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ABSTRACT
Spatial heterogeneity of soil bacterial community depends on scales. The fine-scale
spatial heterogeneity of bacterial community composition and functions remains
unknown. We analyzed the main driving factors of fine-scale spatial patterns of soil
bacterial community composition and carbon metabolic functions across a 30 m ×
40 m plot within a Korean pine forest by combining Illumina 16S rRNA sequencing
with Biolog Ecoplates based on 53 soil samples. Clear spatial patterns in bacterial
community composition and metabolic functions were observed in the forest soil. The
bacterial community composition andmetabolic functions both showeddistance-decay
of similarity within a distance of meters. Structural equation model analysis revealed
that environmental variables and geographic distance together explained 37.9% and
63.1% of community and metabolic functions, respectively. Among all environmental
factors, soil organic carbon (SOC) and root biomass emerged as the most important
drivers of the bacterial community structure. In contrast, soil pH explained the largest
variance in metabolic functions. Root biomass explained the second-largest variance in
soil bacterial community composition, but root traits made no difference in metabolic
functions variance. These results allow us to better understand the mechanisms
controlling belowground diversity and plant-microbe interactions in forest ecosystems.

Subjects Ecology, Microbiology, Molecular Biology, Plant Science, Soil Science
Keywords Distance-decay, Fine scale, Soil bacterial community, Metabolic functions, Root traits

INTRODUCTION
Soil bacteria drive important biogeochemical processes and play critical roles in regulating
the functions and stability of ecosystems (Fuhrman, 2009; Lladó, López-Mondéjar &
Baldrian, 2017; Sugden, 2018). The geographic distribution of soil bacteria has been
recently examined across a broad range of spatial scales (Griffiths et al., 2011;Martiny et al.,
2011; Ranjard et al., 2013; Sugden, 2018). Most of these studies compared samples collected
more than 1 km apart, and studies on fine-scale (<1 km) are still very rare (Finkel et al.,
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2012; Lear et al., 2014). The fine-scale spatial patterns of soil bacteria are important for
understanding bacterial community dynamics and providing appropriate scales to monitor
the communities of forest soil. However, there are still important gaps in identifying the
distances of patterns in community composition and diversity. In particular, the minimum
spatial scales have significant biogeographic patterns (Finkel et al., 2012; Lear et al., 2014;
Martiny et al., 2006).

Many environmental factors can directly or indirectly influence the spatial structure
of soil bacterial communities. The soil pH has the clearest effects on the variance in the
abundance of soil bacterial taxa (Fierer, 2017; Liu et al., 2014; Shen et al., 2013; Tripathi
et al., 2018). The other most important factors influencing the structure of soil bacterial
communities are quantity and quality of organic carbon (Delgado-Baquerizo & Eldridge,
2019; Tian et al., 2012; Tian et al., 2018), climate factors (Bahram et al., 2018; Delgado-
Baquerizo et al., 2017; Delgado-Baquerizo & Eldridge, 2019; Ladau et al., 2018) and redox
status (DeAngelis et al., 2010). Besides edaphic factors, plants are key drivers of soil bacterial
community structure and functions (Bardgett et al., 2005; DeVries et al., 2012; Delgado-
Baquerizo et al., 2018a; Prober et al., 2015). Plants have significant influences on carbon
resources and modify the habitats of soil bacteria (Kuzyakov, Friedel & Stahr, 2000; Latz
et al., 2015). Plant diversity is a strong predictor of soil microbial diversity (Cantarel et
al., 2016; Lamb et al., 2011; Prober et al., 2015; Wang et al., 2016), and influence microbial
communities via specific functional traits. Leaf traits (Laughlin, 2011) have important roles
in regulating soil microbial communities (De Vries et al., 2012; Delgado-Baquerizo et al.,
2018b). However, much less is known about the role of roots in regulating the soil bacterial
communities (De Vries et al., 2012; Delgado-Baquerizo et al., 2018b; Pervaiz et al., 2020).

Forests are spatially heterogeneous ecosystems (Stursova et al., 2016) at scales of
meters, within which soil, roots, and microbes form extremely complex dependencies
and relationships through substance, energy, and information exchange (Feeney et al.,
2006). The roots are one of the two dominant sources of C input variability in temperate
forest soils (Baldrian et al., 2010; Clemmensen et al., 2013). Root-derived C forms easily
available energy and supports a high abundance, activity, and diversity of microorganisms
(Pausch & Kuzyakov, 2011). Active fine roots with fast turnover and their symbiotic
microorganisms distribute throughout the soil and undertake essential functions for plants
such as nutrient and water acquisition (Finzi et al., 2015; Phillips & Fahey, 2006; Waisel
et al., 2002; Zhao, Zeng & Fan, 2010) and influence various ecological processes (Bardgett
& Wh, 2014; Cadotte et al., 2009; Clemmensen et al., 2013; Freschet & Cornelissen, 2013).
Active fine roots or tips can release more exudates into soil (Dennis, Miller & Hirsch,
2010; Jones, Nguyen & Finlay, 2009), which have an important influence on soil microbial
communities (Denef et al., 2009; Tian et al., 2012).

Functional trait approaches have been demonstrated to be a beneficial tool for analyzing
plant-microbial interactions (Cantarel et al., 2016; De Vries et al., 2012; Grigulis et al.,
2013). For example, root diameter represents the ability of root to penetrate dense
soil (Materechera, Dexter & Alston, 1991), colonizing by mycorrhiza (Comas, Callahan
& Midford, 2014), whereas specific root length (SRL) reflects the efficiency of exploration
or exploitation at the cost of root longevity (Eissenstat et al., 2000; McCormack et al.,
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2012). Despite growing evidences that the effects of root traits on ecosystem processes
largely via interactions with free-living microorganisms (Bardgett, Mommer & De Vries,
2014; Freschet et al., 2017), our knowledge of the specific traits that affect soil bacterial
community composition and metabolic functions is limited.

In this context, we hypothesize that (1) bacterial community composition and carbon
metabolic functions show distance-decay of similarity at a scale of few meters or tens
of meters; and (2) environmental conditions, including soil properties and root traits
explain more variance in bacterial community composition and metabolic functions than
geographical distance because roots are the main direct drivers and the distance exerts
indirect effects through the trees and their roots. To test these hypotheses, we investigated
the significance of geographic distance, soil properties, and root traits in shaping the
bacterial community composition and functions within a broad-leaved Korean pine
forest.

MATERIALS & METHODS
Study site and sampling
The study was designed in an original Korean pine forest within the Forest EcosystemOpen
Research Station of the Changbai Mountains in northeast China (28◦28′E, 42◦24′N) at an
altitude of 700–800m above sea level. This area is a typical warm temperate zone continental
monsoon climate, with a mean air temperature of 2.0 ◦C and mean annual precipitation of
approximately 700 mm. This region is dominated by brown forest soil, which originated
from volcanic ash, and is classified as a Haplic Andosol (Zhang, Han & Yu, 2006). The
vegetation community of the sampling plot is a multi-story forest with different ages,
averaging over 200 years. The upper strata mainly include Pinus koraiensis, Tiliaamurensis,
Acer mono, Acer barbinerve, Fraxinus mandshurica, Acer ktegmentosum, Ulmus japonica,
and Quercus mongolica. The dominant shrubs and herbs include Corylusmandshurica,
Deutzia amurensis, Brachybotrysparidiformis, and Phrymaleptostachya.

A total of 53 soil samples were collected (Fig. S1) from 0 to 10 cm depth from a
30 m × 40 m plot following the Latin hypercube design in August 2013, as described
in Tian et al. (2015). Latin hypercube sampling is a stratified-random procedure that
provides an efficient way to ensure full coverage of the range of each variable by maximally
stratifying the marginal distribution (McKay, Beckman & Conover, 1979). This design
produces a statistically robust sampling scheme to capture the spatial variability of soils in
the study area and is the most effective way to replicate the distribution of the variables
(Helton & Davis, 2003; Mulder, Bruin & Schaepman, 2013). The sampling points had a
minimum distance of 0.49 m and a maximum of 44 m. The samples were stored in airtight
polypropylene bags, placed in a cooler box at about 4 ◦C during sampling and transported
to the laboratory. The visible roots, rock fragments, and residues were carefully removed
by hand, and then the roots were carefully washed with tap water to remove the adhering
soil. Then samples were frozen at −20 ◦C until the measurements. The soil samples were
divided into several subsamples. The subsamples for microbial functional diversity and
dissolved organic matter concentration analysis were stored at 4 ◦C for no more than one
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week. The subsamples for microbial communities were stored at −80 ◦C. The subsamples
for organic matter analyses were air dried.

Soil chemical analyses
The air-dried samples were passed through a two mm sieve, then ball-milled and analyzed
for soil organic carbon (SOC) and total nitrogen (TN) contents by dry combustion with
a Vario Max CN elemental analyzer (Elementar, Langenselbold, Germany). The soil
dissolved organic carbon (DOC) and total dissolved nitrogen (DON) concentrations were
determined using a Multi 3100 N/C TOC analyzer (Analytik Jena, Jena, Germany). The soil
NH4

+ and NO3
− concentrations were measured using an autoanalyzer (TRAACS-2000,

BRAN+ LUEBBE, Norderstedt, Germany). The soil DON was calculated as the difference
between the total dissolved N and the combined NH4

+ and NO3
−. The particulate organic

carbon and nitrogen (POC and PON, respectively) were determined by the method
reported by Cambardella & Elliott (1992). Soil pH was determined using a pH meter after
shaking the soil in deionized water (soil-to-water ratio of 1:2.5) suspensions for 30 min.

Analyses of soil bacterial community composition and carbon
metabolic functions
The soil microbial functional diversity was characterized using Biolog Eco-plates (Hayward,
CA, USA) (Garland & Mills, 1991). Thirty-one C substrates associated with plant root
exudates were used in the Eco-plates. Dividing them into six groups: seven carbohydrates
(β-Methyl-D-glucoside, D-Xylose, i-Erythritol, d-Mannitol, N-Acetyl-D-galactosamine, D-
Cellobiose and α-D-Lactose), six amino acids (L-Arginine, L-Asparagine, L-Phenylalanine,
L-Serine, L-Threonine, and Glycyl- L-glutamic acid), nine carboxylic acids (D-Galactonic
acid γ -lactone, D-Galacturonic acid, 2-Hydroxy benzoic acid, 4-Hydroxy benzoic acid,
γ -Hydroxy butyric acid, Itaconic acid, α-Keto butyric acid, D-Glucosaminic acid and
D-Malic acid), two amines (Phenylethylamine and Putrescine), four polymers (Tween 40,
Tween 80, α-Cyclodextrin and Glycogen), and three miscellaneous (Pyruvic acid methy1
ester, D,L- α-Glycerol phosphate and Glucose-L-phosphate). Briefly, 10 g of fresh soil was
added to 90 mL of sterilized NaCl (0.85%) solution and shaken at 200 rpm min−1 for 30
min. Ten-fold serial dilutions were prepared, and each well of the Biolog Eco-plates was
inoculated with 150 µL of the 10−2 suspension. The plates were incubated at 30 ◦C for 10
days, and the color development was read as absorbance every 24 h with an automated
plate reader (VMAX, Molecular Devices, Crawley, UK) at a wavelength of 590 nm. The 72
h absorbance values were used to calculate the average well color development (AWCD)
and indicated the microbial metabolic activity.

Soil DNA was extracted from each sample using the PowerSoil kit (MoBioLaboratories,
Carlsbad, CA, USA) according to the manufacturer’s instructions. The quality of the
purified DNA was assessed based on the 260/280 nm and 260/230 nm absorbance ratios
obtained, using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies Inc.,
Wilmington, DE, USA). The DNA was stored at −80 ◦C until use.

An aliquot of the extracted DNA from each sample was used as a template for
amplification. The V3–V4 hypervariable regions of bacterial 16S rRNA genes were
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amplified using the primers 338F 5′-barcode-ACTCCTACGGGAGGCAGCAG-3′ and
806R 5′-GGACTACHVGGGTWTCTAAT-3′. PCR reactions were performed in triplicate
with a 20 µL mixture containing 4 µL of 5× FastPfu Buffer, 2 µL of 2.5 mM dNTPs, 0.8
µL of each primer (5 µM), 0.4 µL of FastPfuPolymerase, and 10 ng of template DNA.
The following thermal program was used for amplification: 95 ◦C for 3 min, followed
by 27 cycles at 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 45 s and a final extension
at 72 ◦C for 10 min. PCR amplicons were extracted from 2% agarose gels and purified
using an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA)
according to the manufacturer’s instructions and quantified using QuantiFluorTM -ST
(Promega, USA). The purified amplicons from all samples were pooled at equimolar
concentrations. Sequencing was conducted on an Illumina MiSeq platform at Majorbio
Bio-Pharm Technology Co., Ltd. (Shanghai, China).

Raw sequences > 200 bp with an average quality score > 20 and without ambiguous
base calls were quality processed, using the Quantitative Insights into Microbial Ecology
(QIIME) pipeline (version 1.17). Operational taxonomic units (OTUs) were clustered
with a 97% similarity cutoff using UPARSE (version 7.1 http://drive5.com/uparse/). The
taxonomic assignment was performed using the Ribosomal Database Project (RDP)
classifier (http://rdp.cme.msu.edu/). To correct for sampling effort (number of analyzed
sequences per sample), we used a randomly selected subset of 19,460 sequences per sample
for subsequent analysis.

Root traits
The fine root samples (diameter <1mm, including roots for absorption and transportation)
were selected for scanning on a desktop scanner, and images were processed with
WinRHIZO (Regent Instruments Inc., Quebec City, QC, Canada) to determine the
average root diameter and total root length. These roots were then oven-dried to a constant
weight. Specific root length (SRL) was calculated as the ratio of total root length to root
dry weight, and root tissue density (RTD) was calculated as the ratio of root dry weight to
root volume.

Data analysis
For the analyses of bacterial community composition and function similarity, we calculated
pairwise environmental distances (Euclidean distance) and a pairwise community Bray–
Curtis dissimilarity matrix for the whole set of bacterial OTUs and Biolog data within the
vegan package using R (R Core Team, 2016). Mantel tests (10,000 permutations) were
used to explore the significance of the influence of geographical distance on Bray–Curtis
dissimilarities.

We used structural equation modeling (SEM) to evaluate the direct and indirect
relationships between geographical distance, soil properties, root traits, and bacterial
community composition and functions. First, we established an a priori model based
on the known effects and relationships among the drivers of community composition
and function. Then we parameterized the model using our dataset and tested its overall
goodness of fit. We used the χ2-test and root mean square error of approximation
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(RMSEA). Furthermore, we calculated the standardized total effects of distance, soil
properties and root traits on soil bacterial community composition and function. All the
SEM analyses were conducted using AMOS 20.0 (AMOS IBM, USA) (Grace & Keeley,
2006).

RESULTS
Spatial variability of soil properties, root traits and bacterial
community
We identified a total of 1,233,787 high-quality bacterial sequences grouped into 10,739
OTUs. The average number of bacterial sequences per sample was 23,279, which were
classified as 2,311 to 3,402 OTUs (with an average of 2,901 ± 32 OTUs, Table S1). The
bacterial alpha diversity (Shannon index) varied from 5.73–6.84, with an average of 6.28.
The dominant phyla of bacterial communities across all soil samples were Proteobacteria,
Acidobacteria, Actinobacteria, Chloroflexi, Verrucomicrobia, Bacteroidetes, Nitrospirae
and Gemmatimonadetes (relative abundance >1%, Fig. 1), which accounted for more
than 95% of the bacterial sequences. Alphaproteobacteria and Acidobacteria were most
abundant at the class level, and the dominant classes (relative abundance>2%) also included
Spartobacteria, Thermoleophilia, Actinobacteria, Deltaproteobacteria, Betaproteobacteria,
and the other five classes, accounting for about 85% of the bacterial sequences (Fig. 1).

Metabolic activity (indicated as AWCD) and diversity varied from 0.51–1.57, and
2.19–3.35 with an average of 1.00 and 2.59, respectively (Table S1). Despite the fine scale of
the research site (only 30 × 40 m2), the root traits, soil parameters, bacterial community
composition, and metabolic functions presented a high degree of spatial variance (Table
S1). While the CVs of pH and Shannon–Wiener diversity index of bacterial community
composition were relatively small, with CVs <20%, the other parameters had a high level
of variance (>20%).

Microbial metabolic activities were related to the abundance of multiple bacterial
classes in the phyla of Verrucomicrobia, Proteobacteria, Planctomysetes, Cyanobacteria,
Chloroflexi, Bacteroidetes, and Actinobacteria (Fig. 2). The stepwise regression analysis
showed that the six metabolic groups were all related to soil pH (28.9–57.8%), DOC
(17.1–32.1%) and various bacterial classes (16.8–53.5%) (Tables S2, S3).

Distance-decay patterns of bacterial community composition and
metabolic functions
Dissimilarities (Bray Curtis index) in the bacterial community composition and metabolic
functions were positively correlated with geographic distance (Mantel r = 0.194, p < 0.05;
Mantel r = 0.119, p < 0.05) (Fig. 3). At the phylum level, besides Proteobacteria
and Actinobacteria, the other dominant bacterial groups (Acidobacteria, Chloroflexi,
Verrucomicrobia, Bacteroidetes, Nitrospirae, and Gemmatimonadetes) all showed
distance-decay patterns (Fig. 4). Microbial metabolic activities towards carbohydrates,
carboxylic acids, polymers, and amines presented distance-decay patterns (Fig. 5).

ThemultivariateMantel correlogram showed that for bacterial community composition,
the first three distance classes had a positive autocorrelation (p < 0.05; i.e., up to 16.1 m),
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Figure 1 Relative abundances of the dominant bacterial (A) phylum and (B) class in the broad-leaved
Korean pine forest. The relative abundances are based on the proportional frequencies of the classified
DNA sequences.

Full-size DOI: 10.7717/peerj.10902/fig-1

while the next two classes have a negative autocorrelation (p < 0.05; i.e., up to 26.5 m)
(Fig. 6). No significant autocorrelations were found for the further distance class. However,
the correlogram showed a sudden significant decrease in autocorrelation (p < 0.05) only
at the smallest distance class (i.e., up to 5.7 m) (Fig. 6). This pattern indicated an abrupt
change in metabolic functions with increasing distance.

Drivers of bacterial community composition and carbon metabolic
functions
Soil properties and root traits (root biomass and SRL) together shaped the bacterial
community and affected metabolic activity (Figs. 7 and 8). The bacterial diversity (H ′)
was related to pH (p < 0.01) and C/N (p < 0.05), while the functional diversity was only
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Figure 2 Correlations of bacterial groups andmetabolic functions. *p ≤ 0.05; **p ≤ 0.01. The blue-red
bar on the right shows the negative-positive correlations.

Full-size DOI: 10.7717/peerj.10902/fig-2

Figure 3 Relationship between Bray–Curtis community dissimilarity and geographic distance for (A)
bacterial community composition and (B) metabolic functions. Each data point represents the Bray–
Curtis dissimilarity score for two samples and the geographic distance between the samples.

Full-size DOI: 10.7717/peerj.10902/fig-3

related to DOC concentration (p < 0.01) (Fig. 7). Bacterial community composition and
functional groups were related to various soil and root properties (Fig. 7). The relative
abundances of bacterial groups were mainly related to pH, SOC, TN, DOC, and SRL, while
the metabolic groups were related to pH, SOC, TN, C/N, DOC, POC and PON (Fig. 7).

The SEMs explained 37.9% and 63.1% of the variance found in bacterial community
composition and metabolic functions (Fig. 8), respectively. The distance only affected the
bacterial community directly via its influence on soil properties (Fig. 8). Root biomass had
a positive effect on bacterial community composition. SOC, C/N, pH, and root biomass
collectively contributed to the variance of bacterial community composition, among
which SOC and root biomass contributed the most (Fig. 8A). In contrast, pH was the
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Figure 4 Relationships between dissimilarity and geographic distance for dominant bacterial phyla.
(A) Proteobacteria. (B) Acidobacteria. (C) Actinobacteria. (D) Chloroflexi. (E) Verrucomicobia. (F) Ni-
trospirae. (G) Bacteroidetes. (H) Gemmatimonadetes. Each data point represents the Bray–Curtis dissim-
ilarity score for two samples and the geographic distance between the samples.

Full-size DOI: 10.7717/peerj.10902/fig-4

Figure 5 Relationships between dissimilarity and geographic distance for six metabolic functions.
(A) Carbohydrates. (B) Carboxylic acids. (C) Amino acids. (D) Polymers. (E) Miscellaneous. (F) Amines.
Each data point represents the Bray–Curtis dissimilarity score for two samples and the geographic distance
between the samples.

Full-size DOI: 10.7717/peerj.10902/fig-5

dominant driver in determining the variance of metabolic functions (Fig. 8B). Specifically,
the root traits made a difference in bacterial community composition but were irrelevant
to functional differences.
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Figure 6 Multivariate Mantel correlograms showing the significance of spatial autocorrelation in (A)
bacterial composition and (B) functions. Solid black points represent scales with significant (p< 0.05)
spatial autocorrelation (positive Mantel correlation values) or spatial clustering (negative Mantel corre-
lation values). Open points represent non-significant values. Holm’s correction was applied for multi-
ple comparisons. Therefore, ‘scale values’ on the plots provide the approximate distances on the correlo-
grams, where spatial autocorrelation in bacterial composition or functions between samples becomes non-
significant (that is, only communities separated by distances greater than the scale values are likely differ
significantly).

Full-size DOI: 10.7717/peerj.10902/fig-6

DISCUSSION
Soil bacteria are the most abundant and diverse group of organisms on Earth, driving
many ecosystem processes (Bardgett & Wh, 2014; Delgado-Baquerizo et al., 2018b; Sugden,
2018). Understanding bacterial biogeographical patterns and drivers is crucial for resolving
the complex and coordinated microbial mechanisms of maintaining soil nutrient cycling.
Distance-decay relationships exist in the distribution of bacterial communities (Fierer &
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Figure 7 The heatmap of the Pearson’s correlation coefficients of the relative abundances of dominant
bacterial groups andmetabolic functions with plant and soil properties. *p ≤ 0.05; **p ≤ 0.01.

Full-size DOI: 10.7717/peerj.10902/fig-7

Jackson, 2006; Ranjard et al., 2013; Sugden, 2018). Nevertheless, few investigations have yet
been conducted at fine spatial scales.

A correlogram that declines from significant positive correlations at short distances
to significant negative correlations at large distances is consistent with a patchy spatial
distribution (Legendre & Fortin, 1989). We confirmed the distance-decay patterns of
bacterial communities and functions at smaller spatial scales than most previous studies of
forest soil. These findings improved our understanding of bacterial community variability
at a fine scale and provided appropriate scales to monitor the microbial communities of
forest soil. Furthermore, these results showed that the bacterial community composition
andmetabolic functions presented an obvious asymmetric variance (Fig. 6), which could be
due to the dispersal in the bacterial community was higher than that ofmicrobes responsible
for metabolic functions (Lear et al., 2014). Certain microbial community functions are in
fact driven more by low levels of the bacterial groups with relatively limited dispersal ability
(Lear et al., 2014; Severin, Ostman & Lindstrom, 2013), while other abundant groups that
are less responsible for community functions had more ability to disperse and colonize
new habitats (Lear et al., 2014).

The spatial heterogeneity mainly arose from the soil properties and root traits, rather
than distance or dispersal limitations at the fine scale. The spatial patterns in the soil
bacterial community at the fine scale were mainly due to soil properties and root traits (Fig.
8). The parameters wemeasured explained 37.9% and 63.1% of the variance of soil bacterial
community composition andmetabolic functions, respectively.Our findings are in linewith
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Figure 8 Direct and indirect effects of soil nutrients and root traits on beta-diversity of bacterial com-
munity composition andmetabolic functions. Structural equation models are shown for the (A) bacte-
rial community and (B) metabolic functions. Arrows represent causal relationships. Numbers on arrows
are standardized path coefficients. Percentages in circles indicate the variance explained by the model (R2).
Asterisks denote the level of significance: *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.

Full-size DOI: 10.7717/peerj.10902/fig-8

previous research demonstrating the dominant effects of pH in shaping the soil bacterial
community of Changbai Mountain (Shen et al., 2013). The importance of pH in shaping
soil bacterial communities has been studied at various scales (Fierer & Jackson, 2006; Liu et
al., 2014; Tripathi et al., 2018) and all results indicated the pivotal role of pH in controlling
bacterial communities (Delgado-Baquerizo et al., 2018b; Rousk, Brookes & Bååth, 2010;
Shen et al., 2013). Some explanations may explain the effects of soil pH on metabolic
functions. First, soil pH impacts the substrates and microenvironment for metabolic
reactions (Berg & Mcclaugherty, 2013; Jones et al., 2019), which change the microbial
metabolic activity directly. Second, soil pH changes the abundance and activity of microbes
participating in the metabolic reaction (Berg & Mcclaugherty, 2013; Jones et al., 2019).
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The effects of soil pH on metabolic functions are the result of the combined action of
various factors. In addition to pH, the effects of other soil properties, such as soil organic
matter content are important (Delgado-Baquerizo et al., 2018b; Lladó, López-Mondéjar &
Baldrian, 2017; Tian et al., 2015).

The plant communities influence the below-ground communities by litterfall and root
rhizodeposition. Fine roots and their symbiotic microorganisms play important roles in
soil nutrient availability and soil organic matter decomposition (Finzi et al., 2015; Han et
al., 2020; López-Angulo et al., 2020; Saleem et al., 2020). Root traits reflect the quantity and
quality of root litter and exudate transferred into the soil organic matter pool (Henneron
et al., 2020; Klimešová, Martínková & Ottaviani, 2018; See et al., 2019) and decomposed by
soil microbes. However, we only found that the root biomass contributed to variance in
bacterial community composition but were uncorrelated with carbon metabolic functions,
and there was no significant relationship between root traits and SOC. This may be due
to the dual effects of roots on SOC (Dijkstra, Zhu & Cheng, 2020), in which roots increase
SOC in forms of root litter and exudate, but also carbon input from roots promotes
SOC decomposition because of the priming effect. Thus, we did not find a significant
relationship between root biomass and SOC, but both affected soil the bacterial community
directly. Larger root biomass per unit area implied more rhizodeposition that promoted
certain groups of bacterial growth, such as the Actinobacteria phylum, which resulted in
variance of bacterial community composition. On the other hand, metabolic functions
were driven more by low levels of the bacterial groups, and those root-affected groups
were less responsible for metabolic functions, leading to different effects of root traits on
community composition and functions.

CONCLUSIONS
The bacterial metabolic functions and community composition varied significantly at a
scale of a few meters and tens of meters, respectively, due to the heterogeneity of forest
soil. Soil nutrient contents (SOC and C/N), pH, and root biomass together accounted for
37.9% of the variance in bacterial community composition, while only pH and nutrients
contributed to 63.1% of the variance in metabolic functions. Root traits only affected
community composition, but made no difference in the variance of metabolic functions.
Geographical distance had only indirect effects via soil properties. This finding revealed that
the synthesis of soil-roots-microbes should be think comprehensively in future studies.
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