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Olfactory system is important for behavioral activities of insects to recognize internal and
external volatile stimuli in the environment. Insect odorant degrading enzymes (ODESs)
including antennal-specific carboxylesterases (CXEs) are known to degrade redundant
odorant molecules or to hydrolyze olfactorily important sex pheromone components and
plant volatiles. Compared to many well-studied Type-I sex pheromone-producing
Lepidopteran species, the molecular mechanisms of the olfactory system of Type-Il sex
pheromone-producing Hyphantria cunea (Drury) remain poorly understood. In current
study, we first identified a total of ten CXE genes based on our previous H. cunea
transcriptomic data. We constructed a phylogenetic tree, compared motif-patterns
between Lepidopteran CXEs, and used quantitative PCR to investigate the gene expression
of H. cunea CXEs (HcunCXEs). Our results indicated that HcunCXEs are highly expressed in
antennae, legs and wings, suggesting a potential function in degrading sex pheromone
components, host plant volatiles, and other xenobiotics. This study not only provides a
theoretical basis for subsequent olfactory mechanism studies on H. cunea, but also offers
some new insights into functions and evolutionary characteristics of CXEs in lepidopteran
insects. From a practical point of view, these HcunCXEs might represent meaningful
targets for developing behavioral interference control strategies against H. cunea.
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21 Abstract

22 Olfactory system is important for behavioral activities of insects to recognize internal and

23 external volatile stimuli in the environment. Insect odorant degrading enzymes (ODEs) including
24 antennal-specific carboxylesterases (CXEs) are known to degrade redundant odorant molecules
25 or to hydrolyze olfactorily important sex pheromone components and plant volatiles. Compared
26 to many well-studied Type-I sex pheromone-producing Lepidopteran species, the molecular

27 mechanisms of the olfactory system of Type-II sex pheromone-producing Hyphantria cunea

28  (Drury) remain poorly understood. In current study, we first identified a total of ten CXE genes
29 based on our previous H. cunea transcriptomic data. We constructed a phylogenetic tree,

30 compared motif-patterns between Lepidopteran CXEs, and used quantitative PCR to investigate
31 the gene expression of H. cunea CXEs (HcunCXEs). Our results indicated that HcunCXEs are
32 highly expressed in antennae, legs and wings, suggesting a potential function in degrading sex
33 pheromone components, host plant volatiles, and other xenobiotics. This study not only provides
34 atheoretical basis for subsequent olfactory mechanism studies on H. cunea, but also offers some
35 new insights into functions and evolutionary characteristics of CXEs in lepidopteran insects.

36 From a practical point of view, these HcunCXEs might represent meaningful targets for

37 developing behavioral interference control strategies against H. cunea.
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Introduction

A complete insect olfactory process requires the participation and cooperation of various
olfaction-related proteins (Scott et al., 2001; Vogt, 2003; Leal, 2013). During the process,
external liposoluble odor molecules first pass through the polar pores on the sensillum surface,
then enter the lymph under the integument where they further combine with odorant binding
proteins (OBPs) before being transferred to the dendritic membrane of olfactory receptor neurons
(ORNS) (Tegoni, Campanacci & Cambillau, 2004; Leal, 2013; Pelosi et al., 2018). The
molecule-bound odorant receptors (ORs) then convert the chemical signals into electrical signal
that transmits to the central nervous system through axons of the ORNs (Song et al., 2008). This
whole process guides insects to make different relevant physiological responses and behavioral
decisions. Once the signal transmission is completed, redundant odorant molecules need to be
degraded or inactivated by odorant degrading enzymes (ODEs) in the antennal sensilla,
otherwise, the odorant receptors will remain in a stimulated state, which may lead to disorders of
the nervous system and pose fatal hazards to the insects (Vogt & Riddiford, 1981; Steinbrecht,
1998; Durand et al., 2010b; Leal, 2013). ODEs degrade redundant odorant molecules in the
lymph of antennal sensilla and within the cells. Based on the structural difference of various
target substances, ODEs can generally be divided into five categories: carboxylesterase (CXE),
cytochrome P450 (CYP), alcohol dehydrogenase (AD), aldehyde oxidase (AOX) and
glutathione-S-transferase (GST) (Rybczynski, Reagan & Lerner, 1989; Ishida & Leal, 2005;

Pelletier et al., 2007; Durand et al., 2010a; Yang et al., 2019).
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As primary metabolic enzymes, CXEs are widely distributed among insects, microbes and
plants (Guo & Wong, 2020). CXEs play an essential role in insect physiology and metabolism, as
well as in herbicide activation (Enayati Ranson & Hemingway, 2005, Li, Schuler & Berenbaum,
2007; Guo & Wong, 2020). In addition to the metabolism and detoxification of endobiotics and
xenobiotics, another important role of CXEs is to maintain the sensitivity of ORNs. The way to
play its role is to rapidly degrade stray odors so as to prevent vulnerable ORNs from being
continuously invaded by harmful volatile xenobiotics (Li et al., 2013). So far, a large number of
genes encoding CXEs been identified and their functions in insect olfaction have also been
investigated in various insects, including Mamestra brassicae, Antheraea polyphemus; Sesamia
nonagrioides, Popillia japonica, Spodoptera littoralis, Epiphyas postvittana, Agrilus planipennis,
S. litura, S. exigua. (Vogt, Riddiford & Prestwich, 1985; Maibeche-Coisne et al., 2004; Ishida &
Leal, 2005; Merlin et al., 2007; Ishida & Leal 2008; Jordan et al., 2008; Durand et al., 2010b;
Mamidala et al., 2013; He et al., 2014a; He et al., 2014b; He et al., 2014c; He et al., 2015). For
instance, the 4. polyphemus pheromone-degrading enzyme CXE (Apo/PDE) could effectively
degrade its sex pheromone acetate component (Maibeche-Coisne et al., 2004; Ishida & Leal,
2005). In P. japonica and D. melanogaster, the purified native or recombinant antennal CXEs
were found to degrade their sex pheromone constituents (Ishida & Leal, 2008; Younus et al.,
2014). In addition, some of CXEs from S. exigua, S. littoralis and S. litura were also found to
degrade both their sex pheromones and the plant volatiles (Gomi, Inudo & Yamada, 2003,

Durand et al., 2011).
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The fall webworm, Hyphantria cunea (Drury) (Lepidoptera; Erebidae), native to North
America, is a worldwide quarantine pest insect. This moth has now spread to most European
countries (except the Nordics), South Korea, North Korea and China, and lately to Central Asia
(lto & Miyashita, 1968; Gomi, 2007). As an invasive pest, H. cunea was first found in Dandong
(Liaoning province, China); it has rapidly spread to Hebei and adjacent provinces in China
(Gomi, 2007; Yang et al., 2008; Tang, Su & Zhang, 2012a). In 2012, the State Forestry
Administration's Forest Pest Inspection and Identification Center identified the first outbreak of
H. cunea in Sanshan district, Wuhu City, Anhui Province, which was the southernmost known
outbreak of H. cunea. Its invasion has caused serious damage to the local forests, agricultural
crops and landscaping/ornamental trees, resulting in great economic and ecological losses. Thus,
effective quarantine programs and environmentally safe pest management solutions are needed
to combat this serious invasive pest insect. More importantly, a better understanding of its
chemical ecology may facilitate more effective pest management strategies. However, compared
to many well-studied Type-I sex pheromone-producing moth species, the molecular mechanisms
of olfaction in the Type-II sex pheromone-producing H. cunea are poorly understood. In the
current study, a total of 10 CXE genes were identified based on our previous H. cunea
transcriptomic data (Zhang et al., 2016). To understand the potential physiological roles of these
HcunCXEs, we constructed a phylogenetic tree, compared motif-patterns between different
Lepidopteran CXEs and used reverse transcription-quantitative PCR and reverse transcription

PCR to investigate the expression of these genes. We found that HcunCXEs displayed a
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antennae- or leg/wing-biased expression, suggesting a potential function in degrading sex

pheromones, host plant volatiles, and/or other xenobiotics.

Materials and Methods

Insect rearing and tissue collection

Insect cages were used for rearing H. cunea pupae at 25°C, 70-80% RH and 14L:10D
photoperiod. These H. cunea pupae were collected from a first-generation population at Baimao
Town, Jiujiang District, Wuhu City, Anhui province. Several body parts/tissues: antennae,
thoraxes, abdomens, legs, and wings, of virgin males and females were dissected under the
microscope and pooled by sex and body parts. Male and female pupae and fourth instar larvae
ware also sampled. Dissected body parts or whole-body samples were flash frozen in liquid

nitrogen and stored at -80°C until use.

Analysis of gene expression level

The H. cunea antennal transcriptome (SUB6944247) (Zhang et al., 2016) was used as a
reference sequence for mapping clean reads for each tested sample. RSEM software package for
quantifying transcript abundances from RNA-Seq data was used to obtain the read count number
of each sample (Li & Dewey, 2011). To investigate the expression patterns and levels of these
genes, FPKM (fragments per kilobase of exon model per million mapped reads) value was used

(Trapnell et al., 2010).
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Homologous search of CXE genes in H. cunea

The H. cunea CXE genes were identified according to the BLAST results on NCBI. The Open
Reading Frame finder (OFR Finder) was used to search for the open reading frame of these CXE
genes. To calculate their theoretical isoelectric points (pl) and molecular weights (MW) of the
full-length HcunCXEs gene candidates, an ExPASy tool (http://web.expasy.org/compute pi/)
(Petersen et al., 2011). Therefore, SignalP-4.0 was used to predict signal peptides of the CXE

genes (Petersen et al., 2011).

Phylogenetic analysis of CXE genes in H. cunea

Genes related to the ODEs of H. cunea and other reported insects were subjected to multi-
sequence alignment on ClustalX2.0 (Larkin et al., 2007), and the phylogenetic tree was
constructed using MEGAS.0 (Larkin et al., 2007; Tamura et al., 2011) software and neighbor-
joining method (1000 repetitions) for systematic evolution analysis. The genes of insect ODEs

required for the phylogenetic tree were shown in Supplementary Table S1.

Motif analysis of CXEs
A total of 44 CXEs from H. cunea (10 HcunCXEs), S. inferens (15 SinfCXEs) and S. litura (19
SlitCXEs) were used for identification of conserved motifs and pattern analysis. The online

program Multiple Em for Motif Elicitation (MEME, version 4.11.1) was used to obtain the motif
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in all CXEs genes (Buailey et al., 2015). MEME was done with the following parameters: the

width between the range of 6 -10, and the number of motifs was below 8.

RNA extraction and synthesis of the first-strand cDNA

The sampled body tissues were grounded using Tissue-Tearor which rapidly homogenized the
samples in DEPC-treated sterile water. Extraction and purification of total RNA from each
sample were done using TRIzol reagent (Invitrogen, USA). The degradation and contamination
of RNA product were monitored on 1% agarose gels, and purity was checked using a
NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). First-stranded cDNA templates
were synthesized using 1 pg of RNA templates with the PrimeScript™ RT reagent Kit according

the manufacturer instruction (TaKaRa, Japan).

RT-gPCR and RT-PCR analysis
Expression profiles of the identified H. cunea CXE genes in different body parts of adults
(antennae, legs, wings, thoraxes, abdomens) and two other life stages (pupae and larvae) were
analyzed.

RT-gPCR and RP-PCR assays were employed for the multiple copies of DNA production.
RT-gPCR reaction was conducted in a 25uL reaction mixture system containing 12.5uL of
SYBR® Premix Ex Taq II (Tli RNaseH Plus), 1uL of each primer, 2uL of sample cDNA, and

8.5uL of sterilized H20.
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161 The RT-qPCR cycles were set at: 95°C for 30 sec, followed by 40 cycles at 95°C for 5 sec,
162 60°C for 30 sec. Each experiment was carried out in a CFX96 real-time PCR detection

163 instrument (Bio-rad, USA) using 8-strip PCR tubes (Bio-rad). The reaction data were recorded,
164 and the dissolution curves were appended. The reproducibility confirmation of each RT-qPCR
165 reaction was replicated three times for each sample (Xu ef al., 2018).

166 The variability of each gene expression in different body tissues was tested by using Q-
167 Gene method (Muller et al., 2002; Simon, 2003). The relative expressions of mRNA of each

168 gene (mean + SD) were analyzed using one-way ANOVA (SPSS22.0 for Windows, IBM, USA),
169 followed by LSD and Duncan’s tests at o = 0.05. Graphical plotting/mapping was done by

170 GraphPad prism v5.0 Software (GraphPad Software Inc, CA, USA). The RT-qPCR primers of
171 CXE gene in H. cunea are listed in Supplementary Table S2.

172 RT-PCR analysis was performed as follows: 94°C for 2 min of initiation, and 29 cycles of
173  94°C for 30 sec, 52°C for 30 sec, 72°C for 15 sec, and 2 min at 72°C for final extension.

174  Elongation factor-1 alpha (EF1-a) gene of H. cunea was used as an internal reference. In addition,
175 instead of template cDNA, RNase-free water was used as the blank control. A total of 25uL.

176 reaction mixture containing 12.5uL of 2x Ex Taq MasterMix (CWBIO, China), 1uL of each

177  primer, 1uL of sample cDNA, and bring up to 25uL of sterilized H20. 10uL aliquot of each

178 reaction product was taken to obtain agarose gel electrophoresis detection results. The RT-PCR
179 primer sequences of CXE genes in H. cunea are listed in Supplementary Table S3.

180
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181 Results

182 Identification of CXE genes from H. cunea

183 Based on a comparative analysis of the H. cunea antennal transcriptome using Blastx databases
184 (Zhang et al., 2016), a total of 10 HcunCXE genes were identified, which were further compared
185 with the CXE genes in S. inferens. As shown in Table 1, six HcunCXEs (HcunCXEl,

186 HcunCXE3-5 and HcunCXE7-8) had complete ORFs. According to the prediction of the web
187 server (Table 2), the molecular weights of these HcunCXEs ranged from 10.52 to 62.23 kDa.
188 The signal peptide predictions showed that only HcunCXE7 and HcunCXE9 have predicted
189 signal peptide sites (Table 2).

190

191 Phylogenetic analysis of H. cunea CXEs

192 To evaluate the relationship of HcunCXEs with other insects’ CXEs, a phylogenetic tree was
193  constructed (Fig. 1). As shown in Fig. 1, the published CXE genes could be divided into three
194 subclasses: extracellular genes, intracellular genes and neural signaling genes (Durand et al.,
195  2010b). In the current study, HcunCXE1, HcunCXE7 and HcunCXE9 were clustered in the
196 extracellular gene subclass, suggesting that these HcunCXEs might have relatively similar

197 sequences of amino acids. The other 7 HcunCXEs including HcunCXE2-6, HcunCXES and
198 HcunCXEI10 fell into the intracellular gene subclass. In addition, the clade of intracellular gene
199 subclass formed by HcunCXEs was found most closely related to those formed by D.

200 melanogaster, S. inferens and S. litura CXEs, suggesting that the intracellular CXEs in H. cunea
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201 shared a more recent common ancestor with the CXEs in D. melanogaster, S. inferens and S.
202  litura than with the CXEs in other insect species.

203

204 Motif pattern analysis of H. cunea CXEs

205 To compare the motif-pattern of CXEs in different families of Lepidoptera, a total of 44 CXEs
206 from H. cunea (10 HcunCXEs), S. inferens (15 SinfCXEs) and S. litura (19 SlitCXEs) were used
207 for identification of conserved motifs and pattern analysis. As shown in Fig. 2, eight relatively
208 common motifs with 40 CXEs were obtained. The most common pattern of motifs with 15

209 homologous CXEs (HcunOCXES/9, SinfCXE3/5/10/11/14/16 and SIitCXE3/4/5/10/11/14/16)
210 had a motif order of 6-5-3-3-1-8-2-7-4. In addition, 11 homologous CXEs (HcunCXE1/4/9,
211 SinfCXE1/6/18/20 and SlitCXE6/8/12/17) had seven motifs with an order as 5-3-1-8-2-7-4; 5
212 homologous CXEs (HcunCXE7 (2) (1) (1) HcunCXE7, SinfCXE3 and SIitCXE2/13/15) had a
213  motif order of 6-5-3-1-8-2-7. Interestingly, CXEs of H. cunea and S. inferens shared the same
214 pattern with a motif order as 5-3-1-8-2 and 7-4.

215

216 Tissue distribution of HcunCXEs

217 To explore the possible physiological functions of the HcunCXEs, we examined tissue

218 expressions of all the 10 HcunCXEs using RT-qPCR with primers specific for each of the 10
219 HcunCXEs genes (Table S2). As shown in Fig. 3, eight HcunCXEs (HcunCXEl, 3,4, 5,6, 8,9

220 and 10) were expressed in the antennae. Among which, two HcunCXEs (HcunCXE1 and 3) were
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female-biased and 3 HcunCXEs (HcunCXE4, 9 and 10) were male-biased; however, the other 3
HcunCXEs (HcunCXES, 6 and 8) were equally expressed in both sexes. On the other hand,
expression of HcunCXE2 and HcunCXE7 in the legs or wings was higher than that in the
antennae. This result suggested that these two HcunCXEs may be participated in the degrading
of host plant volatiles, and/or other xenobiotics.

To investigate whether these HcunCXEs are also expressed in the other body parts or life
stages, RT-PCR experiment was carried out using total RNA samples taken from H. cunea adults
and other life stages (pupae and larvae). As shown in Fig. 4, gel electrophoresis bands were
generated from HcunCXE2 products from the adult thoraxes and abdomens. In addition,
faint/light bands of HcunCXE7 and HcunCXES were detected in both thoraxes and abdomens, as
well as the pupae. Interestingly, nine out of 10 HcunCXEs (HcunCXE1-5 and 7-10) were also

detected in the larvae, indicating that HcunCXEs are widely expressed in the larval stage.

Discussion

H. cunea adults reportedly showed strong electrophysiological (antennal) responses to their host
plant odors, especially to green leaf volatiles (7Tang, Su & Zhang, 2012a; Tang, Zhang & Zhang,
2012b). In this case, the ODEs in the moth antennae would quickly remove or degrade the plant
odor molecules from activated receptors after the electroantennogram (EAG) responses for odor
recognitions were completed. In the current study, 10 putative CXE genes were identified based

on our previous H. cunea transcriptomic data. All these 10 H. cunea CXE genes showed a very

Peer] reviewing PDF | (2020:05:49228:0:1:NEW 6 Jun 2020)


Author
Highlight
grammar 
does presence of the CXE2 and CXE7 transcripts in leg/wing tissue really suggest that they play a role in plant volatile degradation? how?


PeerJ

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

high homology to the CXE genes identified in S. inferens. We speculated that these H. cunea
CXE genes mainly degrade sex pheromone components and host plant volatiles. Unlike many
well-studied Type-I sex pheromone-producing lepidopteran insects (>75% moth species), the H.
cunea sex pheromone is consisted of Type II pheromone components (4Ando & Inomata, 2004).
Till now, most of the published moth ODEs are from the Type I sex pheromone producing
lepidopterans; thus, our study represents the first report of ODE genes from a Type II sex
pheromone-producing moth species. H. cunea is an extremely polyphagous species with a great
fecundity (several hundred eggs/female) and a quick dispersal capacity. H. cunea larvae are
generalists, capable of feeding on over 170 species of host plants, including many broad-leaved
tree species. To cope with such diverse host plant species, this moth must have developed a
series of olfactory receptor neurons to recognize diverse plant volatiles. Surprisingly, the number
(n=10) of CXE genes we identified from H. cunea was much lower than those of other reported
lepidopterans species: 19 in Chilo suppressalis, 35 in the tea geometrid Ectropis obliqua Prout
and 76 in B. mori (Yu et al., 2009; Liu et al., 2015; Sun et al., 2017).

The phylogenetic tree analysis showed that HcunCXEI1, 7 and 9 belonged to the
extracellular gene subclass, including the secretory enzymes that likely act on hormones and
pheromones (Fig. 1). The remaining 7 CXE genes fell into the intracellular gene subclass (Fig. 1),
including intracellular enzymes that mostly play roles in dietary metabolism and detoxification.
HcunCXE2, 3, 4, 5, 6, 8 and 10 were homologous to those (e.g. DmelCG10175 and

DmelCG6414) in D. melanogaster. Chertemps et al. (2012) demonstrated that an extracellular
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CXE of D. melanogaster, esterase-6 (Est-6), is responsible in or related to the sensory
physiological and behavioral responses to its pheromone. Thus, these H. cunea CXE genes
(HcunCXE?2, 3, 4, 5, 6, 8 and 10) may also affect the mating and courtship competitions in H.
cunea through degradation of some ester kairomones or plant allelochemicals.
Antennal-specific or highly expressed esterases belong to the CXE type in the
carboxy/cholinesterases (CCEs) family. The first ODE was identified form 4. polyphemus
(ApolSE) as an antenna-specific esterase, with a high ability to degrade the acetate component
(E6Z11-16: AC) of its pheromone blend (Vogt & Riddiford, 1981). Since then, antennal-specific
esterases have been cloned from A. polyphemus (Ishida & Leal, 2002) and Mamestra brassicae
Linnaeus (Maibeche-Coisne et al., 2004). Recent studies show that many insect CXEs are
expressed specifically in antennae, and their major functions in olfactory process are to degrade
odor molecules and to metabolize toxic substances. Interestingly, the expressions of some
HcunCXE:s in the legs and wings were found to be higher than those in the antennae. The ten H.
cunea CXEs genes we identified through the gene expression analysis had a low level of
expressions in different body tissues of H. cunea adults (Fig. 3). However, they were widely
expressed in the larvae, which may be related to their extremely broad host plant range that
needs more CXEs to degrade large amount of carboxylic acid esters. Our quantitative PCR
results indicated (Fig. 3) that some H. cunea genes were highly expressed in both male and

female antennae, likely for degradation of sex-pheromones and/or plant volatiles both from hosts
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or non-hosts, whereas the genes highly expressed in the legs and wings might be related to the
degradations of some non-volatile substances for contact signals.

CXEs play multiple key roles in the hydrolysis of carboxylic acids esters. CXEs also
include some metabolic enzymes that are associated with insecticide resistance (Li, Schuler &
Berenbaum, 2007). Many previous studies in insect CXEs were focused on their functions in
mediating insecticide resistance (Hemingway & Karunaratne, 1998; Li, Schuler & Berenbaum,
2007). In contrast, the mechanisms underlying degradation of plant allelochemicals are still
unclear. It has been found that Papilio Canadensis CXEs could be induced by phenolic
glycosides. Moreover, in Lymantria dispar, the activities of CXEs were positively correlated
with the larval survival, indicating that these esterases might be involved in the glycoside
metabolism (Lindroth, 1989; Lindroth & Weisbrod, 1991). In addition, a significant increase of
CXE activity in the midguts of S. /itur was observed while uptake of plant glycoside rutin
(Ghumare, Mukherjee & Sharma, 1989). The CXEs in Sitobion avenae might participate in the
gramine detoxification (Cai et al., 2009). Quercetinrutin and 2-tridaconone were also found to
induce the activities of CXEs in Helicoverpa Armigera (Gao et al., 1998; Mu, Pei & Gao, 2006).

Little is known about H. cunea olfaction mechanisms at molecular levels, especially on how
CXEs degrade various semiochemicals in its chemical communication system. Further research
is needed to 1) understand the functions of antennal-specific CXEs in H. cunea via cloning,
expression and purification of these CXEs and enzymatic kinetic analysis; 2) determine the

locations/distributions of related CXEs by in-situ hybridization; 3) evaluate the potential
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correlations between CXE transcription levels and their corresponding electrophysiological and
behavioral responses by silencing CXEs via RNA interference (Caplen, 2004), and 4) ultimately
discover the mode of action or functionality of CXEs in the olfactory signal conduction (signal

inactivation).

Conclusions

In summary, we identified 10 CXE genes in H. cunea by analyzing its antennal transcriptomic
data. These HcunCXEs displayed an antennae- or leg/wing-biased expression. The ubiquitous
expression of these HcunCXEs in different tissues and life stages, implicated their multiple roles,
i.e, degradation of odor molecules, metabolism and detoxification of dietary and environmental
xenobiotics. Our findings provide a theoretical basis for further studies on the olfactory
mechanism of H. cunea and offer some new insights into functions and evolutionary
characteristics of CXEs in lepidopteran insects. From a practical point of view, these HcunCXEs
might represent meaningful targets for developing behavioral interference control strategies

against H. cunea.
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Figure legends

Figure 1 Molecular phylogeny comparing HcunCXEs with CXEs from seven insect species.
10 CEXs (HcunCXE1-10) from H. cunea (Hyph) and CXEs from A. mellifera (Amel), A.
polyphemus (Apol), B. mori (Bmor), D.melanogaster (Dmel), H. virescens (Hvir), M. sexta
(Msex), S. inferens (Sinf), S. litura (Slit) were used to construct the phylogenetic tree. See

Materials and Methods for details of the phylogenetic analysis.

Figure 2 Motif analysis of CXEs in H. cunea. The upper parts list the eight motifs discovered
in the 44 CXEs using MEME online server (http://meme. nbcr.net/meme/). The lower parts
indicate approximate locations of each motif on the protein sequence. The numbers in the boxes
correspond to the numbered motifs in the upper part of the figure, where small number indicates
high conservation. The numbers on the bottom showed the approximate locations of each motif
on the protein sequence, starting from the N-terminal. This figure only listed the most common 8

motif-patterns presented in 44 CXEs.
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Figure 3 Relative mRNA expression of HcunCXEs in H. cunea tissues. FA, female antennae;
MA, male antennae; L, legs; W, wings. The relative mRNA levels were normalized to those of
the EF'[/-a gene and analyzed using the Q-gene method. All values are shown as the mean + SEM.
The data were analyzed by the least significant difference (LSD) test after one-way analysis of

variance (ANOVA). Different letters indicate significant differences between means (P < 0.05).

Figure 4 RT-PCR analysis of HcunCXEs gene expression in tissues taken from H. cunea
adults and other life stages. EF1-a was used as an internal control; NC, negative control with

no template in the reaction.
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Figure 1
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Molecular phylogeny comparing HcunCXEs with CXEs from seven insect species.

10 CEXs (HcunCXE1-10) from H. cunea (Hyph) and CXEs from A. mellifera (Amel), A.

polyphemus (Apol), B. mori(Bmor), D.melanogaster (Dmel), H. virescens (Hvir), M. sexta

(Msex), S. inferens (Sinf), S. litura (Slit) were used to construct the phylogenetic tree. See

Materials and Methods for details of the phylogenetic analysis.
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Figure 2

Motif analysis of CXEs in H. cunea.

The upper parts listed the eight motifs discovered in the 44 CXEs using MEME online server
(http://meme. nbcr.net/meme/). The lower parts indicate approximate locations of each motif
on the protein sequence. The numbers in the boxes correspond to the numbered motifs in
the upper part of the figure, where small number indicates high conservation. The numbers
on the bottom showed the approximate locations of each motif on the protein sequence,
starting from the N-terminal. This figure only listed the most common 8 motif-patterns

presented in 44 CXEs.
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Figure 3

Relative mRNA expression of HcunCXEs in H. cunea tissues.

FA, female antennae; MA, male antennae; L, legs; W, wings. The relative mRNA levels were
normalized to those of the EF1-a gene and analyzed using the Q-gene method. All values are
shown as the mean £ SEM. The data were analyzed by the least significant difference (LSD)
test after one-way analysis of variance (ANOVA). Different letters indicate significant

differences between means (P < 0.05).
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Figure 4

RT-PCR analysis of HcunCXEs gene expression in tissues taken from H. cunea adults and
other life stages.

EF1-a was used as an internal control; NC, negative control with no template in the reaction.

HcunCXE6

HcunCXE1 HcunCXE7

HcunCXE2 HcunCXE8

HcunCXE3 HcunCXE9

HcunCXE4 HcunCXE10

HcunCXE5

Peer] reviewing PDF | (2020:05:49228:0:1:NEW 6 Jun 2020)



PeerJ Manuscript to be reviewed

Table 1l(on next page)

Gene name, information of open reading frame and Blastx match of the 10 putative
HcunCXEs identified in this study.
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Table 1:

Gene name, information of open reading frame and Blastx match of the 10 putative

HcunCXEs identified in this study.

Best Blastx Match

Gene Name ORF Length ~ Complete  FPKM  Species Acc.number E- Identity

(bp) ORF value value (%)
HcunCXE1 1668 YES 4.9 S. inferens AlI21990.1 0.0 73
HcunCXE2 777 NO 3.77 S. inferens All21980.1  3e-135 73
HcunCXE3 375 YES 3.26 S. inferens All21980.1  2e-105 60
HcunCXE4 1389 YES 61.01 S. inferens AllI21984.1 0.0 59
HcunCXES5 1593 YES 143.14 S. inferens All21984.1 0.0 62
HcunCXE6 1161 NO 17.04 S. inferens All21984.1  4e-174 62
HcunCXE7 1677 YES 13.18 S. inferens AllI21987.1 0.0 75
HcunCXES8 1608 YES 12.64 S. inferens AlI121980.1 0.0 66
HcunCXE9 1653 YES 6.13 S.inferens All21978.1 0.0 71
HcunCXE10 273 NO 21.32 S. inferens All21984.1  8e-39 64

Note: ORF, open reading frame.
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Table 2(on next page)

Gene name and characteristics including molecular weight, isoelectric point and signal
peptide of the 10 putative HcunCXEs with open reading frames.
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Table 2:

Gene name and characteristics including
molecular weight, isoelectric point and
signal peptide of the 10 putative
HcunCXEs with open reading frames.

Gene Name MW (Kda) PI SP

HcunCXEIl 62.23 7.56 NO
HcunCXE2 28.44 5.67 NO
HcunCXE3 13.98 4.85 NO
HcunCXE4 52.2 5.31 NO
HcunCXES5 59.52 541 NO
HcunCXE6 43.17 5.09 NO
HcunCXE7 61.71 6.32 1-17
HcunCXES 60.68 5.75 NO
HcunCXE9 62.18 8 1-16
HcunCXE10 10.52 8.89 NO

Note: MW, Molecular weight; pl, isoelectric point; SP, signal peptide.
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