
Identification of a metabolic-related gene signature predicting
the overall survival for patients with stomach adenocarcinoma
Yuan Nie Equal first author, 1 , Linxiang Liu Equal first author, 1 , Qi Liu 1 , Xuan Zhu Corresp. 1

1 Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nan Chang, China

Corresponding Author: Xuan Zhu
Email address: waiyongtg@163.com

Background: The reprogramming of energy metabolism and consistently altered metabolic genes are
new features of cancer, and their prognostic roles remain to be further studied in stomach
adenocarcinoma (STAD).

Methods: Messenger RNA (mRNA) expression profiles and clinicopathological data were downloaded
from The Cancer Genome Atlas (TCGA) and the GSE84437 databases from the Gene Expression Omnibus
(GEO) database. A univariate Cox regression analysis and the least absolute shrinkage and selection
operator (LASSO) Cox regression model established a novel metabolic signature based on TCGA. The
area under the receiver operating characteristic (ROC) curve (AUROC) and a nomogram were calculated
to assess the predictive accuracy.

Results: A novel metabolic-related signature (including acylphosphatase 1, RNA polymerase I subunit A,
retinol dehydrogenase 12, 5-oxoprolinase, ATP-hydrolyzing, malic enzyme 1, nicotinamide N-
methyltransferase, gamma-glutamyl transferase 5, deoxycytidine kinase, galactosidase alpha, DNA
polymerase delta 3, glutathione S-transferase alpha 2, N-acyl sphingosine amidohydrolase 1, and N-acyl
sphingosine amidohydrolase 1) was identified. In both TCGA and GEO84437, patients in the high‐risk
group showed significantly poorer survival than the patients in the low‐risk group. A good predictive
value was shown by the AUROC and nomogram. Furthermore, gene set enrichment analyses (GSEAs)
revealed several significantly enriched pathways, which may help in explaining the underlying
mechanisms.

Conclusions: A novel robust metabolic-related signature for STAD prognosis prediction was conducted.
The signature may reflect the dysregulated metabolic microenvironment and can provided potential
biomarkers for metabolic therapy in STAD.
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25 Abstract

26 Background: The reprogramming of energy metabolism and consistently altered metabolic genes are new 

27 features of cancer, and their prognostic roles remain to be further studied in stomach adenocarcinoma (STAD).

28 Methods: Messenger RNA (mRNA) expression profiles and clinicopathological data were downloaded from 

29 The Cancer Genome Atlas (TCGA) and the GSE84437 databases from the Gene Expression Omnibus (GEO) 

30 database. A univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) 

31 Cox regression model established a novel metabolic signature based on TCGA. The area under the receiver 

32 operating characteristic (ROC) curve (AUROC) and a nomogram were calculated to assess the predictive 

33 accuracy.

34 Results: A novel metabolic-related signature (including acylphosphatase 1, RNA polymerase I subunit A, retinol 

35 dehydrogenase 12, 5-oxoprolinase, ATP-hydrolyzing, malic enzyme 1, nicotinamide N-methyltransferase, 

36 gamma-glutamyl transferase 5, deoxycytidine kinase, galactosidase alpha, DNA polymerase delta 3, glutathione 

37 S-transferase alpha 2, N-acyl sphingosine amidohydrolase 1, and N-acyl sphingosine amidohydrolase 1) was 

38 identified. In both TCGA and GEO84437, patients in the high‐risk group showed significantly poorer survival 

39 than the patients in the low‐risk group. A good predictive value was shown by the AUROC and nomogram. 

40 Furthermore, gene set enrichment analyses (GSEAs) revealed several significantly enriched pathways, which 

41 may help in explaining the underlying mechanisms.
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42 Conclusions: A novel robust metabolic-related signature for STAD prognosis prediction was conducted. The 

43 signature may reflect the dysregulated metabolic microenvironment and can provided potential biomarkers for 

44 metabolic therapy in STAD.
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47 Introduction

48 Stomach adenocarcinoma (STAD) is one of the five most common cancers and ranks third among the cancer-

49 related deaths worldwide. Globally, there are approximately 951,600 new STAD cases and approximately 

50 723,100 STAD-related deaths each year. STAD is harmful to human health and social development. Due to the 

51 lack of specific symptoms in the early stage of STAD, most patients have reached the middle and late stages of 

52 the disease when they are diagnosed, which then leads to a poor prognosis. According to the statistics, the 5-year 

53 survival rate of patients with advanced STAD is less than 20%, whereas the 5-year survival rate of patients with 

54 early diagnosis and surgical resection can increase to reach more than 90%(1, 2). Therefore, early diagnoses and 

55 timely interventions are of great significance for improving the prognosis of patients with STAD. At present, the 

56 diagnosis of STAD is mainly based on the pathological examination using endoscopy and tissue biopsy, but this 

57 method is traumatic and costly and has a low patient compliance rate. Although common gastrointestinal tumor 

58 markers, such as CEA, CA72-4, and CA19-9, have been widely used in clinical practice, the positive rate of 

59 early diagnosis is limited and cannot meet the requirements of early screenings of STAD. Therefore, it is of great 

60 practical significance to develop noninvasive, sensitive and specific biomarkers for the diagnosis and prognosis 

61 of gastric cancer.

62 Metabolic disorder is a key event in cancer, and tumor-related metabolic changes are involved in the generation, 

63 maintenance and progression of tumors(3). When compared with that in normal tissues, there is a large amount 

64 of metabolic heterogeneity in cancer cells and tumors; this includes glucose and amino acids exhibiting 

65 imbalanced levels, which increases the demand for nitrogen(4). In the occurrence and development of STAD, 

66 abnormal glycolysis and amino acid metabolism constitute the essence of metabolic phenotype changes in 

67 STAD(5). The regulation of tumor metabolism mainly involves the activation of oncogenes, the inactivation of 

68 tumor suppressor genes and the changes in metabolic pathways that are mediated by these genes. The metabolism 

69 of gastric cancer is also affected by the regulation of many classical pathways, such as the hypoxia inducible 

70 factor (HIF-1a) pathway and the insulin signaling pathway(6). The results showed that fatty acid synthase 

71 (FASN), a new metabolic reprogramming agent, also has prospective clinical applications. Metabolic 

72 reprogramming is emerging as a novel hallmark of cancer, and it is particularly important to identify biomarkers 

73 with high sensitivities and specificities at the metabolic level for the diagnosis and prognosis of STAD.

74 Materials and methods

75 Raw data

76 Transcriptome RNA sequencing (RNA-seq) data of 407 samples (normal samples, 32 patients; tumor samples, 

77 375 patients) and the corresponding clinical data were downloaded from The Cancer Genome Atlas (TCGA) 

78 database (https://portal.gdc.cancer.gov/). GSE84437 data with 433 tumor samples was downloaded from the 

79 GEO database(7). The metabolic genes were retrieved from the metabolic pathways of GSEA 

80 (c2.cp.kegg.v7.1.symbols.gmt).

81 Identification of intersected differentially expressed mRNAs in TCGA‐STAD

82 The limma R software package (version 3.6.2) was used to analyze the differential expression of the annotated 
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83 protein coding genes and the expression patterns of the 940 metabolic genes were studied in TCGA. The 940 

84 metabolic genes were selected as being consistently altered metabolic genes for subsequent prognostic analyses 

85 in the GSE84437 datasets. Metabolism-related genes shared by TCGA and GSE84437 datasets.

86 Construction of the prognostic metabolic gene signature

87 The prognosis‐related metabolic genes were confirmed by combining the univariate Cox regression and LASSO 

88 penalized Cox regression analysis and to set up a new prognostic gene signature. P< 0.001 was selected as the 

89 screening condition in univariate regression analysis. The prognostic gene signature was calculated by 

90 (coefficientmRNA1×expression of mRNA1) + (coefficientmRNA2× expression of mRNA2) + (coefficientmRNAn × 

91 expression of mRNAn). The optimal cutoff point of the above prognostic gene signature and the Kaplan–Meier 

92 survival curve were conducted by R package (survival, survminer). The predictive performance was shown by 

93 ROC curve. Multivariate Cox regression analysis was conducted by forward stepwise analysis method and a 

94 nomogram was conducted based all of the independent prognostic factors.

95 External validation of the prognostic gene signature and gene changes in the GEO data

96 The GSE84437 data set was included to calculate the risk score of the included patients with the gene signature. 

97 ROC and Kaplan–Meier analyses, as well as the construction and validation of the nomogram, were performed 

98 identically as those analyses in the cohort TCGA‐STAD.

99 Gene set enrichment analyses

100 Hallmark sets v 6.2 collections were downloaded from the Molecular Signatures Database as the target sets with 

101 which GSEA was performed by using GSEA 3.0 software. The entire transcriptome of all of the tumor samples 

102 was used for the GSEA, and only gene sets with NOM P < 0.05 and FDR Q < 0.05 were considered to be 

103 statistically significant.

104 Results

105 Construction of the prognostic metabolic gene signature in TCGA

106 There are 192 metabolic genes in the TCGA-STAD database, including 119 up-regulated genes and 73 down-

107 regulated genes (Figure 1). 16 survival‐related genes were confirmed by a univariate Cox regression analysis; 

108 then 14 survival‐related genes were identified by LASSO‐penalized Cox analysis; finally, a prognostic model 

109 was constructed based on 14 survival‐related genes. The 14 genes included acylphosphatase 1 (ACYP1), RNA 

110 polymerase I subunit A (POLR1A), retinol dehydrogenase 12 (RDH12), 5-oxoprolinase, ATP-hydrolyzing 

111 (OPLAH), malic enzyme 1 (ME1), nicotinamide N-methyltransferase (NNMT), gamma-glutamyl transferase 5 

112 (GGT5), deoxycytidine kinase (DCK), galactosidase alpha (GLA), DNA polymerase delta 3 (POLD3), 

113 glutathione S-transferase alpha 2 (GSTA2), N-acyl sphingosine amidohydrolase 1 (ASAH1), and N-acyl 

114 sphingosine amidohydrolase 1 (CKMT2). The risk score = 0.0258×expression of ME1 -0.0458×expression of 

115 ACYP1 -0.0583×expression of POLR1A + 0.0097×expression of RDH12 -0.0109×expression of OPLAH + 

116 0.0039×expression of NNMT +0.009411×expression of GGT5 - 0.0097×expression of DCK - 

117 0.0372×expression of GLA-0.0062×expression of POLD3 + 0.01629×expression of GSTA2 +0.0128 expression 

118 of ASAH1 + 0.0841 expression of CKMT2.

119 Validation of the prognostic metabolic gene signatures in TCGA and GEO

120 According to the median risk score, patients were divided into high‐ and low‐risk groups. The overall survival 

121 (OS) was significantly poorer in the high‐risk group than in the low‐risk group (P< 0.0001; Figure 2A). As shown 

122 in Figure 3C, people who died were more obviously distributed on the outlier risk scores than near the median 

123 risk scores. Subsequently, the prognostic model was validated in the GSE84437 cohort. According to the median 
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124 risk score, patients were divided into a high‐ risk and low‐risk group. The OS was significantly poorer in the 

125 high‐risk group than in the low‐risk group (P<0.0001; Figure 2B). As shown in Figure 3D, people who died were 

126 more distributed on the outlier risk scores than near the median risk score. The expression of GSTA2, ME1, and 

127 CKMT2 in the high-risk group were higher than those in the low-risk group; however, the expression of OPLAH 

128 and GLA in the high-risk group were lower than those in the low-risk group (Figure 3F).

129 Independent prognostic role of the prognostic gene signature

130 Among the 375 patients who were included in the TCGA‐STAD cohort, univariate and multivariate Cox 

131 regression analyses indicated that age and risk score were both independent prognostic factors for OS (Figure 

132 4A, 4C). Importantly, our risk scores were also independent prognostic factors for OS via the analysis of the 433 

133 patients who were included in the GSE84437 cohort, which was consistent with the results from the cohort 

134 TCGA‐STAD (Figure 4B, 4D).

135 As shown in Figure 5A, the area under the ROC curve (AUROC) of the risk score (AUROC=0.696,

136 sensitivity=56.45%; specificity=74.29%, Youden index=0.307) was higher than that of the other parameters. In 

137 the GSE84437 cohort, the performance analysis of the discriminative accuracy of the risk score for mortality 

138 had an AUROC of 0.574 (sensitivity=54.12%; specificity=63.49%, Youden index=0.176), which was also 

139 significant (Figure 5B). A nomogram was built by including the TNM stage and the prognostic model (Figure 

140 6A) in the TCGA‐STAD cohort (Figure 6A). Age and risk score were determined to be the best parallel 

141 parameters for prognosis. Importantly, the risk score was also the best parallel parameter for prognosis in the 

142 GSE84437 cohort. Therefore, our prognostic model may have the potential to be a marker for STAD prognosis, 

143 which may help with the clinical management of STAD.

144 Gene set enrichment analyses

145 GSEAs were performed, and 17 significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) 

146 pathways were found in the TCGA‐STAD or GSE84437 cohort. As shown in Figure 7B, many of the enriched 

147 pathways were related to metabolism, such as drug metabolism of P450, arachidonic acid metabolism, retinol 

148 metabolism, and pyrimidine metabolism. In addition, most of the metabolism‐related pathways were enriched in 

149 the low‐risk group, whereas most of the pathways that were not related to metabolism were enriched in the 

150 high‐risk group.

151 Discussion

152 Early diagnosis is the key to improving the survival rates of patients. In recent years, a large number of studies 

153 have shown that molecular biomarkers play an important role in disease diagnosis, prognosis prediction and 

154 targeted therapy. STAD is one of the most serious malignant tumors in the world, with a high mortality rate and 

155 a poor prognosis. Helicobacter pylori infection, improper diet, poor hygiene and smoking are common risk 

156 factors for STAD(8). In addition, the delay in diagnosis and the metastasis of gastric cancer are the main causes 

157 of death for patients with gastric cancer. Therefore, the search for new molecular markers is very important for 

158 early diagnosis, targeted treatment and prognosis evaluation of gastric cancer(9).

159 Cancer is a metabolic disease. Metabolic disorder is a key event in the occurrence and development of cancer, 

160 and it constitutes one of the signs of cancer(10). In a cohort study of 125 gastric cancer samples with different 

161 stages (I-N), 48 different metabolites were identified, 13 of which involved glycolysis, glutamine metabolism, 

162 amino acid metabolism, and choline metabolism, and these metabolites were related to the progression of gastric 

163 cancer, with a potential for staging diagnosis (11). The combined survival analysis of the serum metabolome of 

164 125 gastric cancer patients showed that the serum levels of 2,4-hexadienoic acid, 4-tolyl dodecanoate and 
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165 tributyrin were inversely related to the survival rates of patients, then suggesting that the combination of 3 serum 

166 metabolites may be an independent prognostic factor for gastric cancer(12). The plasma amino acid metabolism 

167 profiles of 82 patients with gastric ulcers and 84 patients with gastric cancer were compared. Five different 

168 amino acids (glutamine, ornithine, histidine, arginine, and tryptophan) showed good differentiation ability 

169 between gastric ulcer and gastric cancer (13).In summary, changes in metabolites can effectively predict the 

170 progression and prognosis of gastric cancer patients.

171 In recent years, mRNA gene signatures based on certain characteristics, such as long noncoding RNA, have 

172 become a hot topic in research for mortality risk prediction in cancer(14). In the study by Liu, GM, it was 

173 demonstrated that a four‐gene metabolic signature has a predictive value in the OS for patients with 

174 hepatocellular carcinoma(15); however, reports on the prediction of metabolism-related genes in gastric cancer 

175 are very limited. In this study, we identified a novel efficient metabolic prognostic signature based on the data 

176 set from TCGA and validated its efficiency in the GSE84437 data set. Our signature could efficiently stratify 

177 the OS values of patients. Via univariate and multivariate Cox regression analyses, the efficacy of our signature 

178 was found in the training set and in the validation set, thus indicating a robustly high prognostic value of the 

179 signature. In the GSEA cohort, most of the pathways in the high-risk group were mainly enriched in pathways 

180 that were not related to metabolism; however, most of the pathways in the low-risk group were mainly enriched 

181 in metabolism‐related pathways.

182 Fourteen genes (ME1, ACYP1, POLR1A, RDH12, OPLAH, NNMT, GGT5, DCK, GLA, POLD3, GSTA2, 

183 ASAH1, and CKMT2) were involved in the disorder. In the study of acute myeloid leukemia, DCK is the rate-

184 limiting enzyme for the metabolism of cytarabine after entering the cell, and changes in the properties of DCK 

185 directly affect the effective concentration of cytarabine(16). POLD participates in mediating the process of DNA 

186 amplification, replication and damage repair by interacting with proliferating cell nuclear antigen (PCNA)(17). 

187 Rayner et al. reported that mutations in the POLD3 gene line can increase the risk of rectal cancer(18). 

188 Glutathione S-transferase (GST) is a very important enzyme superfamily in vivo that is involved in 

189 biotransformation and the detoxification process of many carcinogens. GST can form a DNA adduct after 

190 exposure to a pre-carcinogen, thus resulting in a high level of DNA damage. This results in the ineffective 

191 metabolism of the corresponding carcinogens, thus resulting in the accumulation of carcinogens in the body, 

192 which increases the risk of cancer. Mitochondrial creatine kinase 2 (CKMT2) is an important kinase that exists 

193 on the surface of the mitochondrial membrane and is directly related to intracellular energy transfer and ATP 

194 regeneration(19). CKMT2 is positively correlated with the malignant degree of gastric cancer. ASAH1 is a key 

195 enzyme that regulates the hydrolysis of intracellular ceramide and plays an important role in cellular proliferation 

196 and apoptosis(20). The expression of ASAH1 in tumor tissues is positively correlated with breast cancer tumor 

197 size. There are many reports concerning the previously described genes, but the confirmed mechanisms of 

198 actions of these genes need to be further studied, especially in relation to gastric cancer.

199 There were some reports on the bioinformatics analysis of gene expression and the predictive prognosis of 

200 STAD, especially after the application of machine learning techniques in bioinformatics (21, 22). From the 

201 perspective of alternative splicing, Liu et al. reported that 2,042 alternative splicing genes play an important role 

202 in regulating gastric cancer-related processes, such as GTPase activity and the PI3K-Akt signaling pathway, and 

203 they found that ECT2 may be a biomarker for diagnosis and prognosis (23). The occurrence and prognosis of 

204 STAD are closely related to inflammation. Additionally, a prognostic model based on seven immune-related 

205 genes was developed (24). Metabolic recombination is an important characteristic of cancer, and glycolysis is 
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206 an important part of this process. A gene signature based on a seven-gene signature of glycolysis was conducted, 

207 which has good calibration and moderate discrimination (25). Zhao et al. reported that BicC family RNA-binding 

208 protein 1 (BICC1) may be a potential prognostic biomarker in STAD and correlates with immune infiltrates (26). 

209 However, a bioinformatics analysis based on all of the metabolic genes is limited. 

210 This study had several limitations. Firstly, although it has been verified by the GSE84437 cohort, the main aim 

211 of this study is represented by the bioinformatics analysis based on TCGA, and functional experiments are 

212 necessary to reveal the predictive mechanisms. Secondly, confounding effects of treatment factors are difficult 

213 to control because of the lack of treatment information and 

214 and it was difficult to reduce the batch effect. Lastly, the predictive performance of GSE84437 was not very 

215 good, which was related with the different pathogenesis mechanisms of stomach adenocarcinoma from different 

216 regions; thus, a larger, multicenter cohort is required. Finally, the AUROC between TCGA and GEO data was 

217 relatively large and may be reduced by enlarging the sample size, constructing convolutional neural networks 

218 (CNN) or the use of a support vector machine (SVM).

219 In conclusion, our study showed that a novel metabolic signature based on TCGA has the potential to be a 

220 prognostic factor for STAD patients. Our signature may reflect the dysregulated metabolic microenvironment 

221 and can provide potential biomarkers for metabolic therapy; however, validations of the signature and functional 

222 experiments are still needed.

223

224 Figure 1. Construction of the prognostic metabolic gene signature in TCGA. (A) Heatmap for expression level 

225 between normal patients and tumor patients; (B) Volcano for expression level between normal patients and tumor 

226 patients; (C) Forest map for univariate COX regression analysis with 192 different expression genes (DEGs), 

227 with the top 16 being listed.

228

229 Figure 2. Survival analysis of prognostic metabolic gene signatures in TCGA and GEO. (A) Kaplan–Meier 

230 curve of the four‐gene signature in TCGA cohort; (B) Kaplan–Meier curve of the four‐gene signature in 

231 GSE84437.

232

233 Figure 3. Validation of the prognostic metabolic gene signatures in the TCGA and GEO. (A, B) Risk scores of 

234 patients with different metabolic gene signatures in TCGA and GEO; (C, D) Survival states distribution of 

235 patients with different metabolic gene signatures in TCGA and GEO;(E, F) Heatmap for Expression level of 

236 prognostic metabolic gene.

237

238 Figure 4. Independent prognostic role of the prognostic gene signatures. (A, B) Univariate Cox regression 

239 analysis for clinical characteristics and prognostic gene signatures in TCGA and GEO; (C, D) Multiple Cox 

240 regression analysis for the clinical characteristics and prognostic gene signature in TCGA and GEO.

241

242 Figure 5. Receiver operating characteristic curves of the clinical characteristics and prognostic gene signatures. 

243 (A) ROC for TCGA; (B) ROC for GEO.

244

245 Figure 6. Nomogram plot for the clinical characteristics and prognostic gene signatures. (A) Nomogram plot for 

246 TCGA; (B) Nomogram plot for GEO.
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247

248 Figure 7. GSEA for samples with high levels of prognostic gene signature and low expression. (A) GSEA for 

249 samples with high expression levels; (B) GSEA for samples with low expression levels.

250

251 Supplementary Figure 1. GO and KEGG analysis to the differential genes of the high-risk group and the low-

252 risk group.

253
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Figure 1
Figure 1

Construction of the prognostic metabolic gene signature in TCGA. (A) Heatmap for expression
level between normal patients and tumor patients; (B) Volcano for expression level between
normal patients and tumor patients; (C) Forest map for univariate COX regression analysis
with 192 different expression genes (DEGs), with the top 16 being listed.
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Figure 2
Figure 2

Survival analysis of prognostic metabolic gene signatures in TCGA and GEO. (A) Kaplan–Meier
curve of the four‐gene signature in TCGA cohort; (B) Kaplan–Meier curve of the four‐gene
signature in GSE84437.
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Figure 3
Figure 3

Validation of the prognostic metabolic gene signatures in the TCGA and GEO. (A, B) Risk
scores of patients with different metabolic gene signatures in TCGA and GEO; (C, D) Survival
states distribution of patients with different metabolic gene signatures in TCGA and GEO;(E,
F) Heatmap for Expression level of prognostic metabolic gene.
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Figure 4
Figure 4

Independent prognostic role of the prognostic gene signatures. (A, B) Univariate Cox
regression analysis for clinical characteristics and prognostic gene signatures in TCGA and
GEO; (C, D) Multiple Cox regression analysis for the clinical characteristics and prognostic
gene signature in TCGA and GEO.
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Figure 5
Figure 5

Receiver operating characteristic curves of the clinical characteristics and prognostic gene
signatures. (A) ROC for TCGA; (B) ROC for GEO.
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Figure 6
Figure 6

Nomogram plot for the clinical characteristics and prognostic gene signatures. (A) Nomogram
plot for TCGA; (B) Nomogram plot for GEO.
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Figure 7
Figure 7

GSEA for samples with high levels of prognostic gene signature and low expression. (A) GSEA
for samples with high expression levels; (B) GSEA for samples with low expression levels.
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