicated three times for each sample (Xu *et al.*, 2018).

Commented [MB8]: Need to refer to Supplementary Table 2 for the primers.

197 The variability of each gene expression in different body tissues was tested by using the
198 Q-Gene method (Muller *et al.*, 2002; Simon, 2003). The relative expression of mRNA of each
199 gene (mean \pm SD) was analyzed using one-way ANOVA (SPSS22.0 for Windows, IBM,
200 USA), followed by LSD and Duncan's tests at $\alpha = 0.05$. The MIQE guidelines have set to
201 minimum information for publication of quantitative real-time PCR experiments. GraphPad
202 Prism v5.0 Software (GraphPad Software Inc, CA, USA) was used for graphical
203 plotting/mapping.

Commented [MB9]: I am not sure what this means. Please clarify.

204 RT-PCR analysis was performed as follows: 94°C for 2 min of initiation, and 29 cycles
205 of 94°C for 30 sec, 52°C for 30 sec, 72°C for 15 sec, and 2 min at 72°C for final extension.
206 Elongation factor-1 alpha (EF1-a) gene of *H. cunea* was used as an internal reference. In
207 addition, instead of template cDNA, RNase-free water was used as the blank control. A total
208 of 25 μ L The reaction mixture containing contained 12.5 μ L of 2x Ex Taq MasterMix
209 (CWBIO, China), 1 μ L of each primer, 1 μ L of sample cDNA, and bring up to 25 μ L of
210 sterilized H₂O to bring the total to 25 μ L. A 10 μ L aliquot of each reaction product was used
211 for gel electrophoresis. The RT-PCR primer sequences of CXE genes in *H. cunea* are listed
212 in Supplementary Table S3.

Formatted: Subscript
Formatted: Font: (Default) Times New Roman

214 **Results**

215 **Identification of CXE genes from *H. cunea***

216 Based on a comparative analysis of the *H. cunea* antennal transcriptome using BLASTX
217 databases (Zhang *et al.*, 2016), a total of 10 HcunCXE genes were identified. BLASTX
218 comparison showed that these 10 HcunCXE genes have high homology with CXE genes of *S.*
219 *inferens*. Six HcunCXEs (HcunCXE1, HcunCXE3-5 and HcunCXE7-8) had complete ORFs
220 (Table 1). The molecular weights of these HcunCXEs ranged from 10.52 to 62.23 kDa (Table
221 2). Only HcunCXE7 and HcunCXE9 have predicted signal peptide sites (Table 2).

222

223 Phylogenetic analysis of *H. cunea* CXEs

224 To evaluate the relationship of HcunCXEs with other insects' CXEs, a phylogenetic tree was
225 constructed (Fig. 1). *As shown in Fig. 1, the* HcunCXEs genes could be divided into two
226 subclasses: extracellular gene subclass (generally secreted enzymes, substrates include
227 hormone and pheromones) and generally intracellular enzymes, dietary metabolism/
228 detoxification functions (Fig. 1). Three HcunCXEs (HcunCXE1, 7 and 9) were clustered in
229 the generally secreted enzymes subclass. The other 7 HcunCXEs including HcunCXE2-6,
230 HcunCXE8 and HcunCXE10 fell into the intracellular gene subclass. In addition, the clade of
231 intracellular gene subclass formed by HcunCXEs was most closely related to those formed by
232 *S. inferens*, *C. medinalis*, *S. exigua* and *S. littoralis* CXEs. Sequence alignments showed that
233 the amino acid identities of HcunCXE1 and SinfCXE18, HcunCXE9 and SinfCXE1,
234 HcunCXE7 and SinfCXE13, HcunCXE7 and CmedCXE5 were 73.9%, 71.3%, 74.6% and
235 65%, respectively (Fig. S2). These results suggest that the intracellular CXEs in *H. cunea*
236 shared a more recent common ancestor with the CXEs in *S. inferens*, *C. medinalis*, *S. exigua*
237 and *S. littoralis* than with the CXEs in other insect species.

Commented [MB10]: See earlier comment, these numbers
need to be updated so they are labelled in the order they
appear in the manuscript.

238

239 **Tissue distribution of HcunCXEs**

240 We next examined the expression of HcunCXE genes in adult female and male antennae, legs
241 and wings using RT-qPCR with primers specific for each of the 10 HcunCXEs genes (Table
242 S2). ~~As shown in Fig. 2 and Fig. S1, all~~ All HcunCXEs were expressed in the antennae (Fig.
243 2, Fig. S1). Among which, three HcunCXEs (HcunCXE4, 5, 8) were highly expressed in the
244 antennae (Fig. S1 C and D). Two HcunCXEs (HcunCXE1 and 3) were female-biased (Fig. 2

245 A and C) and two HcunCXEs (HcunCXE 9 and 10) were male-biased (Fig. 2 I and J);
246 although the sex-biased expression is not statistically significant, there is a clear numerical
247 difference between expression level in the sexes. These results ~~indicating~~ indicate that the
248 most abundant CXE genes in the antenna are not ~~the~~ extracellular CXEs that likely
249 participate in ~~the~~ volatile odorant degradation. The most abundant CXEs are likely involved
250 in primary metabolic activities and it would thus ~~make sense~~ seem logical that their
251 expression is much higher than for the other specialized CXEs in the antenna. The other
252 HcunCXEs, however, were equally expressed in both sexes. Comparing expression across
253 tissues, five HcunCXEs (2, 3, 5, 7 and 8) were highly expressed in the legs and wings (Fig.
254 S1 A and B). ~~HeunCXEs e~~ Expression of HcunCXE2 and HcunCXE7 was higher in the legs
255 or wings ~~was higher~~ than that in the antennae (Fig. 2 B and G).

256 To investigate whether these HcunCXEs are also expressed in the other body parts or life
257 stages, an RT-PCR experiment was carried out using total RNA samples taken from *H. cunea*
258 adults and other life stages (pupae and larvae). ~~As shown in Fig. 3, g~~ Gel electrophoresis
259 bands were generated from HcunCXE2 products from the adult thoraxes and abdomens (Fig.

Commented [MB11]: See earlier comments and update
appropriately.

260 3). In addition, faint/light bands of HcunCXE7 and HcunCXE8 were detected in both
261 thoraxes and abdomens, as well as the pupae. Interestingly, nine out of 10 HcunCXEs
262 (HcunCXE1-5 and 7-10) were also detected in the larvae, indicating that HcunCXEs are
263 widely expressed in the larval stage.

264

265 **Discussion**

266 In the current study, 10 putative CXE genes were identified based on our previous *H. cunea*
267 antennal transcriptomic data (Zhang *et al.*, 2016). All 10 *H. cunea* CXE genes showed ~~a~~high
268 homology to the CXE genes identified in *S. inferens* (identity \geq 59%, Fig. 1 and Table 1). We
269 speculated that some of these *H. cunea* CXE genes mainly degrade sex pheromone components
270 and host plant volatiles. Unlike many well-studied Type-I sex pheromone-producing
271 lepidopteran insects (>75% moth species), the *H. cunea* sex pheromone is comprised of Type
272 II pheromone components (Ando & Inomata, 2004). At present, most of the published moth
273 ODEs are from the Type I sex pheromone producing lepidopterans; thus, our study represents
274 the first report of ODE genes from a Type II sex pheromone-producing moth species. *H. cunea*
275 is an extremely polyphagous species with high fecundity (several hundred eggs/female) and
276 dispersal capacity. *H. cunea* larvae are generalists, capable of feeding on over 170 species of
277 host plants, including many broad-leaved tree species. To cope with such diverse host plant
278 species, this moth must have developed a series of olfactory receptor neurons to recognize
279 diverse plant volatiles (Zhang *et al.*, 2016). The number (n=10) of CXE genes we identified
280 from *H. cunea* was lower than those of other reported lepidopterans species: 19 in *Chilo*
281 *suppressalis*, 35 in the tea geometrid *Ectropis obliqua* Prout and 76 in *B. mori* (Yu *et al.*, 2009;

282 *Liu et al., 2015; Sun et al., 2017*). These results suggest that *H. cunea* does not seem to require
283 more CXEs, since the other ODEs including CYP, AD, AOX and GST are likely involved in
284 odorant degradation in olfactory processes. On the other hand, the difference in number of
285 CXEs in various species might result from differences in sample preparation and sequencing
286 method/depth. In addition, the ecological/evolutionary differences across species may also be
287 a reason. Insects have to adapt to their external environment²⁸⁷ different environments lead to
288 the formation of different physiological and behavioral characteristics.

289 The phylogenetic tree analysis showed that HcunCXE1, 7 and 9 belong to the
290 extracellular gene subclass, including the secretory enzymes that likely act on hormones and
291 pheromones (Fig. 1). The remaining 7 CXE genes fell into the intracellular gene subclass
292 (Fig. 1), including intracellular enzymes that mostly play roles in dietary metabolism and
293 detoxification. Chertemps et al. (2012) demonstrated that an extracellular CXE of *D.*
294 *melanogaster*, esterase-6 (EST-6), is responsible in or related to the sensory physiological
295 and behavioral responses to its pheromone. A subsequent study found that EST-6 was able to
296 degrade various volatile esters in vitro and function as expected for an ODE which plays a
297 role in the response of the flies to esters (Chertemps et al., 2012). Thus, these *H. cunea* CXE
298 genes (HcunCXE2, 3, 4, 5, 6, 8 and 10) may also affect the mating and courtship
299 competitions in *H. cunea* through degradation of some ester kairomones or plant
300 allelochemicals. On the other hand, based on the omnivorous nature of *H. cunea* and its
301 species-specific sex pheromone, these CXE genes may be ~~the-a~~ unique category of *H. cunea*
302 ~~to-which~~ degrade odor substances.

303 Antennal-specific or highly expressed esterases belong to the CXE type in the
304 carboxy/cholinesterases (CCEs) family. The first ODE was identified from *A. polyphemus*
305 (ApolSE) as an antenna-specific esterase, with a high ability to degrade the acetate
306 component (E6Z11-16: AC) of its pheromone blend (Vogt & Riddiford, 1981). Since then,
307 antennal-specific esterases have been cloned from *A. polyphemus* (Ishida & Leal, 2002) and
308 *Mamestra brassicae* Linnaeus (Maibèche-Coisne et al., 2004). Recent studies show that
309 many insect CXEs are expressed specifically in antennae, and their major functions in
310 olfactory process are to degrade odor molecules. Interestingly, the expressions of some
311 HcunCXEs in the legs and wings were found to be higher than those in the antennae
312 (HcunCXE2, 3 and 7). The ten *H. cunea* CXEs genes we identified through the gene
313 expression analysis had a low level of expressions in different body tissues of *H. cunea* adults
314 (Fig. 2 and Fig. S1). However, they were widely expressed in the larvae, which may be
315 related to their extremely broad host plant range that needs more CXEs to degrade large
316 amount of carboxylic acid esters. Our quantitative PCR results (Fig. 2 and Fig. S1) indicated
317 that some HcunCXEs genes were highly expressed in both male and female antennae.
318 HcunCXE1 and HcunCXE9 were belong to the same subclass with ApolPDE and
319 MbraCXE (Fig. 1). Previous studies have shown that ApolPDE and MbraCXE function as
320 pheromone degradation enzymes (Maibèche-Coisne et al., 2004; Ishida and Leal 2005).
321 These HcunCXEs are likely for degradation of sex-pheromones and/or plant volatiles both
322 from hosts or non-hosts. However, the HcunCXEs genes that were highly expressed in the
323 legs and wings might be related to the degradation of non-volatile substances for contact
324 signals. In addition, a previous study of SexiCXE14 and SexiCXE15 (antennae-enriched

325 carboxylesterase genes in *Spodoptera exigua*) showed that antenna bias expression plays a
326 role in the degradation of volatile substances and sex pheromones in plants (He *et al.*, 2015).
327 However, the expression of SexiCXE11 was much higher **level** in abdomen and wings, and
328 its activity in hydrolyzing plant volatile substances was stronger than that in degrading ester
329 sex pheromones (He *et al.*, 2019). In the current study, HcunCXE1, 3, 4, 5, 6, 8, 9, and 10
330 showed antenna-biased expression, while the expression of HcunCXE2 and 7 in legs and
331 wings was higher than that in antennae. These results suggested that HcunCXEs have
332 different functions and may participate in the degradation of host plant volatiles and/or other
333 xenobiotics.

334 CXEs play multiple key roles in the hydrolysis of carboxylic acids esters. CXEs also
335 include some metabolic enzymes that are associated with insecticide resistance (Li, Schuler &
336 Berenbaum, 2007). Many previous studies in insect CXEs **were** focused on their functions in
337 mediating insecticide resistance (Hemingway & Karunaratne, 1998; Li, Schuler &
338 Berenbaum, 2007). In contrast, the mechanisms underlying degradation of plant
339 allelochemicals are still unclear. It has been shown that phenolic glycosides can induce
340 expression of *Papilio canadensis* CXEs (Lindroth, 1989). Moreover, in *Lymantria dispar*, the
341 activities of CXEs were positively correlated with the larval survival, indicating that these
342 esterases might be involved in the glycoside metabolism (Lindroth, 1989; Lindroth &
343 Weisbrod, 1991). In the current study, nine out of 10 HcunCXEs were expressed in the larvae
344 (Fig. 3), indicating that the activities of HcunCXEs may positively correlate with survival of
345 *H. cunea* **larvallarvae**. In addition, a significant increase of CXE activity in the midgut of *S. litura* was observed during uptake of the plant glycoside rutin (Ghumare, Mukherjee &

347 *Sharma, 1989*). The CXEs in *Sitobion avenae* have been suggested to participate in gramine
348 detoxification (*Cai et al., 2009*). Quercetinrutin and 2-tridaconone were also found to induce
349 the activities of CXEs in *Helicoverpa Armigera* (*Gao et al., 1998; Mu, Pei & Gao, 2006*).
350 Although the gene expression of HcunCXEs in *H. cunea* midgut and some other tissues are
351 still unknown, based on these previous findings, it is reasonable to speculate that HcunCXEs
352 might also play multiple functions in *H. cunea* physiology and metabolism. Understanding
353 the specific function of HcunCXEs will require further analyses using in vitro and in vivo
354 methods.

355 Little is known about *H. cunea* olfaction mechanisms at the molecular levels, especially
356 concerning how CXEs degrade various semiochemicals in its chemical communication
357 system. Further research is needed to 1) understand the functions of antennal-specific CXEs
358 in *H. cunea* via cloning, expression and purification of these CXEs and enzymatic kinetic
359 analysis; 2) determine the locations/distributions of related CXEs by *in-situ* hybridization; 3)
360 evaluate the potential correlations between CXE transcription levels and their corresponding
361 electrophysiological and behavioral responses by silencing CXEs via RNA interference
362 (*Caplen, 2004*), and 4) ultimately discover the mode of action or functionality of CXEs in the
363 olfactory signal conduction (signal inactivation).

364

365 **Conclusions**

366 In summary, we identified 10 CXE genes in *H. cunea* by analyzing its antennal
367 transcriptomic data. These HcunCXEs displayed an antennae-or leg/wing-biased expression.
368 The ubiquitous expression of these HcunCXEs in different tissues and life stages suggest that

Commented [MB12]: This seems out of place. I think it would better follow the sentence on line 352-354.

369 they have multiple roles, *i.e.*, degradation of odor molecules, metabolism and detoxification of
370 dietary and environmental xenobiotics. Our findings provide a theoretical basis for further
371 studies on the olfactory mechanism of *H. cunea* and offer some new insights into functions
372 and evolutionary characteristics of CXEs in lepidopteran insects. From a practical point of
373 view, these HcunCXEs might represent meaningful targets for developing behavioral
374 interference control strategies against *H. cunea*.

375

376 **Acknowledgments**

377 We would like to thank Dr. Jacob D. Wickham (Managing Editor, Integrative Zoology), Dr.
378 Melissa Matthews and Dr. Hong Huat Hoh (OIST Graduate University, Japan) for editing the
379 manuscript, Dr. Tianci Gu and Zhenchen Wu for helpful suggestions.

380

381 **Competing Interests**

382 Dr. Qing-He Zhang is an employee of Sterling International, Inc., Spokane, WA, USA.

383

384 **References**

385 **Ando T, Inomata SI, Yamamoto M. 2004.** Lepidopteran sex pheromones. *Topics in*
386 *Current Chemistry* **239**:51-96 DOI [10.1007/b95449](https://doi.org/10.1007/b95449).

387 **Bailey TL, Johnson J, Grant CE, Noble WS. 2015.** The MEME Suite. *Nucleic Acids*
388 *Research* **43**(W1): W39-W49 DOI [10.1093/nar/gkv416](https://doi.org/10.1093/nar/gkv416).

389 **Bornscheuer UT.** **2002.** Microbial carboxyl esterases: classification, properties and
390 application in biocatalysis. *FEMS Microbiology Reviews* **26**(1):73-81 DOI
391 [10.1016/S0168-6445\(01\)00075-4](https://doi.org/10.1016/S0168-6445(01)00075-4).

392 **Cai QN, Han Y, Cao YZ, Hu Y, Zhao X, Bi JL.** **2009.** Detoxification of gramine by the
393 cereal aphid *Sitobion avenae*. *Journal of Chemical Ecology* **35**(3):320-325 DOI
394 [10.1007/s10886-009-9603-y](https://doi.org/10.1007/s10886-009-9603-y).

395 **Caplen N.** **2004.** Gene therapy progress and prospects. Downregulating gene expression: the
396 impact of RNA interference. *Gene therapy* **11**(16):1241-1248 DOI
397 [10.1038/sj.gt.3302324](https://doi.org/10.1038/sj.gt.3302324).

398 **Chertemps T, François A, Durand N, Rosell G, Dekker T, Lucas P, Maibèche-Coisne
399 M.** **2012.** A carboxylesterase, Esterase-6, modulates sensory physiological and
400 behavioral response dynamics to pheromone in *Drosophila*. *BMC biology* **10**(1):56
401 DOI [10.1186/1741-7007-10-56](https://doi.org/10.1186/1741-7007-10-56).

402 **Chertemps T, Younus F, Steiner C, Durand N, Coppin CW, Pandey G, Oakeshott JG,
403 and Maibeche M.** **2015.** An antennal carboxylesterase from *Drosophila*
404 *melanogaster*, esterase 6, is a candidate odorant-degrading enzyme toward food
405 odorants. *Frontiers in physiology* **6**:315 DOI [10.3389/fphys.2015.00315](https://doi.org/10.3389/fphys.2015.00315).

406 **Durand N, Carot-Sans G, Bozzolan F, Rosell G, Siaussat D, Debernard S, Chertemps T,
407 Maibèche-Coisne M.** **2011.** Degradation of pheromone and plant volatile
408 components by a same odorant-degrading enzyme in the cotton leafworm, *Spodoptera*
409 *littoralis*. *PLOS ONE* **6**(12):e29147-688 DOI [10.1371/journal.pone.0029147](https://doi.org/10.1371/journal.pone.0029147).

410 **Durand N, Carot-Sans G, Chertemps T, Bozzolan F, Party V, Renou M, Debernard S,**
411 **Rosell G, Maïbèche-Coisne M. 2010a.** Characterization of an antennal
412 carboxylesterase from the pest moth *Spodoptera littoralis* degrading a host plant
413 odorant. *PLOS ONE* **5(11)**:e15026 DOI [10.1371/journal.pone.0015026](https://doi.org/10.1371/journal.pone.0015026).

414 **Durand N, Carot-Sans G, Chertemps T, Montagné N, Jacquin-Joly E, Debernard S,**
415 **Maïbèche-Coisne M. 2010b.** A diversity of putative carboxylesterases are expressed
416 in the antennae of the noctuid moth *Spodoptera littoralis*. *Insect Molecular Biology*
417 **19(1)**:87-97 DOI [10.1111/j.1365-2583.2009.00939.x](https://doi.org/10.1111/j.1365-2583.2009.00939.x).

418 **Gao XW, Zhao Y, Wang X, Dong X, Zheng B. 1998.** Induction of carboxylesterase in
419 *Helicoverpa Armigera* by insecticides and plant allelochemicals. *Acta Entomologica*
420 *Sinica* **41**:5-11 DOI [10.16380/j.kcxb.1998.s1.002](https://doi.org/10.16380/j.kcxb.1998.s1.002).

421 **Ghumare S, Mukherjee S, Sharma R. 1989.** Effect of rutin on the neonate sensitivity,
422 dietary utilization and mid-gut carboxylesterase activity of *Spodoptera litura*
423 (Fabricius) (Lepidoptera: Noctuidae). *Proceedings: Animal Sciences* **98(6)**:399-404
424 DOI [10.1007/bf03179652](https://doi.org/10.1007/bf03179652).

425 **Gomi T. 2007.** Seasonal adaptations of the fall webworm *Hyphantria cunea* (Drury)
426 (Lepidoptera: Arctiidae) following its invasion of Japan. *Ecological Research*
427 **22(6)**:855-861 DOI [10.1007/s11284-006-0327-y](https://doi.org/10.1007/s11284-006-0327-y).

428 **Gomi T, Inudo M, Yamada D. 2003.** Local divergence in developmental traits within a
429 trivoltine area of *Hyphantria cunea* Drury (Lepidoptera: Arctiidae). *Entomological*
430 *Science* **6**:71-75 DOI [10.1046/j.1343-8786.2003.00010.x](https://doi.org/10.1046/j.1343-8786.2003.00010.x).

431 **Guo S, Wong SM. 2020.** A Conserved Carboxylesterase Inhibits Tobacco mosaic virus
432 (TMV) Accumulation in *Nicotiana benthamiana* Plants. *Viruses* **12**(2):195 DOI
433 [10.3390/v12020195](https://doi.org/10.3390/v12020195).

434 **He P, Mang DZ, Wang H, Wang MM, Ma YF, Wang J, Chen GL, Zhang F, and He M.**
435 **2019.** Molecular characterization and functional analysis of a novel candidate of
436 cuticle carboxylesterase in *Spodoptera exigua* degrading sex pheromones and plant
437 volatile esters. *Pesticide biochemistry and physiology* **163**:227-234 DOI
438 [10.1016/j.pestbp.2019.11.022](https://doi.org/10.1016/j.pestbp.2019.11.022).

439 **He P, Li ZQ, Liu CC, Liu SJ, Dong SL. 2014a.** Two esterases from the genus *Spodoptera*
440 degrade sex pheromones and plant volatiles. *Genome* **57**(4):201-208 DOI
441 [10.1139/gen-2014-0041](https://doi.org/10.1139/gen-2014-0041).

442 **He P, Zhang J, Li ZQ, Zhang YN, Yang K, Dong SL, He P. 2014b.** Functional
443 characterization of an antennal esterase from the noctuid moth, *Spodoptera exigua*.
444 *Archives of Insect Biochemistry and Physiology* **86**(2):85-99 DOI
445 [10.1002/arch.21164](https://doi.org/10.1002/arch.21164).

446 **He P, Zhang YN, Yang K, Li ZQ, Dong SL. 2015.** An antenna-biased carboxylesterase is
447 specifically active to plant volatiles in *Spodoptera exigua*. *Pesticide Biochemistry*
448 *Physiology* **123**:93-100 DOI [10.1016/j.pestbp.2015.03.009](https://doi.org/10.1016/j.pestbp.2015.03.009).

449 **He P, Zhang YN, Li ZQ, Yang K, Zhu JY, Liu SJ, Dong SL. 2014c.** An antennae-
450 enriched carboxylesterase from *Spodoptera exigua* displays degradation activity in
451 both plant volatiles and female sex pheromones. *Insect Molecular Biology* **23**(4):475-
452 486 DOI [10.1111/imb.12095](https://doi.org/10.1111/imb.12095).

453 **Hemingway J, Karunaratne S. 1998.** Mosquito carboxylesterases: a review of the
454 molecular biology and biochemistry of a major insecticide resistance mechanism.
455 *Medical and Veterinary Entomology* **12(1)**:1-12 DOI [10.1046/j.1365-2915.1998.00082.x](https://doi.org/10.1046/j.1365-2915.1998.00082.x).

456

457 **Ishida Y, Leal WS. 2002.** Cloning of putative odorant-degrading enzyme and integumental
458 esterase cDNAs from the wild silkworm, *Antheraea polyphemus*. *Insect Biochemistry
459 and Molecular Biology* **32(12)**:1775-1780 DOI [10.1016/S0965-1748\(02\)00136-4](https://doi.org/10.1016/S0965-1748(02)00136-4).

460 **Ishida Y, Leal WS. 2005.** Rapid inactivation of a moth pheromone. *Proceedings of the
461 National Academy of Sciences* **102(39)**:14075-14079 DOI [10.1073/pnas.0505340102](https://doi.org/10.1073/pnas.0505340102).

462 **Ishida Y, Leal WS. 2008.** Chiral discrimination of the Japanese beetle sex pheromone and a
463 behavioral antagonist by a pheromone-degrading enzyme. *Proceedings of the
464 National Academy Sciences* **105(26)**:9076-9080 DOI [10.1073/pnas.0802610105](https://doi.org/10.1073/pnas.0802610105).

465 **Itô Y, Miyashita K. 1968.** Biology of *Hyphantria cunea* Drury (Lepidoptera: arctiidae) in
466 Japan. V. Preliminary life tables and mortality data in urban areas. *Population
467 Ecology* **10(2)**:177-209 DOI [10.1007/BF02510872](https://doi.org/10.1007/BF02510872).

468 **Jordan M, Stanley D, Marshall S, De Silva D, Crowhurst R, Gleave A, Greenwood D,
469 Newcomb R. 2008.** Expressed sequence tags and proteomics of antennae from the
470 tortricid moth, *Epiphyas postvittana*. *Insect Molecular Biology* **17(4)**:361-373 DOI
471 [10.1111/j.1365-2583.2008.00812.x](https://doi.org/10.1111/j.1365-2583.2008.00812.x).

472 **Leal WS. 2013.** Odorant reception in insects: roles of receptors, binding proteins, and
473 degrading enzymes. *Annual Review of Entomology* **58**:373-391 DOI
474 [10.1146/annurev-ento-120811-153635](https://doi.org/10.1146/annurev-ento-120811-153635).

475 **Li X, Schuler MA, Berenbaum MR. 2007.** Molecular mechanisms of metabolic resistance to
476 synthetic and natural xenobiotics. *Annual Review of Entomology* **52**:231-253 DOI
477 [10.1146/annurev.ento.51.110104.151104](https://doi.org/10.1146/annurev.ento.51.110104.151104).

478 **Li Y, Farnsworth CA, Coppin CW, Teese MG, Liu JW, Scott C, Zhang X, Russell RJ, Oakeshott JG. 2013.** Organophosphate and pyrethroid hydrolase activities of mutant
479 esterases from the cotton bollworm *Helicoverpa armigera*. *PLOS ONE* **8(10)** DOI
480 [10.1371/journal.pone.0077685](https://doi.org/10.1371/journal.pone.0077685).

482 **Lindroth RL. 1989.** Host plant alteration of detoxication activity in *Papilio glaucus*.
483 *Entomologia Experimentalis et Applicata* **50(1)**:29-35 DOI [10.1007/BF00190125](https://doi.org/10.1007/BF00190125).

484 **Lindroth RL, Weisbrod AV. 1991.** Genetic variation in response of the gypsy moth to
485 aspen phenolic glycosides. *Biochemical Systematics and Ecology* **19(2)**:97-103 DOI
486 [10.1016/0305-1978\(91\)90031-T](https://doi.org/10.1016/0305-1978(91)90031-T).

487 **Liu S, Gong ZJ, Rao XJ, Li MY, Li SG. 2015.** Identification of putative carboxylesterase
488 and glutathione S-transferase genes from the antennae of the *Chilo suppressalis*
489 (Lepidoptera: Pyralidae). *Journal of Insect Science* **1**:1 DOI [10.1093/jisesa/iev082](https://doi.org/10.1093/jisesa/iev082).

490 **Maibèche-Coisne M, Merlin C, François MC, Queguiner I, Porcheron P, Jacquin-Joly
491 E. 2004.** Putative odorant-degrading esterase cDNA from the moth *Mamestra
492 brassicae*: cloning and expression patterns in male and female antennae. *Chemical
493 Senses* **29(5)**:381-390 DOI [10.1093/chemse/bjh039](https://doi.org/10.1093/chemse/bjh039).

494 **Mamidala P, Wijeratne AJ, Wijeratne S, Poland T, Qazi SS, Doucet D, Cusson M,
495 Beliveau C, Mittapalli O. 2013.** Identification of odor-processing genes in the

496 emerald ash borer, *Agrius planipennis*. *PLOS ONE* **8**(2):e56555 DOI
497 [10.1371/journal.pone.0056555](https://doi.org/10.1371/journal.pone.0056555).

498 **Merlin C, Rosell G, Carot-Sans G, François MC, Bozzolan F, Pelletier J, Jacquin-Joly**
499 **E, Guerrero A, Maïbèche-Coisne M.** 2007. Antennal esterase cDNAs from two pest
500 moths, *Spodoptera littoralis* and *Sesamia nonagrioides*, potentially involved in
501 odourant degradation. *Insect Molecular Biology* **16**(1):73-81 DOI [10.1111/j.1365-2583.2006.00702.x](https://doi.org/10.1111/j.1365-2583.2006.00702.x).

502

503 **Millar JG.** 2000. Polyene hydrocarbons and epoxides: A second major class of lepidopteran
504 sex attractant pheromones. *Annual Review of Entomology* **45**(1):575-604 DOI
505 [10.1146/annurev.ento.45.1.575](https://doi.org/10.1146/annurev.ento.45.1.575).

506 **Tóth M, Buser HR, Peña A, Peña A, Arn H, Moric K, Takeuchic T, Nikolaevad LN,**
507 **Kovalevd BG.** 1989. Identification of (3Z,6Z)-1,3,6-9,10-epoxyheneicosatriene and
508 (3Z,6Z)-1,3,6-9,10-epoxyeicosatriene in the sex pheromone of *hyphantria cunea*.
509 *Tetrahedron Letters* **30**(26):3405-3408 DOI [10.1016/S0040-4039\(00\)99256-6](https://doi.org/10.1016/S0040-4039(00)99256-6).

510 **Mu SF, Pei L, Gao XW.** 2006. Effects of quercetin on specific activity of carboxylesteras
511 and glutathione S-transferase in *Bemisia tabaci*. *Journal of Applied Entomology*
512 **43**(004):491-495 DOI [10.3969/j.issn.0452-8255.2006.04.014](https://doi.org/10.3969/j.issn.0452-8255.2006.04.014).

513 **Muller P, Janovjak H, Miserez A, Dobbie Z.** 2002. Processing of gene expression data
514 generated by quantitative real-time RT PCR. *Biotechniques* **32**(6):1372-1374 DOI
515 [10.1016/S1389-0344\(02\)00008-4](https://doi.org/10.1016/S1389-0344(02)00008-4).

516 **Pelletier J, Bozzolan F, Solvar M, François MC, Jacquin-Joly E, Maïbèche-Coisne M.**
517 2007. Identification of candidate aldehyde oxidases from the silkworm *Bombyx mori*

518 potentially involved in antennal pheromone degradation. *Gene* **404**(1-2):31-40 DOI
519 [10.1016/j.gene.2007.08.022](https://doi.org/10.1016/j.gene.2007.08.022).

520 **Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR. 2018.** Beyond chemoreception: diverse
521 tasks of soluble olfactory proteins in insects. *Biological Reviews* **93**(1):184-200 DOI
522 [10.1111/brv.12339](https://doi.org/10.1111/brv.12339).

523 **Petersen TN, Brunak S, Heijne G, Nielsen H. 2011.** SignalP 4.0: discriminating signal
524 peptides from transmembrane regions. *Nature Methods* **8**(10):785 DOI
525 [10.1038/nmeth.1701](https://doi.org/10.1038/nmeth.1701).

526 **Ranson H, Cladinos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger
527 MF, Collins FH, and Feyereisen R. 2002.** Evolution of Supergene Families
528 Associated with Insecticide Resistance. *Science* **298**(5591):179-181 DOI
529 [10.1126/science.1076781](https://doi.org/10.1126/science.1076781)

530 **Rybczynski R, Reagan J, Lerner MR. 1989.** A pheromone-degrading aldehyde oxidase in
531 the antennae of the moth *Manduca sexta*. *Journal of Neuroscience* **9**(4):1341-1353
532 DOI [10.1523/JNEUROSCI.09-04-01341.1989](https://doi.org/10.1523/JNEUROSCI.09-04-01341.1989).

533 **Scott K, Brady Jr B, Cravchik B, Morozov P, Rzhetsky A, Zuker C, Axel R. 2001.** A
534 chemosensory gene family encoding candidate gustatory and olfactory receptors in
535 *Drosophila*. *Cell* **104**(5):661-673 DOI [10.1016/S0092-8674\(01\)00263-X](https://doi.org/10.1016/S0092-8674(01)00263-X).

536 **Simon P. 2003.** Q-Gene: processing quantitative real-time RT-PCR data. *Bioinformatics*
537 **19**(11):1439-1440 DOI [10.1093/bioinformatics/btg157](https://doi.org/10.1093/bioinformatics/btg157).

538 **Song HG, Young Kwon J, Soo Han H, Bae YC, Moon C. 2008.** First contact to odors: our
539 current knowledge about odorant receptor. *Sensors* **8**(10):6303-6320 DOI
540 [10.3390/s8106303](https://doi.org/10.3390/s8106303).

541 **Steinbrecht RA. 1998.** Odorant-binding proteins: expression and function. *Annals of the
542 New York Academy of Sciences* **855**:323-332 DOI 10.1111/j.1749-
543 6632.1998.tb10591.x.

544 **Steiner C, Chertemps T, and Mabèche M. 2019.** Diversity of Biotransformation Enzymes
545 in Insect Antennae: Possible Roles in Odorant Inactivation and Xenobiotic
546 Processing. *Springer* 115-145 DOI 10.1007/978-3-030-05165-5_5.

547 **Su MW, Fang YL, Tao WQ, Yan GZ, Ma WE, and Zhang ZN. 2008.** Identification and
548 field evaluation of the sex pheromone of an invasive pest, the fall webworm
549 *Hyphantria cunea* in China. *Chinese Science Bulletin* **53**:555-560 DOI
550 [10.1007/s11434-008-0124-9](https://doi.org/10.1007/s11434-008-0124-9).

551 **Sun L, Wang Q, Wang Q, Zhang Y, Tang M, Guo H, Fu J, Xiao Q, Zhang Y, Zhang Y.**
552 **2017.** Identification and expression patterns of putative diversified carboxylesterases
553 in the tea geometrid *Ectropis obliqua* Prout. *Frontiers in Physiology* **8**:1085 DOI
554 [10.3389/fphys.2017.01085](https://doi.org/10.3389/fphys.2017.01085).

555 **Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011.** MEGA5:
556 molecular evolutionary genetics analysis using maximum likelihood, evolutionary
557 distance, and maximum parsimony methods. *Molecular Biology and Evolution*
558 **28**(10):2731-2739 DOI [10.1093/molbev/msr121](https://doi.org/10.1093/molbev/msr121).

559 **Tang R, Su M, Zhang Z. 2012a.** Electroantennogram responses of an invasive species fall
560 webworm (*Hyphantria cunea*) to host volatile compounds. *Chinese Science Bulletin*
561 **57(35):4560-4568 DOI 10.1007/s11434-012-5356-z.**

562 **Tang R, Zhang JP, Zhang ZN. 2012b.** Electrophysiological and behavioral responses of
563 male fall webworm moths (*Hyphantria cunea*) to herbivory-induced mulberry (*Morus*
564 *alba*) leaf volatiles. *PLOS ONE* **7(11)** DOI [10.1371/journal.pone.0049256](https://doi.org/10.1371/journal.pone.0049256).

565 **Tegoni M, Campanacci V, Cambillau C. 2004.** Structural aspects of sexual attraction and
566 chemical communication in insects. *Trends in Biochemical Sciences* **29(5):257-264**
567 DOI [10.1016/j.tibs.2004.03.003](https://doi.org/10.1016/j.tibs.2004.03.003).

568 **Vogt R. 2003.** 14-Biochemical diversity of odor detection: OBPs. ODEs and SNMPs. *Insect*
569 *Biochemistry and Molecular Biology* 397-451 DOI 10.1016/b978-012107151-
570 6/50016-5.

571 **Vogt RG, Riddiford LM. 1981.** Pheromone binding and inactivation by moth antennae.
572 *Nature* **293(5828):161-163 DOI 10.1038/293161a0.**

573 **Vogt RG, Riddiford LM, Prestwich GD. 1985.** Kinetic properties of a sex pheromone-
574 degrading enzyme: the sensillar esterase of *Antheraea polyphemus*. *Proceedings of*
575 *the National Academy of Sciences* **82(24):8827-8831 DOI 10.1073/pnas.82.24.8827.**

576 **Wong KM, Suchard MA, and Huelsenbeck JP. 2008.** Alignment Uncertainty and Genomic
577 Analysis. *Science* **319(5862): 473-476 DOI 10.1126/science.1151532.**

578 **Xu LT, Zhang YQ, Zhang SH, Deng JD, Lu M, Zhang LW, and Zhang J. 2018.**
579 Comparative analysis of the immune system of an invasive bark beetle, *Dendroctonus*

580 *valens*, infected by an entomopathogenic fungus. *Developmental & Comparative*
581 *Immunology* **88**:65-69 DOI [10.1016/j.dci.2018.07.002](https://doi.org/10.1016/j.dci.2018.07.002).

582 **Yang YC, Li WB, Tao J, Zong SX. 2019.** Antennal transcriptome analyses and olfactory
583 protein identification in an important wood-boring moth pest, *Strelzoviella insularis*
584 (Lepidoptera: Cossidae). *Scientific Reports* **9**:17951 DOI [10.1038/s41598-019-54455-w](https://doi.org/10.1038/s41598-019-54455-w).

585

586 **Yang Z, Wang X, Wei J, Qu H, Qiao X. 2008.** Survey of the native insect natural enemies
587 of *Hyphantria cunea* (Drury) (Lepidoptera: Arctiidae) in China. *Bulletin of*
588 *Entomological Research* **98**(3):293-302 DOI [10.1017/S0007485308005609](https://doi.org/10.1017/S0007485308005609).

589 **Younus F, Chertemps T, Pearce SL, Pandey G, Bozzolan F, Coppin CW, Russell RJ,**
590 **Maïbèche-Coisne M, Oakeshott JG. 2014.** Identification of candidate odorant
591 degrading gene/enzyme systems in the antennal transcriptome of *Drosophila*
592 *melanogaster*. *Insect Biochemistry and Molecular Biology* **53**:30-43 DOI
593 [10.1016/j.ibmb.2014.07.003](https://doi.org/10.1016/j.ibmb.2014.07.003).

594 **Yu QY, Lu C, Li WL, Xiang ZH, Zhang Z. 2009.** Annotation and expression of
595 carboxylesterases in the silkworm, *Bombyx mori*. *BMC genomics* **10**(1):553 DOI
596 [10.1186/1471-2164-10-553](https://doi.org/10.1186/1471-2164-10-553).

597 **Zhang LW, Kang K, Jiang SC, Zhang YN, Wang TT, Zhang J, Sun L, Yang YQ, Huang**
598 **CC, Jiang LY. 2016.** Analysis of the antennal transcriptome and insights into
599 olfactory genes in *Hyphantria cunea* (Drury). *PLOS ONE* **11**(10):e0154729 DOI
600 [10.1371/journal.pone.0164729](https://doi.org/10.1371/journal.pone.0164729).

601 **Zhang YN, Xia YH, Zhu JY, Li SY, and Dong SL. 2014.** Putative Pathway of Sex
602 Pheromone Biosynthesis and Degradation by Expression Patterns of Genes Identified
603 from Female Pheromone Gland and Adult Antenna of *Sesamia inferens* (Walker).

604 *Journal of Chemical Ecology* **40**(5):439-451 DOI [10.1007/s10886-014-0433-1](https://doi.org/10.1007/s10886-014-0433-1).

605

606

607

608

609

610

611

612 **Figure legends**

613 **Figure 1 Molecular phylogeny comparing HcunCXEs with CXEs from other insect**
614 **species.** 10 CEXs (HcunCXE1-10) from *H. cunea* (Hcun) and CXEs from *S. exigua* (Sexi), *C.*
medinalis (Cmed), *B. mori* (Bmor), *D. melanogaster* (Dmel), *T. castaneum* (Tcas), *S. inferens*
(Sinf), *S. littoralis* (Slit) were used to construct the phylogenetic tree. The phylogenetic tree

617 was aligned by MAFFT, and constructed by MEGA-X using maximum likelihood method. The

618 adopted model is LG-G+I, and the model value is shown in table 4 of additional materials.

619 1000 The Bootstrap bootstraps value of were used to create this the tree is 1000, which is to

620 integrate the branch length tree with the Bootstrap value tree and then beautify it. A:

621 Extracellular gene subclass (Generally secreted enzymes, substrates include hormone and

Commented [MB13]: There is no Table 4 in the supplementary materials. Please clarify.

622 pheromones); B: Generally intracellular enzymes, dietary metabolism/ detoxification functions;
623 C: juvenile hormone esterase (JHE); D: Nerouligins; E: acetylcholinesterases (AChE).

624

625 **Figure 2 Relative mRNA expression of *HcunCXEs* in *H. cunea* tissues.** (A-J) *HcunCXEs*
626 (*HcunCXE1, 2, 3, 4, 5, 6, 7, 8, 9 and 10*). FA, female antennae; MA, male antennae; L, legs;
627 W, wings. The relative mRNA levels were normalized to those of the *EF1-a* gene and
628 analyzed using the Q-gene method. All values are shown as the mean \pm SEM. The data were
629 analyzed by the least significant difference (LSD) test after one-way analysis of variance
630 (ANOVA). Different letters indicate significant differences between means ($P < 0.05$).

631

632 **Figure 3 RT-PCR analysis of *HcunCXEs* gene expression in tissues taken from *H. cunea*
633 adults and other life stages.** EF1-a was used as an internal control; NC, negative control with
634 no template in the reaction.

635

636 **Figure S1. Relative mRNA expression of *HcunCXEs* in *H. cunea* tissues.** The relative
637 mRNA levels were normalized to those of the *EF1-a* gene and analyzed using the Q-gene
638 method. All values are shown as the mean \pm SEM. The data were analyzed by the least
639 significant difference (LSD) test after one-way analysis of variance (ANOVA). Different
640 letters indicate significant differences between means ($P < 0.05$).

641
642 **Figure S2. Comparison of the amino acid sequences of *HcunCXEs* with CXEs proteins
643 from different species.** A, *HcunCXE1* with *SinfCXE18*; B, *HcunCXE9* and *SinfCXE1*; C,

Commented [MB14]: Need to explain the labels: "L", "W",
"MA", "FA"

644 HcunCXE7 with SinfCXE13 and CmedCXE5. The percentages on the right represent the amino acid
645 identities.

646

647 **Figure. S3 Homology analysis of *H. cunea* unigenes.** (A) E-value distribution. (B) Similarity
648 distribution. (C) Species distribution. All unigenes that had BLASTX annotations within the
649 NCBI nr database with a cutoff *E*-value of 10^{-5} were analyzed. The first hit of each sequence
650 was used for analysis.

651

652 **Figure. S4 Gene ontology (GO) assignment of *H. cunea* unigenes.** The GO classification
653 map was done by uploading the GO ID numbers of genes for their involvement in biological
654 processes, cellular components, and molecular functions.

655

656 **Figure. S5 Clusters of Orthologous Groups (KOG) classification of *H. cunea*.** The abscissa
657 letters along the x-axis represents is the name of 26 groups of KOG, and the ordinate-y-axis is
658 the ratio-percenatge of the number of genes annotated to the group to the total number of genes
659 annotated.

660

661 **Figure. S6 Kyoto Encyclopedia of Genes and Genomes (KEGG) classification of *H. cunea***
662 **unigene.** The *x*-axis indicates the percentage of annotated genes, and the *y*-axis indicates the
663 KEGG categories. The capital letters against the colored bars indicate five main categories: (A)
664 cellular processes, (B) environmental information processing, (C) genetic information
665 processing, (D) metabolism, and (E) organism systems.

666

667