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The history of cetaceans demonstrates dramatic macroevolutionary changes that have
aided their transformation from terrestrial to obligate aquatic mammals. Their fossil record
shows extensive anatomical modifications that facilitate life in a marine environment. To
better understand the constraints on this transition, we examined the physical dimensions
of the bony auditory complex, in relation to body size, for both living and extinct
cetaceans. We compared the dimensions of the tympanic bulla, a conch-shaped ear bone
unique to cetaceans, with bizygomatic width—a proxy for cetacean body size. Our results
demonstrate that cetacean ears scale non-isometrically with body size, with about 70% of
variation explained by increases in bizygomatic width. Our results, which encompass the
breadth of the whale fossil record, size diversity, and taxonomic distribution, suggest that
functional auditory capacity is constrained by congruent factors related to cranial
morphology, as opposed to allometrically scaling with body size.
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17 Abstract

18 The history of cetaceans demonstrates dramatic macroevolutionary changes that have aided their 
19 transformation from terrestrial to obligate aquatic mammals. Their fossil record shows extensive 
20 anatomical modifications that facilitate life in a marine environment. To better understand the 
21 constraints on this transition, we examined the physical dimensions of the bony auditory 
22 complex, in relation to body size, for both living and extinct cetaceans. We compared the 
23 dimensions of the tympanic bulla, a conch-shaped ear bone unique to cetaceans, with 
24 bizygomatic width—a proxy for cetacean body size. Our results demonstrate that cetacean ears 
25 scale non-isometrically with body size, with about 70% of variation explained by increases in 
26 bizygomatic width. Our results, which encompass the breadth of the whale fossil record, size 
27 diversity, and taxonomic distribution, suggest that functional auditory capacity is constrained by 
28 congruent factors related to cranial morphology, as opposed to  allometrically  scaling with body 
29 size.

30

31 Introduction

32 The evolutionary history of cetaceans exhibits dramatic transformations that have facilitated their 
33 ecological transition from a terrestrial to an obligate marine lifestyle (Pyenson, 2017; Zimmer, 
34 2011). The cetacean fossil record shows extensive anatomical modifications that allowed for this 
35 transition by facilitating communication and navigation underwater. This adaptation to life in the 
36 water, from terrestrial ancestry, required surmounting or accommodating physical constraints to 
37 the functional challenges for hearing (Nummela et al. 2007; Ketten, 1994). Previous studies have 
38 documented allometric patterns associated with precocial growth in the ear bones (i.e., 
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39 tympanoperiotic complex) of living cetaceans, demonstrating that extant cetacean ontogeny is, at 
40 least partially, driven by acoustic ecology (Lancaster, 2015; Yamato and Pyenson, 2015; Ekdale, 
41 2015; Thean et al., 2017). This study seeks to understand the allometry of cetacean ear bones 
42 across their evolutionary history to elucidate the extent to which acoustic ecology constrains 
43 variability in tympanic bulla morphology.

44 The cetacean auditory system has undergone dramatic modifications associated with at least 
45 three major shifts throughout cetacean evolutionary history: (1) the land-to-sea transition; (2) 
46 ultrasonic hearing for echolocation; and (3) infrasonic hearing in mysticetes (Thean, 2017; 
47 Thewissen & Williams, 2002; Spoor et al. 2008; Thewissen et al. 2001; Fleischer, 1976; 
48 Schevill, 1953). Throughout these changes, cetaceans have maintained a unique auditory 
49 structure: the pachyosteoslerotic tympanic bulla. The tympanic bulla’s large, dense, conch-
50 shaped structure works with the mandibles and soft tissues of the inner ear (e.g., inside the 
51 periotic) to detect and isolate sound (Luo and Gingerich, 1999; Cozzi et al. 2015; McCormick et 
52 al. 1970). The bulla combines with the periotic to form the tympanoperiotic complex (Mead & 
53 Fordyce, 2009). The tympanoperiotic complex is highly diagnostic for taxonomic and 
54 phylogenetic research (Ekdale et al. 2011, 2015), and it is readily preserved in the fossil record, 
55 providing a marker of acoustic evolution (Churchill et al., 2016; Park et al., 2016, 2019; 
56 Mourlam & Orliac, 2017; Racicot et al. 2018, 2019). Thus, this anatomical unit is useful for 
57 studying allometric patterns in cetacean evolutionary history. 

58 Here, we use a comparative dataset of cetacean tympanic bullae, generated from museum 
59 specimens and the published literature, spanning the full range of cetacean body size, to test the 
60 extent to which body size drives tympanic bulla size. Previous work has shown that some inner 
61 ear structures (specifically the bony labyrinth) are strongly correlated with body mass (Ekdale 
62 2015; Racicot et al. 2016). However, biological systems rarely scale isometrically, and modern 
63 whales are seemingly approaching an upper limit on body size (Slater et al. 2017; Goldbogen et 
64 al. 2019; Gearty et al. 2018), suggesting osteological and/or ecological constraints on scaling. 
65 Our study demonstrates that bullae become proportionally smaller as body size increases. 
66 Thedataset relies on accessible, low-cost measurement techniques, and includes fossils spanning 
67 all of cetacean evolutionary history, including the earliest semi-aquatic stem cetaceans, and 
68 major ecological transitions (Pyenson, 2017). We demonstrate that the scaling of tympanic bullae 
69 is positively allometric, non-isometric, and smaller than anticipated at the largest body sizes.

70 Materials & Methods

71 Anatomical Measurements
72 We measured the bizygomatic width (BZW), tympanic bulla length (BL), and tympanic bulla 
73 width (BW) of cetacean skulls using handheld calipers (  1mm). Bizygomatic width was ±

74 defined as the maximum distance between the lateral edges of the zygomatic processes and was 
75 used as a proxy for cetacean body size (Pyenson & Sponberg 2011). In the case of incomplete 
76 skulls, the bizygomatic width was measured from the lateral edge of one zygomatic process to 
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77 the midline and doubled. BL was measured in the dorsal and lateral views from the outer 
78 posterior prominence to the edge of the involucral ridge following previous authors and as 
79 documented by Tsai & Fordyce (2015) and references therein. Bulla width was measured in 
80 ventral views from the mallear ridge to the involucrum following Tsai & Fordyce 2015 and 
81 Tanaka et al. 2018 (Fig. 1). Where possible, we measured both the right and left bulla and used 
82 the mean value in this study. Only complete and intact specimens were included in the final 
83 dataset.  Other studies have used the periotic, specifically inner ear structures such as the spiral 
84 cochlea and the bony labyrinth, to test for changes in acoustic ecology through whale 
85 evolutionary history. Here, we elect to focus on the tympanic bulla because it is an external 
86 structure that can be measured with minimal resource allocations and because tympanic bullae 
87 preserve readily in the fossil record, making it easier to amass a large dataset that can be easily 
88 replicated. 

89 Figure 1. 3D models of sample cetacean skulls illustrating the measurements collected for this study, including (A) 
90 a stem cetacean (Zygorhiza, USNM PAL 11962), (B) a mysticete (Balaenoptera, USNM VZ 593554), and (C) an 
91 odontocete (Tursiops USNM VZ 550969). Specimens are scaled to the same condylobasal length. BZW: 
92 Bizygomatic width, measured as the maximum distance across the zygomatic processes of the squamosals or 
93 estimated by doubling the measurement to the midline. BL: tympanic bulla length measured along its longest 
94 anteroposterior axis following the orientation guidelines of Mead and Fordyce (2009). BW: tympanic bulla width 
95 measured along its widest transverse axis following the orientation guidelines of Mead and Fordyce (2009). 

96

97 Institutional Abbreviations
98 UMMP
99 University of Michigan Museum of Paleontology, Ann Arbor, Michigan, USA.

100

101 USNM
102 Departments of Paleobiology and Vertebrate Zoology (Division of Mammals), National Museum 
103 of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.
104

105 Data Acquisition and Taxonomic Selection
106 We measured the bizygomatic width, bulla length, and bulla width for specimens that preserve 
107 both skulls and at least one complete tympanic bulla. Our data set includes fossil cetaceans from 
108 the UMMP and USNM; we then supplemented this dataset with additional measurements from 
109 published specimens from the literature. Juvenile and subadult specimens were excluded as 
110 examining ontogenetic growth is beyond the scope of this study. The final dataset (Table S1) 
111 includes 267 representatives of nearly every known cetacean taxon (n=135) with pairable 
112 bizygomatic widths and tympanic bulla.

113 Phylogenetic Analysis
114 To test for potential phylogenetic signal, we constructed a composite tree using previously 
115 established phylogenetic relationships and their heuristic searches with accepted support values 
116 (Lambert et al., 2017; Tanka & Fordyce, 2017; Marx & Fordyce, 2015; Peredo & Uhen, 2016; 
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117 Gatesy et al. 2012; O’Leary, 2001). The composite matrix, constructed in MESQUITE 3.6 
118 (Maddison & Maddison, 2018), included three new continuous characters: BZW, BL, and BW. 
119 Phylogenetic Independent Contrasts (PICs) correlated continuous size variable traits with 
120 corresponding taxa using non-transformed data in PDTREE. Branch lengths were set to 1.0 and 
121 colors were allocated by character value (Pyenson et al. 2013). PIC axes were set as follows: Y- 

122 the character for exploration (|BL:BZW|) and X- the tree character (  , the square root  Σρ(X,Y)

123 of the sum of the correlated branch lengths). To assess the phylogenetic underpinnings of non-
124 isometric scaling relationships, we regressed the PICs of the continuous character traits and 
125 mapped them back onto the original composite tree (Garland & Ives, 2000; Pyenson et al, 2013). 
126 The dataset exhibited a normal distribution and character trait ranges were spread across 
127 families.

128

129 Results

130 Allometry of Cetacean Tympanic Bullae
131 Scaling relationships of tympanic bulla length (Fig. 2A slope= 0.5488x, R2= 0.7055) and bulla 
132 width (Fig. 2B slope= 0.5644x, R2= 0.6824) versus bizygomatic width were positively allometric 
133 (Fig. 2). This trend suggests that body size is the predominant correlate influencing ear size, with 
134 roughly 70% of the bullae dimensional variation being explained by changes in body size. We 
135 used log-transformed plots to display linear regressions across the sample, allowing size 
136 extremes to be shown with minimal axis compression (Fig. 2). The smallest cetaceans (e.g., 
137 Cephalorhynchus hectori, Pontoporia blainvillei, and Phocoena phocoena) had bullae that were 
138 about twice as long as they were wide (BL:BW 1.7-2.2). Conversely, the largest cetaceans (e.g., 
139 Eubalaena glacialis, Megaptera novaeangliae, Balaenoptera physalus) exhibited bullae nearly 
140 as wide as they were long (BL:BW 1.1-1.7). At smaller body sizes (BZW<185mm), the 
141 tympanic bulla length was consistently 15–41% of bizygomatic width. However, at larger body 
142 sizes (BZW>407mm) bulla length was closer to 10% and as low as 4% of bizygomatic width in 
143 some specimens of Megaptera novaeangliae and Balaenoptera physalus, indicating that 
144 tympanic bullae are proportionally smaller at the largest body sizes. 

145 Figure 2.  Log-transformed bivariate plot demonstrating allometric changes in bulla size and bizygomatic width: A. 
146 Tympanic bulla length versus bizygomatic width. B. Tympanic bulla width versus bizygomatic width. Black dots 
147 represent specimens from the amalgamate dataset. Colored lines represent linear regressions. See text for statistical 
148 results.

149 The patterns observed in the cumulative dataset remain consistent within taxonomic groupings 
150 (stem cetaceans, odontocetes, and mysticetes). Larger body sizes were correlated with longer 
151 tympanic bulla in all three groups (Fig. 3): stem cetaceans (slope= 0.1626x, R2= 0.7166), 
152 mysticetes (slope=0.0248x, R2= 0.4635), and odontocetes (slope= 0.049x, R2= 0.5868). Similar 
153 patterns were observed for body size and tympanic bulla width in stem cetaceans (slope= 
154 0.0034x, R2= 0.7719), mysticetes (slope= 0.0217x, R2= 0.4100), and odontocetes (slope= 0.04x, 
155 R2= 0.5293).
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156 Figure 3.  Allometric relationships of stem cetaceans, odontocetes, and mysticetes: A. Tympanic bulla length (BL) 
157 versus bizygomatic width (BZW). B. Tympanic bulla width (BW) versus bizygomatic width (BZW). Green circles 
158 represent stem cetaceans, red correspond with odontocetes, and blue indicate mysticetes. Colored lines represent 
159 linear regressions by group.

160 Within groups, our data demonstrated insignificant linear growth trajectories, with stem 
161 cetaceans and odontocetes constrained to the left side of the graph likely as a result of their 
162 smaller body sizes, and mysticetes occupying a wide range of ear and body sizes (Fig. 2-3). As a 
163 paraphyletic group, stem cetaceans resemble the tympanic bullae size and proportions of 
164 odontocetes despite larger body sizes comparable to those of smaller mysticetes (Fig. 3). The 
165 composite dataset includes a diverse assortment of bulla and bizygomatic sizes. 

166 Tympanic bullae and bizygomatic width seemingly conform to the same scaling coefficient, 
167 regardless of taxonomic grouping (Fig. 2, 3). Our phylogenetic independent contrasts (PIC) 
168 yielded no genus-level clustering in both branch proximity and corresponding character traits, 
169 indicating that tympanic bulla size is not governed by phylogeny (Fig. S1). 

170

171 Discussion

172 Scaling & Function
173 Tympanic bullae play a fundamental role in cetaceans’ abilities to navigate, communicate, and 
174 feed within aquatic systems. Our results demonstrate that cetacean bulla dimensions increase in a 
175 positively allometric pattern irrespective of taxonomic identity or phylogenetic history. 
176 Nonetheless, the largest cetaceans (mysticetes) exhibit disproportionately small tympanic bullae, 
177 while small-bodied cetaceans (e.g. Pontoporia, Platanista, phocoenids, and extinct odontocetes 
178 such as Olympicetus and Echovenator) exhibit particularly large ears for their body sizes (Fig. 3). 
179 These small-bodied odontocetes all retain proportionately large tympanoperiotic complexes, 
180 possibly hinting at a lower limit for cetacean bulla size. Notably, the largest cetaceans are all 
181 extant (Rosel et al. 2020; Pyenson & Sponberg, 2011; Vermeij & Pyenson, 2016; Slater et al., 
182 2017). Whale body size persists near a lower bound for much of their evolutionary history and 
183 only reached extreme gigantism during the Plio-Pleistocene (Slater et al. 2017). Such departures 
184 from linearity suggest that functional auditory capacity is not based on proportional congruences, 
185 but may instead be constrained by functional or biological auditory limits.

186 One such constraint may be osteological: the tympanic bulla functions by acoustically isolating 
187 the hearing apparatus from the rest of the skull (Luo and Gingerich, 1999; Nummela et al. 2004; 
188 Cozzi et al. 2015) and it remains unclear how acoustic isolation functions at proportionally larger 
189 body sizes. Another potential limitation may be ecological. The pachyosteosclerotic bulla 
190 enhances the reception of sound underwater, and may therefore be bound within a functional size 
191 range with upper and/or lower limits of effectiveness. This constraint is likely true for 
192 echolocating odontocetes, which rely on high frequency sounds not just for communication, but 
193 for navigation and feeding as well (Ketten, 1994). Future research is needed to determine how 
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194 bulla size influences sound reception underwater. Finally, cetaceans often exhibit paedomorphic 
195 ear bone morphology at birth (Cozzi et al. 2015; Yamato and Pyenson, 2015), suggesting that 
196 future work examining changes in allometry across whale ontogeny may reveal developmental 
197 constraints on ear bone scaling. Such studies would necessarily focus on extant sampling, as 
198 developmental series are mostly lacking from the fossil record of cetaceans.

199 Evolutionary Patterns
200 Cetaceans underwent major morphological transformations associated with an increasingly 
201 marine lifestyle, but our results demonstrate that tympanic bulla allometry remains relatively 
202 unchanged throughout 50 million years of cetacean evolutionary history. Stem cetaceans 
203 maintain a stronger consistent relationship between tympanic bulla dimensions and body size 
204 than either of the crown groups (Fig. 3). This pattern may hold because stem cetaceans exhibit 
205 small and medium body sizes overall, but generally not the gigantism observed in extant 
206 mysticetes (Fig. 3). Despite innovations that involve hearing, such as ultrasonic echolocation in 
207 odontocetes and extreme gigantism in mysticetes, neither extant lineage differs markedly from 
208 stem cetaceans in terms of tympanic bullae dimensions and scaling. This result is noteworthy 
209 given their seemingly disparate ecologies and suggests little functional selection on tympanic 
210 bulla dimensions. Instead, bulla dimensions converge around a common form. The consistency 
211 of tympanic bulla dimensions across the land-to-sea transition, even in stem cetaceans, reinforces 
212 the hypothesis that even the earliest cetaceans already had aquatic-adapted tympanic bullae (Luo 
213 and Gingerich, 1999; Nummela et al. 2004).

214 Notably, while our study examines the relationship between tympanic bullae size and body size, 
215 it does not directly test whether changes in tympanic bulla size are driven by ecological factors. 
216 Future studies might test specific ecological factors as potential drivers of bulla size to help 
217 elucidate the relationship between ear size and functional ecology. For example, it remains 
218 unclear whether bullae can reach substantially larger sizes, or if the observed values in extant 
219 whales represent an upper limit, as seems to be the case for body size (Slater et al. 2017). Further 
220 study in this regard will reveal to what extent tympanic bulla size and shape are restrained by 
221 functional ecology. Recent authors have begun to elucidate the specific mechanism for infrasonic 
222 hearing in mysticetes (Park et al 2017, Ekdale et al. 2015), though it remains overall less 
223 understood than ultrasonic hearing in odontocetes. Consequently, future work in this area has the 
224 potential to inform a potential relationship between mysticete hearing and mysticete gigantism. 

225
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400 Supplementary Figure 1.  The amalgamated phylogenetic tree used to compare stem cetaceans, mysticetes, and 
401 odontocetes for the PIC. Branches and nodes are colored by their character trait value, bulla length: bizygomatic 
402 width.
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Figure 1
Figure 1. 3D models of sample cetacean skulls illustrating the measurements collected
for this study

including (A) a stem cetacean (Zygorhiza, USNM PAL 11962), (B) a mysticete (Balaenoptera,
USNM VZ 593554), and (C) an odontocete (Tursiops USNM VZ 550969). Specimens are scaled
to the same condylobasal length. BZW: Bizygomatic width, measured as the maximum
distance across the zygomatic processes of the squamosals or estimated by doubling the
measurement to the midline. BL: tympanic bulla length measured along its longest
anteroposterior axis following the orientation guidelines of Mead and Fordyce (2009). BW:
tympanic bulla width measured along its widest transverse axis following the orientation
guidelines of Mead and Fordyce (2009).
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Figure 2
Figure 2. Log-transformed bivariate plot demonstrating allometric changes in bulla size
and bizygomatic width:

A. Tympanic bulla length versus bizygomatic width. B. Tympanic bulla width versus
bizygomatic width. Black dots represent specimens from the amalgamate dataset. Colored
lines represent linear regressions. See text for statistical results.
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Figure 3
Figure 3. Allometric relationships of stem cetaceans, odontocetes, and mysticetes:

A. Tympanic bulla length (BL) versus bizygomatic width (BZW). B. Tympanic bulla width (BW)
versus bizygomatic width (BZW). Green circles represent stem cetaceans, red correspond
with odontocetes, and blue indicate mysticetes. Colored lines represent linear regressions by
group.
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