Putative carboxylesterase gene identification and their expression patterns in *Hyphantria cunea* (Drury) (#49228)

First submission

Guidance from your Editor

Please submit by 2 Jul 2020 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

4 Figure file(s)

5 Table file(s)

2 Other file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Putative carboxylesterase gene identification and their expression patterns in *Hyphantria cunea* (Drury)

Jia Ye Equal first author, 1, Dingze Mang Equal first author, 2, Ke Kang 1, 3, Cheng Chen 1, Xiaoqing Zhang 1, Yanping Tang 1, Endang R. Purba 4, Liwen Song 5, Qing-He Zhang 6, Longwa Zhang Corresp. 1

Corresponding Author: Longwa Zhang Email address: zhanglw@ahau.edu.cn

Olfactory system is important for behavioral activities of insects to recognize internal and external volatile stimuli in the environment. Insect odorant degrading enzymes (ODEs) including antennal-specific carboxylesterases (CXEs) are known to degrade redundant odorant molecules or to hydrolyze olfactorily important sex pheromone components and plant volatiles. Compared to many well-studied Type-I sex pheromone-producing Lepidopteran species, the molecular mechanisms of the olfactory system of Type-II sex pheromone-producing *Hyphantria cunea* (Drury) remain poorly understood. In current study, we first identified a total of ten CXE genes based on our previous H. cunea transcriptomic data. We constructed a phylogenetic tree, compared motif-patterns between Lepidopteran CXEs, and used quantitative PCR to investigate the gene expression of H. cunea CXEs (HcunCXEs). Our results indicated that HcunCXEs are highly expressed in antennae, legs and wings, suggesting a potential function in degrading sex pheromone components, host plant volatiles, and other xenobiotics. This study not only provides a theoretical basis for subsequent olfactory mechanism studies on *H. cunea*, but also offers some new insights into functions and evolutionary characteristics of CXEs in lepidopteran insects. From a practical point of view, these HcunCXEs might represent meaningful targets for developing behavioral interference control strategies against *H. cunea*.

¹ Anhui Agricultural University, Hefei, China

² Tokyo University of Agriculture and Technology, Tyoko, Japan

Anhui Forestry Bureau, Hefei, China

⁴ Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan

⁵ Jilin Provincial Academy of Forestry Sciences, Changchun, China

⁶ Sterling International, Inc.,, Spokane, USA

- Putative carboxylesterase gene identification and their
- expression patterns in Hyphantria cunea (Drury)
- 3 Jia Ye^{1†}, Dingze Mang^{2†}, Ke Kang^{1,3}, Cheng Chen¹, Xiaoqing Zhang¹, Yanping Tang¹, Endang R.
- 4 Purba⁴, Liwen Song⁵, Qing-He Zhang⁶, Longwa Zhang^{1*}
- 5 ¹ Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal
- 6 Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui
- 7 Agricultural University, Hefei, 230036, China
- 8 ² Graduate School of Bio-Applications and Systems Engineering, Tokyo University of
- 9 Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
- 10 ³ Anhui Forestry Bureau, Hefei, 230001, China
- ⁴ Structural Cellular Biology Unit, Okinawa Institute of Science and Technology Graduate
- 12 University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- 13 ⁵ Jilin Provincial Academy of Forestry Sciences, Changchun, 130031, China
- 14 ⁶ Sterling International, Inc., Spokane, WA, 99216-1616, USA
- 15 †: These authors contributed equally to this work.
- 16 Corresponding Author:
- 17 Longwa Zhang
- 18 School of Forestry & Landscape Architecture, Anhui Agricultural University, No. 130,
- 19 Changjiang West Road, Hefei 230036, P. R. China.
- 20 E-mail: zhanglw@ahau.edu.cn

Λ	h	S	t٠	•	~	1
A	u	3	LI	a	G	L

Olfactory system is important for behavioral activities of insects to recognize internal and
external volatile stimuli in the environment. Insect odorant degrading enzymes (ODEs) including
antennal-specific carboxylesterases (CXEs) are known to degrade redundant odorant molecules
or to hydrolyze olfactorily important sex pheromone components and plant volatiles. Compared
to many well-studied Type-I sex pheromone-producing Lepidopteran species, the molecular
mechanisms of the olfactory system of Type-II sex pheromone-producing Hyphantria cunea
(Drury) remain poorly understood. In current study, we first identified a total of ten CXE genes
based on our previous <i>H. cunea</i> transcriptomic data. We constructed a phylogenetic tree,
compared motif-patterns between Lepidopteran CXEs, and used quantitative PCR to investigate
the gene expression of <i>H. cunea</i> CXEs (HcunCXEs). Our results indicated that HcunCXEs are
highly expressed in antennae, legs and wings, suggesting a potential function in degrading sex
pheromone components, host plant volatiles, and other xenobiotics. This study not only provides
a theoretical basis for subsequent olfactory mechanism studies on <i>H. cunea</i> , but also offers some
new insights into functions and evolutionary characteristics of CXEs in lepidopteran insects.
From a practical point of view, these HcunCXEs might represent meaningful targets for
developing behavioral interference control strategies against <i>H. cunea</i> .

41 Introduction

42	A complete insect offactory process requires the participation and cooperation of various
43	olfaction-related proteins (Scott et al., 2001; Vogt, 2003; Leal, 2013). During the process,
44	external liposoluble odor molecules first pass through the polar pores on the sensillum surface,
45	then enter the lymph under the integument where they further combine with odorant binding
46	proteins (OBPs) before being transferred to the dendritic membrane of olfactory receptor neurons
47	(ORNs) (Tegoni, Campanacci & Cambillau, 2004; Leal, 2013; Pelosi et al., 2018). The
48	molecule-bound odorant receptors (ORs) then convert the chemical signals into electrical signal
49	that transmits to the central nervous system through axons of the ORNs (Song et al., 2008). This
50	whole process guides insects to make different relevant physiological responses and behavioral
51	decisions. Once the signal transmission is completed, redundant odorant molecules need to be
52	degraded or inactivated by odorant degrading enzymes (ODEs) in the antennal sensilla,
53	otherwise, the odorant receptors will remain in a stimulated state, which may lead to disorders of
54	the nervous system and pose fatal hazards to the insects (Vogt & Riddiford, 1981; Steinbrecht,
55	1998; Durand et al., 2010b; Leal, 2013). ODEs degrade redundant odorant molecules in the
56	lymph of antennal sensilla and within the cells. Based on the structural difference of various
57	target substances, ODEs can generally be divided into five categories: carboxylesterase (CXE),
58	cytochrome P450 (CYP), alcohol dehydrogenase (AD), aldehyde oxidase (AOX) and
59	glutathione-S-transferase (GST) (Rybczynski, Reagan & Lerner, 1989; Ishida & Leal, 2005;
60	Pelletier et al., 2007; Durand et al., 2010a; Yang et al., 2019).

61	As primary metabolic enzymes, CXEs are widely distributed among insects, microbes and
62	plants (Guo & Wong, 2020). CXEs play an essential role in insect physiology and metabolism, as
63	well as in herbicide activation (Enayati Ranson & Hemingway, 2005; Li, Schuler & Berenbaum,
64	2007; Guo & Wong, 2020). In addition to the metabolism and detoxification of endobiotics and
65	xenobiotics, another important role of CXEs is to maintain the sensitivity of ORNs. The way to
66	play its role is to rapidly degrade stray odors so as to prevent vulnerable ORNs from being
67	continuously invaded by harmful volatile xenobiotics (Li et al., 2013). So far, a large number of
68	genes encoding CXEs been identified and their functions in insect olfaction have also been
69	investigated in various insects, including Mamestra brassicae, Antheraea polyphemus; Sesamia
70	nonagrioides, Popillia japonica, Spodoptera littoralis, Epiphyas postvittana, Agrilus planipennis,
71	S. litura, S. exigua. (Vogt, Riddiford & Prestwich, 1985; Maïbèche-Coisne et al., 2004; Ishida &
72	Leal, 2005; Merlin et al., 2007; Ishida & Leal 2008; Jordan et al., 2008; Durand et al., 2010b;
73	Mamidala et al., 2013; He et al., 2014a; He et al., 2014b; He et al., 2014c; He et al., 2015). For
74	instance, the A. polyphemus pheromone-degrading enzyme CXE (ApolPDE) could effectively
75	degrade its sex pheromone acetate component (Maïbèche-Coisne et al., 2004; Ishida & Leal,
76	2005). In P. japonica and D. melanogaster, the purified native or recombinant antennal CXEs
77	were found to degrade their sex pheromone constituents (Ishida & Leal, 2008; Younus et al.,
78	2014). In addition, some of CXEs from S. exigua, S. littoralis and S. litura were also found to
79	degrade both their sex pheromones and the plant volatiles (Gomi, Inudo & Yamada, 2003;
80	Durand et al., 2011).

The fall webworm, <i>Hyphantria cunea</i> (Drury) (Lepidoptera; Erebidae), native to North
America, is a worldwide quarantine pest insect. This moth has now spread to most European
countries (except the Nordics), South Korea, North Korea and China, and lately to Central Asia
(Itô & Miyashita, 1968; Gomi, 2007). As an invasive pest, H. cunea was first found in Dandong
(Liaoning province, China); it has rapidly spread to Hebei and adjacent provinces in China
(Gomi, 2007; Yang et al., 2008; Tang, Su & Zhang, 2012a). In 2012, the State Forestry
Administration's Forest Pest Inspection and Identification Center identified the first outbreak of
H. cunea in Sanshan district, Wuhu City, Anhui Province, which was the southernmost known
outbreak of <i>H. cunea</i> . Its invasion has caused serious damage to the local forests, agricultural
crops and landscaping/ornamental trees, resulting in great economic and ecological losses. Thus,
effective quarantine programs and environmentally safe pest management solutions are needed
to combat this serious invasive pest insect. More importantly, a better understanding of its
chemical ecology may facilitate more effective pest management strategies. However, compared
to many well-studied Type-I sex pheromone-producing moth species, the molecular mechanisms
of olfaction in the Type-II sex pheromone-producing <i>H. cunea</i> are poorly understood. In the
current study, a total of 10 CXE genes were identified based on our previous <i>H. cunea</i>
transcriptomic data (Zhang et al., 2016). To understand the potential physiological roles of these
HcunCXEs, we constructed a phylogenetic tree, compared motif-patterns between different
Lepidopteran CXEs and used reverse transcription-quantitative PCR and reverse transcription
PCR to investigate the expression of these genes. We found that HcunCXEs displayed a

101 antennae- or leg/wing-biased expression, suggesting a potential function in degrading sex 102 pheromones, host plant volatiles, and/or other xenobiotics. 103 **Materials and Methods** 104 105 Insect rearing and tissue collection 106 Insect cages were used for rearing H. cunea pupae at 25°C, 70-80% RH and 14L:10D 107 photoperiod. These *H. cunea* pupae were collected from a first-generation population at Baimao 108 Town, Jiujiang District, Wuhu City, Anhui province. Several body parts/tissues: antennae, 109 thoraxes, abdomens, legs, and wings, of virgin males and females were dissected under the 110 microscope and pooled by sex and body parts. Male and female pupae and fourth instar larvae 111 ware also sampled. Dissected body parts or whole-body samples were flash frozen in liquid 112 nitrogen and stored at -80°C until use. 113 114 Analysis of gene expression level 115 The *H. cunea* antennal transcriptome (SUB6944247) (*Zhang et al., 2016*) was used as a reference sequence for mapping clean reads for each tested sample. RSEM software package for 116 117 quantifying transcript abundances from RNA-Seq data was used to obtain the read count number of each sample (Li & Dewey, 2011). To investigate the expression patterns and levels of these 118 119 genes, FPKM (fragments per kilobase of exon model per million mapped reads) value was used 120 (*Trapnell et al., 2010*).

121	
122	Homologous search of CXE genes in <i>H. cunea</i>
123	The H. cunea CXE genes were identified according to the BLAST results on NCBI. The Open
124	Reading Frame finder (OFR Finder) was used to search for the open reading frame of these CXE
125	genes. To calculate their theoretical isoelectric points (pI) and molecular weights (MW) of the
126	full-length HcunCXEs gene candidates, an ExPASy tool (http://web.expasy.org/compute_pi/)
127	(Petersen et al., 2011). Therefore, SignalP-4.0 was used to predict signal peptides of the CXE
128	genes (Petersen et al., 2011).
129	
130	Phylogenetic analysis of CXE genes in <i>H. cunea</i>
131	Genes related to the ODEs of <i>H. cunea</i> and other reported insects were subjected to multi-
132	sequence alignment on ClustalX2.0 (Larkin et al., 2007), and the phylogenetic tree was
133	constructed using MEGA5.0 (Larkin et al., 2007; Tamura et al., 2011) software and neighbor-
134	joining method (1000 repetitions) for systematic evolution analysis. The genes of insect ODEs
135	required for the phylogenetic tree were shown in Supplementary Table S1.
136	
137	Motif analysis of CXEs
138	A total of 44 CXEs from H. cunea (10 HcunCXEs), S. inferens (15 SinfCXEs) and S. litura (19
139	SlitCXEs) were used for identification of conserved motifs and pattern analysis. The online
140	program Multiple Em for Motif Elicitation (MEME, version 4.11.1) was used to obtain the motif

141 in all CXEs genes (Bailey et al., 2015). MEME was done with the following parameters: the 142 width between the range of 6 -10, and the number of motifs was below 8. 143 RNA extraction and synthesis of the first-strand cDNA 144 145 The sampled body tissues were grounded using Tissue-Tearor which rapidly homogenized the 146 samples in DEPC-treated sterile water. Extraction and purification of total RNA from each sample were done using TRIzol reagent (Invitrogen, USA). The degradation and contamination 147 148 of RNA product were monitored on 1% agarose gels, and purity was checked using a 149 NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). First-stranded cDNA templates 150 were synthesized using 1 μg of RNA templates with the PrimeScriptTM RT reagent Kit according 151 the manufacturer instruction (TaKaRa, Japan). 152 153 RT-qPCR and RT-PCR analysis 154 Expression profiles of the identified *H. cunea* CXE genes in different body parts of adults 155 (antennae, legs, wings, thoraxes, abdomens) and two other life stages (pupae and larvae) were 156 analyzed. 157 RT-qPCR and RP-PCR assays were employed for the multiple copies of DNA production. 158 RT-qPCR reaction was conducted in a 25µL reaction mixture system containing 12.5µL of 159 SYBR® Premix Ex Taq II (Tli RNaseH Plus), 1µL of each primer, 2µL of sample cDNA, and

8.5µL of sterilized H2O.

160

161	The RT-qPCR cycles were set at: 95°C for 30 sec, followed by 40 cycles at 95°C for 5 sec,
162	60°C for 30 sec. Each experiment was carried out in a CFX96 real-time PCR detection
163	instrument (Bio-rad, USA) using 8-strip PCR tubes (Bio-rad). The reaction data were recorded,
164	and the dissolution curves were appended. The reproducibility confirmation of each RT-qPCR
165	reaction was replicated three times for each sample (Xu et al., 2018).
166	The variability of each gene expression in different body tissues was tested by using Q-
167	Gene method (Muller et al., 2002; Simon, 2003). The relative expressions of mRNA of each
168	gene (mean \pm SD) were analyzed using one-way ANOVA (SPSS22.0 for Windows, IBM, USA),
169	followed by LSD and Duncan's tests at $\alpha = 0.05$. Graphical plotting/mapping was done by
170	GraphPad prism v5.0 Software (GraphPad Software Inc, CA, USA). The RT-qPCR primers of
171	CXE gene in <i>H. cunea</i> are listed in Supplementary Table S2.
172	RT-PCR analysis was performed as follows: 94°C for 2 min of initiation, and 29 cycles of
173	94°C for 30 sec, 52°C for 30 sec, 72°C for 15 sec, and 2 min at 72°C for final extension.
174	Elongation factor-1 alpha (EF1-a) gene of <i>H. cunea</i> was used as an internal reference. In addition,
175	instead of template cDNA, RNase-free water was used as the blank control. A total of $25\mu L$
176	reaction mixture containing 12.5 μ L of 2x Ex Taq MasterMix (CWBIO, China), 1 μ L of each
177	primer, 1μL of sample cDNA, and bring up to 25μL of sterilized H2O. 10μL aliquot of each
178	reaction product was taken to obtain agarose gel electrophoresis detection results. The RT-PCR
179	primer sequences of CXE genes in <i>H. cunea</i> are listed in Supplementary Table S3.
180	

199

200

F	Res	tui	lte

182 Identification of CXE genes from H. cunea Based on a comparative analysis of the *H. cunea* antennal transcriptome using Blastx databases 183 (Zhang et al., 2016), a total of 10 HcunCXE genes were identified, which were further compared 184 185 with the CXE genes in S. inferens. As shown in Table 1, six HcunCXEs (HcunCXE1, 186 HcunCXE3-5 and HcunCXE7-8) had complete ORFs. According to the prediction of the web server (Table 2), the molecular weights of these HcunCXEs ranged from 10.52 to 62.23 kDa. 187 188 The signal peptide predictions showed that only HcunCXE7 and HcunCXE9 have predicted 189 signal peptide sites (Table 2). 190 191 Phylogenetic analysis of *H. cunea* CXEs 192 To evaluate the relationship of HcunCXEs with other insects' CXEs, a phylogenetic tree was 193 constructed (Fig. 1). As shown in Fig. 1, the published CXE genes could be divided into three 194 subclasses: extracellular genes, intracellular genes and neural signaling genes (Durand et al., 195 2010b). In the current study, HcunCXE1, HcunCXE7 and HcunCXE9 were clustered in the 196 extracellular gene subclass, suggesting that these HcunCXEs might have relatively similar 197 sequences of amino acids. The other 7 HcunCXEs including HcunCXE2-6, HcunCXE8 and 198 HcunCXE10 fell into the intracellular gene subclass. In addition, the clade of intracellular gene

subclass formed by HcunCXEs was found most closely related to those formed by D.

melanogaster, S. inferens and S. litura CXEs, suggesting that the intracellular CXEs in H. cunea

201 shared a more recent common ancestor with the CXEs in D. melanogaster, S. inferens and S. 202 *litura* than with the CXEs in other insect species. 203 Motif pattern analysis of *H. cunea* CXEs 204 205 To compare the motif-pattern of CXEs in different families of Lepidoptera, a total of 44 CXEs 206 from H. cunea (10 HcunCXEs), S. inferens (15 SinfCXEs) and S. litura (19 SlitCXEs) were used 207 for identification of conserved motifs and pattern analysis. As shown in Fig. 2, eight relatively 208 common motifs with 40 CXEs were obtained. The most common pattern of motifs with 15 209 homologous CXEs (HcunOCXE5/9, SinfCXE3/5/10/11/14/16 and SlitCXE3/4/5/10/11/14/16) 210 had a motif order of 6-5-3-3-1-8-2-7-4. In addition, 11 homologous CXEs (HcunCXE1/4/9, 211 SinfCXE1/6/18/20 and SlitCXE6/8/12/17) had seven motifs with an order as 5-3-1-8-2-7-4; 5 212 homologous CXEs (HcunCXE7 (2) (1) (1) HcunCXE7, SinfCXE3 and SlitCXE2/13/15) had a 213 motif order of 6-5-3-1-8-2-7. Interestingly, CXEs of *H. cunea* and *S. inferens* shared the same 214 pattern with a motif order as 5-3-1-8-2 and 7-4. 215 216 **Tissue distribution of HcunCXEs** 217 To explore the possible physiological functions of the HcunCXEs, we examined tissue expressions of all the 10 HcunCXEs using RT-qPCR with primers specific for each of the 10 218 219 HcunCXEs genes (Table S2). As shown in Fig. 3, eight HcunCXEs (HcunCXE1, 3, 4, 5, 6, 8, 9 220 and 10) were expressed in the antennae. Among which, two HcunCXEs (HcunCXE1 and 3) were

female-biased and 3 HcunCXEs (HcunCXE4, 9 and 10) were male-biased; however, the other 3 HcunCXEs (HcunCXE5, 6 and 8) were equally expressed in both sexes. On the other hand, expression of HcunCXE2 and HcunCXE7 in the legs or wings was higher than that in the antennae. This result suggested that these two HcunCXEs may be participated in the degrading of host plant volatiles, and/or other xenobiotics.

To investigate whether these HcunCXEs are also expressed in the other body parts or life stages, RT-PCR experiment was carried out using total RNA samples taken from *H. cunea* adults and other life stages (pupae and larvae). As shown in Fig. 4, gel electrophoresis bands were generated from HcunCXE2 products from the adult thoraxes and abdomens. In addition, faint/light bands of HcunCXE7 and HcunCXE8 were detected in both thoraxes and abdomens, as well as the pupae. Interestingly, nine out of 10 HcunCXEs (HcunCXE1-5 and 7-10) were also detected in the larvae, indicating that HcunCXEs are widely expressed in the larval stage.

Discussion

H. cunea adults reportedly showed strong electrophysiological (antennal) responses to their host plant odors, especially to green leaf volatiles (Tang, Su & Zhang, 2012a; Tang, Zhang & Zhang, 2012b). In this case, the ODEs in the moth antennae would quickly remove or degrade the plant odor molecules from activated receptors after the electroantennogram (EAG) responses for odor recognitions were completed. In the current study, 10 putative CXE genes were identified based on our previous H. cunea transcriptomic data. All these 10 H. cunea CXE genes showed a very

241	high homology to the CXE genes identified in S. inferens. We speculated that these H. cunea
242	CXE genes mainly degrade sex pheromone components and host plant volatiles. Unlike many
243	well-studied Type-I sex pheromone-producing lepidopteran insects (>75% moth species), the <i>H</i> .
244	cunea sex pheromone is consisted of Type II pheromone components (Ando & Inomata, 2004).
245	Till now, most of the published moth ODEs are from the Type I sex pheromone producing
246	lepidopterans; thus, our study represents the first report of ODE genes from a Type II sex
247	pheromone-producing moth species. <i>H. cunea</i> is an extremely polyphagous species with a great
248	fecundity (several hundred eggs/female) and a quick dispersal capacity. H. cunea larvae are
249	generalists, capable of feeding on over 170 species of host plants, including many broad-leaved
250	tree species. To cope with such diverse host plant species, this moth must have developed a
251	series of olfactory receptor neurons to recognize diverse plant volatiles. Surprisingly, the number
252	(n=10) of CXE genes we identified from <i>H. cunea</i> was much lower than those of other reported
253	lepidopterans species: 19 in Chilo suppressalis, 35 in the tea geometrid Ectropis obliqua Prout
254	and 76 in B. mori (Yu et al., 2009; Liu et al., 2015; Sun et al., 2017).
255	The phylogenetic tree analysis showed that HcunCXE1, 7 and 9 belonged to the
256	extracellular gene subclass, including the secretory enzymes that likely act on hormones and
257	pheromones (Fig. 1). The remaining 7 CXE genes fell into the intracellular gene subclass (Fig. 1),
258	including intracellular enzymes that mostly play roles in dietary metabolism and detoxification.
259	HcunCXE2, 3, 4, 5, 6, 8 and 10 were homologous to those (e.g. DmelCG10175 and
260	DmelCG6414) in <i>D. melanogaster</i> . Chertemps et al. (2012) demonstrated that an extracellular

261 CXE of D. melanogaster, esterase-6 (Est-6), is responsible in or related to the sensory 262 physiological and behavioral responses to its pheromone. Thus, these *H. cunea* CXE genes 263 (HcunCXE2, 3, 4, 5, 6, 8 and 10) may also affect the mating and courtship competitions in H. *cunea* through degradation of some ester kairomones or plant allelochemicals. 264 265 Antennal-specific or highly expressed esterases belong to the CXE type in the 266 carboxy/cholinesterases (CCEs) family. The first ODE was identified form A. polyphemus 267 (ApolSE) as an antenna-specific esterase, with a high ability to degrade the acetate component 268 (E6Z11-16: AC) of its pheromone blend (Vogt & Riddiford, 1981). Since then, antennal-specific 269 esterases have been cloned from A. polyphemus (Ishida & Leal, 2002) and Mamestra brassicae 270 Linnaeus (Maïbèche-Coisne et al., 2004). Recent studies show that many insect CXEs are 271 expressed specifically in antennae, and their major functions in olfactory process are to degrade 272 odor molecules and to metabolize toxic substances. Interestingly, the expressions of some 273 HcunCXEs in the legs and wings were found to be higher than those in the antennae. The ten H. 274 cunea CXEs genes we identified through the gene expression analysis had a low level of 275 expressions in different body tissues of *H. cunea* adults (Fig. 3). However, they were widely 276 expressed in the larvae, which may be related to their extremely broad host plant range that 277 needs more CXEs to degrade large amount of carboxylic acid esters. Our quantitative PCR 278 results indicated (Fig. 3) that some H. cunea genes were highly expressed in both male and 279 female antennae, likely for degradation of sex-pheromones and/or plant volatiles both from hosts

281

285

or non-hosts, whereas the genes highly expressed in the legs and wings might be related to the degradations of some non-volatile substances for contact signals.

282 CXEs play multiple key roles in the hydrolysis of carboxylic acids esters. CXEs also include some metabolic enzymes that are associated with insecticide resistance (Li, Schuler & 283 284 Berenbaum, 2007). Many previous studies in insect CXEs were focused on their functions in mediating insecticide resistance (Hemingway & Karunaratne, 1998; Li, Schuler & Berenbaum, 286 2007). In contrast, the mechanisms underlying degradation of plant allelochemicals are still 287 unclear. It has been found that *Papilio Canadensis* CXEs could be induced by phenolic 288 glycosides. Moreover, in Lymantria dispar, the activities of CXEs were positively correlated 289 with the larval survival, indicating that these esterases might be involved in the glycoside 290 metabolism (Lindroth, 1989; Lindroth & Weisbrod, 1991). In addition, a significant increase of 291 CXE activity in the midguts of *S. litur* was observed while uptake of plant glycoside rutin 292 (Ghumare, Mukherjee & Sharma, 1989). The CXEs in Sitobion avenae might participate in the 293 gramine detoxification (Cai et al., 2009). Quercetinrutin and 2-tridaconone were also found to 294 induce the activities of CXEs in Helicoverpa Armigera (Gao et al., 1998; Mu, Pei & Gao, 2006). 295 Little is known about *H. cunea* olfaction mechanisms at molecular levels, especially on how 296 CXEs degrade various semiochemicals in its chemical communication system. Further research 297 is needed to 1) understand the functions of antennal-specific CXEs in H. cunea via cloning, 298 expression and purification of these CXEs and enzymatic kinetic analysis; 2) determine the 299 locations/distributions of related CXEs by *in-situ* hybridization; 3) evaluate the potential

correlations between CXE transcription levels and their corresponding electrophysiological and behavioral responses by silencing CXEs via RNA interference (*Caplen, 2004*), and 4) ultimately discover the mode of action or functionality of CXEs in the olfactory signal conduction (signal inactivation).

Conclusions

In summary, we identified 10 CXE genes in *H. cunea* by analyzing its antennal transcriptomic data. These HcunCXEs displayed an antennae- or leg/wing-biased expression. The ubiquitous expression of these HcunCXEs in different tissues and life stages, implicated their multiple roles, *i.e.*, degradation of odor molecules, metabolism and detoxification of dietary and environmental xenobiotics. Our findings provide a theoretical basis for further studies on the olfactory mechanism of *H. cunea* and offer some new insights into functions and evolutionary characteristics of CXEs in lepidopteran insects. From a practical point of view, these HcunCXEs might represent meaningful targets for developing behavioral interference control strategies against *H. cunea*.

Acknowledgments

We would like to thank Dr. Jacob D. Wickham (Managing Editor, Integrative Zoology) and Hong Huat Hoh (OIST Graduate University, Japan) for editing the manuscript, Dr. Tianci Gu and Zhenchen Wu for helpful suggestions.

320321	
322	Competing Interests
323	Dr. Qing-He Zhang is an employee of Sterling International, Inc., Spokane, WA, USA.
324	
325	References
326	Ando T, Inomata SI, Yamamoto M. 2004. Lepidopteran sex pheromones. Topics in Current
327	Chemistry 239 :51-96 DOI <u>10.1007/b95449</u> .
328	Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME Suite. Nucleic Acids Research
329	43(W1) : W39-W49 DOI <u>10.1093/nar/gkv416</u> .
330	Cai QN, Han Y, Cao YZ, Hu Y, Zhao X, Bi JL. 2009. Detoxification of gramine by the cereal
331	aphid Sitobion avenue. Journal of Chemical Ecology 35(3):320-325 DOI
332	<u>10.1007/s10886-009-9603-y</u> .
333	Caplen N. 2004. Gene therapy progress and prospects. Downregulating gene expression: the
334	impact of RNA interference. Gene therapy 11(16):1241-1248 DOI 10.1038/sj.gt.3302324
335	Chertemps T, François A, Durand N, Rosell G, Dekker T, Lucas P, Maïbèche-Coisne M.
336	2012. A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral
337	response dynamics to pheromone in <i>Drosophila</i> . <i>BMC biology</i> 10(1) :56 DOI
338	<u>10.1186/1741-7007-10-56</u> .
339	Durand N, Carot-Sans G, Bozzolan F, Rosell G, Siaussat D, Debernard S, Chertemps T,
340	Maïbèche-Coisne M. 2011. Degradation of pheromone and plant volatile components by

341	a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis. PLOS
342	ONE 6(12):e29147-688 DOI 10.1371/journal.pone.0029147.
343	Durand N, Carot-Sans G, Chertemps T, Bozzolan F, Party V, Renou M, Debernard S,
344	Rosell G, Maïbèche-Coisne M. 2010a. Characterization of an antennal carboxylesterase
345	from the pest moth Spodoptera littoralis degrading a host plant odorant. PLOS ONE
346	5(11): e15026 DOI <u>10.1371/journal.pone.0015026</u> .
347	Durand N, Carot-Sans G, Chertemps T, Montagné N, Jacquin-Joly E, Debernard S,
348	Maïbèche-Coisne M. 2010b. A diversity of putative carboxylesterases are expressed in
349	the antennae of the noctuid moth Spodoptera littoralis. Insect Molecular Biology
350	19(1) :87-97 DOI <u>10.1111/j.1365-2583.2009.00939.x</u> .
351	Enayati AA, Ranson H, Hemingway J. 2005. Insect glutathione transferases and insecticide
352	resistance. <i>Insect Molecular Biology</i> 14(1) :3-8 DOI <u>10.1111/j.1365-2583.2004.00529.x</u> .
353	Gao XW, Zhao Y, Wang X, Dong X, Zheng B. 1998. Induction of carboxylesterasein
354	Helicoverpa Armigera by insecticides and plant allelohemicals. Acta Entomologica
355	Sinica 41:5-11 DOI 10.16380/j.kcxb.1998.s1.002.
356	Ghumare S, Mukherjee S, Sharma R. 1989. Effect of rutin on the neonate sensitivity, dietary
357	utilization and mid-gut carboxylesterase activity of Spodoptera litura (Fabricius)
358	(Lepidoptera: Noctuidae). Proceedings: Animal Sciences 98(6):399-404 DOI
359	10.1007/bf03179652.

Gomi 1. 2007. Seasonal adaptations of the fall webworm Hypnantria cunea (Drury)
(Lepidoptera: Arctiidae) following its invasion of Japan. Ecological Research 22(6):855
861 DOI <u>10.1007/s11284-006-0327-y</u> .
Gomi T, Inudo M, Yamada D. 2003. Local divergence in developmental traits within a
trivoltine area of Hyphantria cunea Drury (Lepidoptera: Arctiidae). Entomological
Science 6 :71-75.
Guo S, Wong SM. 2020. A Conserved Carboxylesterase Inhibits Tobacco mosaic virus (TMV)
Accumulation in Nicotiana benthamiana Plants. Viruses 12(2):195 DOI
10.3390/v12020195.
He P, Li ZQ, Liu CC, Liu SJ, Dong SL. 2014a. Two esterases from the genus Spodoptera
degrade sex pheromones and plant volatiles. <i>Genome</i> 57(4) :201-208 DOI <u>10.1139/gen-</u>
<u>2014-0041</u> .
He P, Zhang J, Li ZQ, Zhang YN, Yang K, Dong SL, He P. 2014b. Functional
characterization of an antennal esterase from the noctuid moth, Spodoptera exigua.
Archives of Insect Biochemistry and Physiology 86(2) :85-99 DOI <u>10.1002/arch.21164</u> .
He P, Zhang YN, Yang K, Li ZQ, Dong SL. 2015. An antenna-biased carboxylesterase is
specifically active to plant volatiles in Spodoptera exigua. Pesticide Biochemistry
Physiology 123 :93-100 DOI <u>10.1016/j.pestbp.2015.03.009</u> .
He P, Zhang YN, Li ZQ, Yang K, Zhu JY, Liu SJ, Dong SL. 2014c. An antennae-enriched
carboxylesterase from Spodoptera exigua displays degradation activity in both plant

380	volatiles and female sex pheromones. <i>Insect Molecular Biology</i> 23(4) :475-486 DOI				
381	<u>10.1111/imb.12095</u> .				
382	Hemingway J, Karunaratne S. 1998. Mosquito carboxylesterases: a review of the molecular				
383	biology and biochemistry of a major insecticide resistance mechanism. Medical and				
384	Veterinary Entomology 12(1) :1-12 DOI <u>10.1046/j.1365-2915.1998.00082.x</u> .				
385	Ishida Y, Leal WS. 2002. Cloning of putative odorant-degrading enzyme and integumental				
386	esterase cDNAs from the wild silkmoth, Antheraea polyphemus. Insect Biochemistry and				
387	<i>Molecular Biology</i> 32(12) :1775-1780 DOI <u>10.1016/S0965-1748(02)00136-4</u> .				
388	Ishida Y, Leal WS. 2005. Rapid inactivation of a moth pheromone. Proceedings of the National				
389	Academy of Sciences 102(39):14075-14079 DOI 10.1073/pnas.0505340102.				
390	Ishida Y, Leal WS. 2008. Chiral discrimination of the Japanese beetle sex pheromone and a				
391 =	behavioral antagonist by a pheromone-degrading enzyme. Proceedings of the National				
392	Academy Sciences 105(26):9076-9080 DOI 10.1073/pnas.0802610105.				
	Academy Sciences 105(26):9076-9080 DOI 10.1073/pnas.0802610105. Itô Y, Miyashita K. 1968. Biology of Hyphantria cunea Drury (Lepidoptera: arctiidae) in Japan.				
392					
392 393	Itô Y, Miyashita K. 1968. Biology of Hyphantria cunea Drury (Lepidoptera: arctiidae) in Japan.				
392 393 394	Itô Y, Miyashita K. 1968. Biology of <i>Hyphantria cunea</i> Drury (Lepidoptera: arctiidae) in Japan. V. Preliminary life tables and mortality data in urban areas. <i>Population Ecology</i>				
392 393 394 395	Itô Y, Miyashita K. 1968. Biology of <i>Hyphantria cunea</i> Drury (Lepidoptera: arctiidae) in Japan. V. Preliminary life tables and mortality data in urban areas. <i>Population Ecology</i> 10(2):177-209.				
392 393 394 395 396	 Itô Y, Miyashita K. 1968. Biology of <i>Hyphantria cunea</i> Drury (Lepidoptera: arctiidae) in Japan. V. Preliminary life tables and mortality data in urban areas. <i>Population Ecology</i> 10(2):177-209. Jordan M, Stanley D, Marshall S, De Silva D, Crowhurst R, Gleave A, Greenwood D, 				

400	Larkin MA. Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H. 2007.					
401	Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948 DOI					
402	10.1093/bioinformatics/btm404.					
403	Leal WS. 2013. Odorant reception in insects: roles of receptors, binding proteins, and degrading					
404	enzymes. Annual Review of Entomology 58 :373-391 DOI <u>10.1146/annurev-ento-120811-</u>					
405	<u>153635</u> .					
406	Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or					
407	without a reference genome. <i>BMC Bioinformatics</i> 12(1) :323 DOI <u>10.1186/1471-2105-12-</u>					
408	<u>323</u> .					
409	Li X, Schuler MA, Berenbaum MR. 2007. Molecular mechanisms of metabolic resistance to					
410	synthetic and natural xenobiotics. Annual Review of Entomology 52:231-253 DOI					
411	10.1146/annurev.ento.51.110104.151104.					
412	Li Y, Farnsworth CA, Coppin CW, Teese MG, Liu JW, Scott C, Zhang X, Russell RJ,					
413	Oakeshott JG. 2013. Organophosphate and pyrethroid hydrolase activities of mutant					
414	esterases from the cotton bollworm <i>Helicoverpa armigera</i> . <i>PLOS ONE</i> 8(10) DOI					
415	10.1371/journal.pone.0077685.					
416	Lindroth RL. 1989. Host plant alteration of detoxication activity in <i>Papilio glaucus</i> .					
417	Entomologia Expermentalis et Applicata 50(1):29-35.					

418	Lindroth RL, Weisbrod AV. 1991. Genetic variation in response of the gypsy moth to aspen
419	phenolic glycosides. Biochemical Systematics and Ecology 19(2):97-103 DOI
420	<u>10.1016/0305-1978(91)90031-T</u> .
421	Liu S, Gong ZJ, Rao XJ, Li MY, Li SG. 2015. Identification of putative carboxylesterase and
422	glutathione S-transferase genes from the antennae of the <i>Chilo suppressalis</i> (Lepidoptera:
423	Pyralidae). Journal of Insect Science 1:1 DOI 10.1093/jisesa/iev082.
424	Maïbèche-Coisne M, Merlin C, FrançoisMC, Queguiner I, Porcheron P, Jacquin-Joly E.
425	2004. Putative odorant-degrading esterase cDNA from the moth <i>Mamestra brassicae</i> :
426	cloning and expression patterns in male and female antennae. Chemical Senses
427	29(5) :381-390 DOI <u>10.1093/chemse/bjh039</u> .
428	Mamidala P, Wijeratne AJ, Wijeratne S, Poland T, Qazi SS, Doucet D, Cusson M, Beliveau
429	C, Mittapalli O. 2013. Identification of odor-processing genes in the emerald ash borer,
430	Agrilus planipennis. PLOS ONE 8(2) DOI <u>10.1371/journal.pone.0056555</u> .
431	Merlin C, Rosell G, Carot-Sans G, François MC, Bozzolan F, Pelletier J, Jacquin-Joly E,
432	Guerrero A, Maïbèche-Coisne M. 2007. Antennal esterase cDNAs from two pest moths,
433	Spodoptera littoralis and Sesamia nonagrioides, potentially involved in odourant
434	degradation. Insect Molecular Biology 16(1):73-81 DOI 10.1111/j.1365-
435	<u>2583.2006.00702.x</u> .

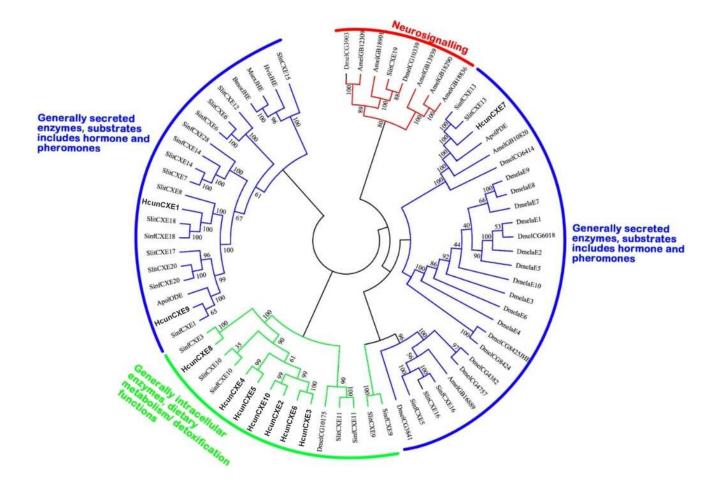
436	Mu SF, Pei L, Gao XW. 2006. Effects of quercetin on specific activity of carboxylesteras and					
437	glutathione S-transferase in Bemisia tabaci. Journal of Applied Entomology 43(004):491-					
438	495 DOI 10.3969/j.issn.0452-8255.2006.04.014.					
439	Muller P, Janovjak H, Miserez A, Dobbie Z. 2002. Processing of gene expression data					
440	generated by quantitative real-time RT PCR. <i>Biotechniques</i> 32(6) :1372-1374.					
441	Pelletier J, Bozzolan F, Solvar M, François MC, Jacquin-Joly E, Maïbèche-Coisne M. 2007.					
442	Identification of candidate aldehyde oxidases from the silkworm <i>Bombyx mori</i> potentially					
443	involved in antennal pheromone degradation. Gene 404(1-2):31-40 DOI					
444	10.1016/j.gene.2007.08.022.					
445	Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR. 2018. Beyond chemoreception: diverse tasks of					
446	soluble olfactory proteins in insects. Biological Reviews 93(1):184-200 DOI					
447	10.1111/brv.12339.					
447 448	10.1111/brv.12339. Petersen TN, Brunak S, Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal					
448	Petersen TN, Brunak S, Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal					
448 449	Petersen TN, Brunak S, Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. <i>Nature Methods</i> 8(10):785 DOI					
448449450	Petersen TN, Brunak S, Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. <i>Nature Methods</i> 8(10):785 DOI 10.1038/nmeth.1701.					

454	Scott K, Brady Jr B, Cravenik B, Morozov P, Rznetsky A, Zuker C, Axel R. 2001. A
455	chemosensory gene family encoding candidate gustatory and olfactory receptors in
456	Drosophila. Cell 104(5) :661-673 DOI <u>10.1016/S0092-8674(01)00263-X</u> .
457	Simon P. 2003. Q-Gene: processing quantitative real-time RT-PCR data. <i>Bioinformatics</i>
458	19(11):1439-1440 DOI 10.1093/bioinformatics/btg157.
459	Song HG, Young Kwon J, Soo Han H, Bae YC, Moon C. 2008. First contact to odors: our
460	current knowledge about odorant receptor. Sensors 8(10):6303-6320 DOI
461	<u>10.3390/s8106303</u> .
462	Steinbrecht RA. 1998. Odorant-binding proteins: expression and function. Annals of the New
463	York Academy of Sciences 855:323-332.
464	Sun L, Wang Q, Wang Q, Zhang Y, Tang M, Guo H, Fu J, Xiao Q, Zhang Y, Zhang Y.
465	2017. Identification and expression patterns of putative diversified carboxylesterases in
466	the tea geometrid Ectropis obliqua Prout. Frontiers in Physiology 8:1085 DOI
467	10.3389/fphys.2017.01085.
468	Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular
469	evolutionary genetics analysis using maximum likelihood, evolutionary distance, and
470	maximum parsimony methods. Molecular Biology and Evolution 28(10):2731-2739 DOI
471	$\underline{10.1093/molbev/msr121}.$

472	Tang R, Su M, Zhang Z. 2012a. Electroantennogram responses of an invasive species fall
473	webworm (Hyphantria cunea) to host volatile compounds. Chinese Science Bulletin
474	57(35) :4560-4568 DOI 10.1007/s11434-012-5356-z.
475	Tang R, Zhang JP, Zhang ZN. 2012b. Electrophysiological and behavioral responses of male
476	fall webworm moths (<i>Hyphantria cunea</i>) to herbivory-induced mulberry (Morus alba)
477	leaf volatiles. PLOS ONE 7(11) DOI <u>10.1371/journal.pone.0049256</u> .
478	Tegoni M, Campanacci V, Cambillau C. 2004. Structural aspects of sexual attraction and
479	chemical communication in insects. <i>Trends in Biochemical Sciences</i> 29(5) :257-264 DOI
480	10.1016/j.tibs.2004.03.003.
481	Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL,
482	Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals
483	unannotated transcripts and isoform switching during cell differentiation. Nature
484	Biotechnology 28(5) :511 DOI <u>10.1038/nbt.1621</u> .
485	Vogt R. 2003. 14-Biochemical diversity of odor detection: OBPs. ODEs and SNMPs. Insect
486	Biochemistry and Molecular Biology 397-451.
487	Vogt RG, Riddiford LM. 1981. Pheromone binding and inactivation by moth antennae. Nature
488	293(10) :161-163.
489	Vogt RG, Riddiford LM, Prestwich GD. 1985. Kinetic properties of a sex pheromone-
490	degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proceedings of the
491	National Academy of Sciences 82(24) :8827-8831 DOI <u>10.1073/pnas.82.24.8827</u> .

492	Xu L1, Zhang YQ, Zhang SH, Deng JD, Lu M, Zhang LW, and Zhang J. 2018.
493	Comparative analysis of the immune system of an invasive bark beetle, <i>Dendroctonus</i>
494	valens, infected by an entomopathogenic fungus. Developmental & Comparative
495	Immunology 88:65-69 DOI <u>10.1016/j.dci.2018.07.002</u> .
496	Yang YC, Li WB, Tao J, Zong SX. 2019. Antennal transcriptome analyses and olfactory
497	protein identification in an important wood-boring moth pest, Streltzoviella insularis
498	(Lepidoptera: Cossidae). <i>Scientific Reports</i> 9: 17951 DOI <u>10.1038/s41598-019-54455-w</u>
499	Yang Z, Wang X, Wei J, Qu H, Qiao X. 2008. Survey of the native insect natural enemies of
500	Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) in China. Bulletin of Entomological
501	Research 98(3):293-302 DOI 10.1017/S0007485308005609.
502	Younus F, Chertemps T, Pearce SL, Pandey G, Bozzolan F, Coppin CW, Russell RJ,
503	Maïbèche-Coisne M, Oakeshott JG. 2014. Identification of candidate odorant
504	degrading gene/enzyme systems in the antennal transcriptome of Drosophila
505	melanogaster. Insect Biochemistry and Molecular Biology 53 :30-43 DOI
506	10.1016/j.ibmb.2014.07.003
507	Yu QY, Lu C, Li WL, Xiang ZH, Zhang Z. 2009. Annotation and expression of
508	carboxylesterases in the silkworm, <i>Bombyx mori</i> . <i>BMC genomics</i> 10(1) :553 DOI
509	<u>10.1186/1471-2164-10-553</u> .
510	Zhang LW, Kang K, Jiang SC, Zhang YN, Wang TT, Zhang J, Sun L, Yang YQ, Huang
511	CC, Jiang LY. 2016. Analysis of the antennal transcriptome and insights into olfactory

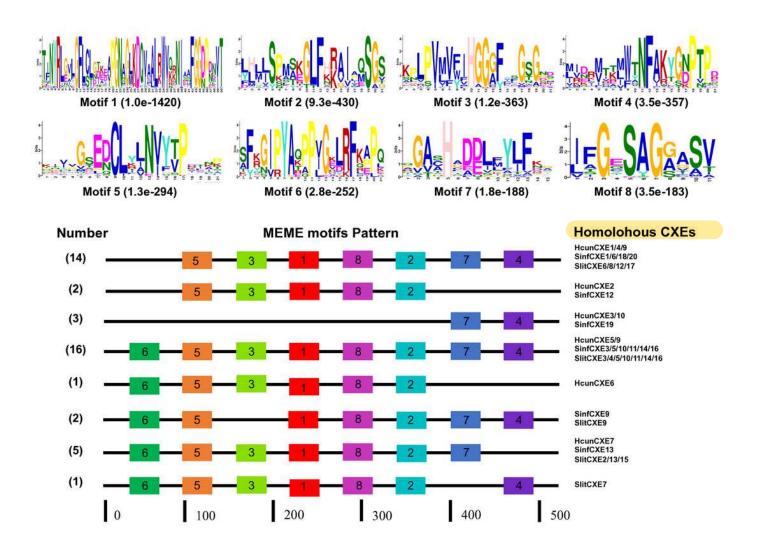
512	genes in Hyphantria cunea (Drury). PLOS ONE 11(10):e0154729 DOI
513	10.1371/journal.pone.0164729.
514	
515	
516	Figure legends
517	Figure 1 Molecular phylogeny comparing HcunCXEs with CXEs from seven insect species.
518	10 CEXs (HcunCXE1-10) from <i>H. cunea</i> (Hyph) and CXEs from <i>A. mellifera</i> (Amel), <i>A.</i>
519	polyphemus (Apol), B. mori (Bmor), D.melanogaster (Dmel), H. virescens (Hvir), M. sexta
520	(Msex), S. inferens (Sinf), S. litura (Slit) were used to construct the phylogenetic tree. See
521	Materials and Methods for details of the phylogenetic analysis.
522	
523	Figure 2 Motif analysis of CXEs in H. cunea. The upper parts list the eight motifs discovered
524	in the 44 CXEs using MEME online server (http://meme. nbcr.net/meme/). The lower parts
525	indicate approximate locations of each motif on the protein sequence. The numbers in the boxes
526	correspond to the numbered motifs in the upper part of the figure, where small number indicates
527	high conservation. The numbers on the bottom showed the approximate locations of each motif
528	on the protein sequence, starting from the N-terminal. This figure only listed the most common 8
529	motif-patterns presented in 44 CXEs.
530	



531	Figure 3 Relative mRNA expression of <i>HcunCXEs</i> in <i>H. cunea</i> tissues. FA, female antennae;
532	MA, male antennae; L, legs; W, wings. The relative mRNA levels were normalized to those of
533	the $EF1$ - a gene and analyzed using the Q-gene method. All values are shown as the mean \pm SEM
534	The data were analyzed by the least significant difference (LSD) test after one-way analysis of
535	variance (ANOVA). Different letters indicate significant differences between means ($P < 0.05$).
536	
537	Figure 4 RT-PCR analysis of HcunCXEs gene expression in tissues taken from H. cunea
538	adults and other life stages. EF1-a was used as an internal control; NC, negative control with
539	no template in the reaction.
540	
541	
542	

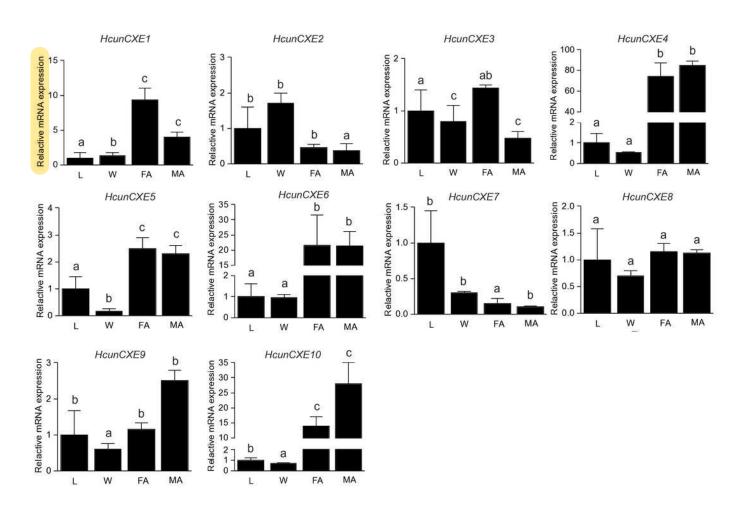
Molecular phylogeny comparing HcunCXEs with CXEs from seven insect species.

10 CEXs (HcunCXE1-10) from *H. cunea* (Hyph) and CXEs from *A. mellifera* (Amel), *A. polyphemus* (Apol), *B. mori*(Bmor), *D.melanogaster* (Dmel), *H. virescens* (Hvir), *M. sexta* (Msex), *S. inferens* (Sinf), *S. litura* (Slit) were used to construct the phylogenetic tree. See Materials and Methods for details of the phylogenetic analysis.

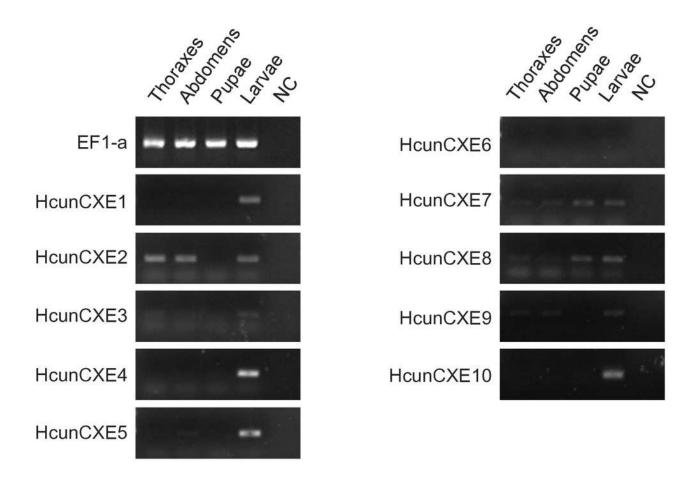


Motif analysis of CXEs in H. cunea.

The upper parts listed the eight motifs discovered in the 44 CXEs using MEME online server (http://meme. nbcr.net/meme/). The lower parts indicate approximate locations of each motif on the protein sequence. The numbers in the boxes correspond to the numbered motifs in the upper part of the figure, where small number indicates high conservation. The numbers on the bottom showed the approximate locations of each motif on the protein sequence, starting from the N-terminal. This figure only listed the most common 8 motif-patterns presented in 44 CXEs.



Relative mRNA expression of *HcunCXEs* in *H. cunea* tissues.


FA, female antennae; MA, male antennae; L, legs; W, wings. The relative mRNA levels were normalized to those of the EF1-a gene and analyzed using the Q-gene method. All values are shown as the mean \pm SEM. The data were analyzed by the least significant difference (LSD) test after one-way analysis of variance (ANOVA). Different letters indicate significant differences between means (P < 0.05).

RT-PCR analysis of HcunCXEs gene expression in tissues taken from *H. cunea* adults and other life stages.

EF1-a was used as an internal control; NC, negative control with no template in the reaction.

Table 1(on next page)

Gene name, information of open reading frame and Blastx match of the 10 putative HcunCXEs identified in this study.

2 **Table 1:**

- 3 Gene name, information of open reading frame and Blastx match of the 10 putative
- 4 HcunCXEs identified in this study.

				Best Blastx Match			
Gene Name	ORF Length (bp)	Complete ORF	FPKM value	Species	Acc.number	E - value	Identity (%)
HcunCXE1	1668	YES	4.9	S. inferens	AII21990.1	0.0	73
HcunCXE2	777	NO	3.77	S. inferens	AII21980.1	3e-135	73
HcunCXE3	375	YES	3.26	S. inferens	AII21980.1	2e-105	60
HcunCXE4	1389	YES	61.01	S. inferens	AII21984.1	0.0	59
HcunCXE5	1593	YES	143.14	S. inferens	AII21984.1	0.0	62
HcunCXE6	1161	NO	17.04	S. inferens	AII21984.1	4e-174	62
HcunCXE7	1677	YES	13.18	S. inferens	AII21987.1	0.0	75
HcunCXE8	1608	YES	12.64	S. inferens	AII21980.1	0.0	66
HcunCXE9	1653	YES	6.13	S.inferens	AII21978.1	0.0	71
HcunCXE10	273	NO	21.32	S. inferens	AII21984.1	8e-39	64

⁵ Note: ORF, open reading frame.

Table 2(on next page)

Gene name and characteristics including molecular weight, isoelectric point and signal peptide of the 10 putative HcunCXEs with open reading frames.

Table 2: Gene name and characteristics including molecular weight, isoelectric point and signal peptide of the 10 putative HcunCXEs with open reading frames.

	1	-	
Gene Name	MW (Kda)	PI	SP
HcunCXE1	62.23	7.56	NO
HcunCXE2	28.44	5.67	NO
HcunCXE3	13.98	4.85	NO
HcunCXE4	52.2	5.31	NO
HcunCXE5	59.52	5.41	NO
HcunCXE6	43.17	5.09	NO
HcunCXE7	61.71	6.32	1-17
HcunCXE8	60.68	5.75	NO
HcunCXE9	62.18	8	1-16
HcunCXE10	10.52	8.89	NO

Note: MW, Molecular weight; pI, isoelectric point; SP, signal peptide.