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ABSTRACT
Jasmonic acid (JA) and its derivatives called jasmonates (JAs) are lipid-derived
signalling molecules that are produced by plants and certain fungi. Beside this
function, JAs have a great variety of applications in flavours and fragrances
production. In addition, they may have a high potential in agriculture. JAs protect
plants against infections. Although there is much information on the biosynthesis
and function of JA concerning plants, knowledge on these aspects is still scarce for
fungi. Taking into account the practical importance of JAs, the objective of this
review is to summarize knowledge on the occurrence of JAs from fungal culture
media, their biosynthetic pathways and the culture conditions for optimal JA
production as an alternative source for the production of these valuable metabolites.
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INTRODUCTION
Jasmonic acid (JA) and its derivatives belong to a group of plant hormones called
jasmonates (JAs) (Wasternack & Feussner, 2018). They belong to the large group of
oxidized lipid signalling molecules, so-called oxylipins (Gerwick, Moghaddam & Hamberg,
1991). In plants, JAs derive either from a-linolenic acid (18:3(n-3)) or raughanic acid (16:3
(n-3)) and their major representatives are the isomers (+)-7-iso-JA and (−)-JA. These
compounds are widely distributed in algae (Ueda et al., 1991), angiosperms (Wasternack &
Hause, 2013) and certain fungi (Hause et al., 2007;Miersch et al., 1993). They belong to the
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group of phytohormones playing a role as growth inhibitors and regulating plants defence
responses (Pieterse et al., 2009; Wasternack et al., 2006).

Methyl jasmonate (MeJA) was firstly isolated as an odoriferous constituent of the
essential oil of Jasminun grandiflorum and other plant species (Crabalona, 1967; Demole,
Lederer & Mercier, 1962). It is recognized as an important ingredient in high-grade
perfumes, cosmetics and in the preparation of detergents, soaps and food aromas with
floral notes (Asamitsu et al., 2006; Dhandhukia & Thakkar, 2007a). JA was first isolated as
plant growth inhibitor from cultures of the fungus Lasiodiplodia theobromae (synonym
Botryodiplodia theobromae) (Aldridge et al., 1971).

JA and MeJA have attracted the attention of plant physiologists since the development
of efficient methods for detecting and quantifying metabolites about 35 years ago.
The presence of these compounds in different parts of plants was initially correlated with
their strong promotion of senescence and inhibition of growth in angiosperms
when applied exogenously (Wasternack & Hause, 2002). Although these compounds act
as growth inhibitors or senescence promoters at high concentration, they induce the
expression of defensive genes at much lower levels. For instance, they promote the
synthesis of proteinase inhibitors, enzymes of phytoalexin synthesis, thionins, defensins
and the vegetative storage protein genes (Howe & Jander, 2008).

However, JAs play an important role in agriculture nowadays by regulating the
defence of plants against pests and pathogens (Gális et al., 2009; Gavin et al., 2012;
Hawkins et al., 2007; Heil et al., 2001; Moreira et al., 2019; Rohwer & Erwin, 2008;
Sanches et al., 2017; Stout, Zehnder & Baur, 2002; Wasternack, 2014). Their application
seems to be in line with the principles of sustainable agriculture since they may be less
aggressive to the environment than pesticides and mineral fertilizers (Secatto, 2013).

Furthermore, it has been observed that adding exogenous of MeJA stimulates the
production of many secondary metabolites in cell suspension cultures, such as taxane and
derivatives from Taxus sp (Yukimune et al., 1996) and camptothecin production from
Ophiorrhiza mungos L. (Deepthi & Satheeshkumar, 2017). These metabolites are very
promising anticancer drugs in humans (Miller, Neilan & Sze, 2008; Sriram et al., 2005).
Although credible evidence on a mechanism of action was missing until recently (Bömer
et al., 2020). Studies have been conducted to optimize the production of these substances;
focusing on their metabolic pathways, selecting more productive cell lines, optimizing
cell culture processes, product purification, and up scaling of the whole process (Bai et al.,
2004; Miller, Neilan & Sze, 2008; Onrubia et al., 2013; Syklowska-Baranek et al., 2009;
Tabata, 2006; Wilson & Roberts, 2012).

Currently most of the aroma compounds including JAs may be extracted from natural
plant sources. However, recent advances in metabolic engineering have generated a great
interest to produce these substances from alternative sources (Gupta, Prakash & Gupta,
2015). An alternative and attractive route for producing JAs could be based on microbial
biosynthesis and biotransformation. Microorganisms such as bacteria and yeast can be
used at variable scales as safe producers of flavours and fragrances (Gill & Valivety, 1997).
Most importantly, these microorganisms can be metabolically and genetically modified to
enhance the production of the desired metabolites. Moreover, the production of aroma
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compounds from microbial cultures or their enzyme preparations offers several
advantages over traditional methods. The microbial metabolites can be produced in large
quantities by using a fermentation process and can give high yields in very good qualities
with better product characteristics along with low economical costs (Gupta, Prakash &
Gupta, 2015).

Presently there are numerous projects ongoing for sequencing the genomes of
ascomycete fungi (http://mycocosm.jgi.doe.gov/pages/fungi-1000-projects.jsf) and one
of them is dealing with the JAs producing fungus L. theobromae. From this project,
valuable information will be available in the near future that will help to continue the
analysis of fungal JA biosynthesis and other related metabolites using a reverse genetic
approach. In fact, the lasiodiplodin biosynthetic gene cluster from the genome of
L. theobromae strain NBRC 3,1059 was expressed in Saccharomyces cerevisiae strain
BJ5464 to obtain a phytotoxic polyketide that inhibited human blood coagulation factor
XIIIa, mineral corticoid receptors and prostaglandin biosynthesis (Xu et al., 2014).

SURVEY METHODOLOGY
Scientific reports and patents dealing with the production and properties of JAs are still
steadily increasing (Pirbalouti, Sajjadi & Parang, 2014; Wasternack, 2015). However,
there are few reports related to the production of JAs by fungi. Therefore, the aim of this
review is to discuss the existing reports related to the fungal production of JAs focusing on
the type of fungus, biosynthetic pathways, and culture conditions. By screening the
publicly available databases Free Patents Online (http://www.freepatentsonline.com/),
Google Patents (https://patents.google.com/), Espacent (https://worldwide.espacenet.com/),
Google Scholar (https://scholar.google.de/), PubMed (https://www.ncbi.nlm.nih.gov/)
and Web of Science (https://apps.webofknowledge.com/), we aimed to cover the current
status of the field and apologize to scientists whose work we overlooked.

JAS FROM FUNGI
Lasiodiplodia theobromae is a common phytopathogenic fungus capable of producing
JAs at high level as a result of its primary and secondary metabolism (Alves et al., 2008;
Eng et al., 2016; Salvatore, Alves & Andolfi, 2020). Although, JA is produced as the main
product, other JAs such as 9,10-didehydro JA (9,10-ddh-JA), 11-hydroxy JA and
12-hydroxy JA sulfate (12-HSO4-JA) were formed to a lesser extent (Fig. 1; Table 1)
(Eng, 2012; Miersch et al., 1987). Cucurbic acid (CA) that may also be recognized as a
phytohormone and synthesized by a so far unknown pathway has been also detected in
trace amounts (Eng, 2012; Miersch et al., 1987).

Overall 8 hydroxy JAs (11-hydroxy JA, 12-hydroxy JA or tuberonic acid (TA),
8-hydroxy JA, 3-oxo-2(1-hydroxy-2′-pentenyl)-cyclopentane-1-butanoic acid and 3-oxo-
2(4-hydroxy-2′-pentenyl)-cyclopentane-1-butanoic acid) were detected in the culture
medium and biomass of L. theobromae strain D7/2 growing in a medium containing
sucrose, soy flour, corn steep liquor and a mineral salt solution (Miersch, Schneider &
Sembdner, 1991). Twenty-two JAs were identified after 8 weeks of culture of Fusarium
oxysporum f sp matthiole strain 247.61 grown in liquid potato-dextrose broth under static
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Figure 1 Chemical structure of the most important jasmonates found in fungi. (A)Trans-compounds: 1,
jasmonic acid; 2, jasmonic acid methyl ester; 3, jasmonoyl isoleucine, glycine, serine and threonine con-
jugates; 4, 3-oxo-2-(2-pentenyl)-1-butyric acid; 5, 3-oxo-2-(2-pentenyl)cyclopentane-1-hexanoic acid;
6, 3-oxo-2-(2-pentenyl)cyclopentane-1-octanoic acid; 7, 9,10-didehydro-JA; 8, 9,10-dihydro-7-iso-
jasmonoyl-isoleucine; 9, 3-oxo-2-pentanylcyclopentane-1-butyric acid; 10, 3-oxo-2-pentanylcyclopentane-1-
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conditions (Miersch, Bohlmann & Wasternack, 1999). Among the metabolites produced,
9,10-dihydro-7-iso-jasmonoyl-isoleucine, jasmonoyl-isoleucine (JA-Ile), 9,10-dihydro
jasmonoyl-isoleucine, 3-oxo-2-(2-pentenyl)cyclopentane-1-butyric acid, 3-oxo-2-(2-
pentenyl)cyclopentane-1-hexanoic acid and 3-oxo-2-pentylcyclopentane-1-octanoic acid
were identified. The isoleucine conjugates were also produced by the culture of Gibberella
fujikuroi (Miersch et al., 1992). Interestingly, F. oxysporum f sp mattiole was unable to
accumulate any hydroxylated-JAs as shown for L. theobromae (Miersch et al., 1993).

The occurrence of the JA-serine and JA-threonine conjugates was confirmed in the
fermentation broth from Lasiodiplodia sp. strain 2,334 using HPLC-ESI tandem mass
spectrometry in negative ionization mode, while JA-glycine and JA-isoleucine conjugates
were identified with the same technique but with positive ionization (Castillo et al.,
2014). In higher plants, JA amino conjugates are regular constituents accumulating upon
sorbitol treatment or wounding (Guranowski et al., 2007; Miersch, Bohlmann &
Wasternack, 1999).

While the conjugating enzyme was first isolated form the flowering plant Arabidopsis
thaliana (Staswick, Tiryaki & Rowe, 2002), the corresponding peptidase activity was
isolated from L. theobromae strain D 7/2 (Hertel et al., 1997). This enzyme was capable of
hydrolysing JA-conjugates with a-amino acids. The enzyme was purified by gel filtration,
ion exchange and hydrophobic interaction chromatography. It was characterized as
glycoprotein with a molecular mass of about 107 kDa and its amidohydrolase activity
was very specific with regard to (−)-JA and a-amino acids with (S)-configuration.
Therefore, the authors suggested that this fungus may need this enzyme during infection of
the host plant for start or modify plant processes, for example, senescence or the release of
nutrients, which probably being beneficial for the fungal growth.

JA, MeJA and three JA esters, named lasiojasmonates (botryosphaerilactone A,
(3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone and (3R,4S)-
botryodiplodin) were detected from culture filtrates of Lasiodiplodia sp. strain BL101
isolated from declining grapevine plants that showed wedge-shaped cankers (Andolfi
et al., 2014). However, phytotoxic assays recording necrotic lesions on grapevine and
cork oak leaves demonstrated that only JA was found to be active.

The diversity of octadecanoid and jasmonoyl compounds found in the culture filtrate
of these fungi raise the question whether the compounds are formed only or at least
primarily during the interaction with plants and, if so, what the function of these

Figure 1 (continued)
hexanoic acid; 11, 3-oxo-2-pentanyl)cyclopentane-1-octanoic acid. (B) cis-compounds: 1, jasmonic acid;
2, jasmonoyl isoleucine, glycine, serine and threonine conjugates; 3, 3-oxo-2-(2-pentenyl)-1-butyric acid;
4, 3-oxo-2-(2-pentenyl)cyclopentane-1-hexanoic acid; 5, 3-oxo-2-(2-pentenyl)cyclopentane-1-octanoic
acid; 6, 9,10-didehydro-JA; 7, 9,10-dihydro-7-iso-jasmonoyl-isoleucine; 8, 3-oxo-2-pentanylcyclopentane-
1-butyric acid; 9, 3-oxo-2-pentanylcyclopentane-1-hexanoic acid; 10, 3-oxo-2-pentanyl)cyclopentane-
1-octanoic acid (all of them was found with trans- or cis-attached side chains). (C) 1, 2-(-3-hydroxy-
2-(-pent-2-en-1-yl)cyclopentyl)acetic acid; 2, 8-hydroxy jasmonic acid; 3, 2-(-2-(-4-hydroxypent-2-en-
1-yl)-3-oxocyclopentyl)acetic acid; 4, 4-(2-(4-hydroxypent-2-en-1-yl)-3-oxocyclopentyl)butanoic
acid; 5, 4-(-2-(-1-hydroxypent-2-en-1-yl)-3-oxocyclopentyl) butanoic acid; 6: tuberonic acid; 7:
12-hydroxy jasmonic acid sulfate. Full-size DOI: 10.7717/peerj.10873/fig-1
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compounds might be. Evidence suggests that fungal pathogens exploit host oxylipins to
facilitate their development via inducing plant lipid metabolism to utilize plant oxylipins in
order to promote G-protein-mediated regulation of sporulation and mycotoxin
production in the fungus and use of host-ligand mimicry to manipulate plant defence
responses from which the fungus benefits (Christensen & Kolomiets, 2011). However, in
others cases F. oxysporum colonization remains symptomless or even has beneficial effects
on plant growth and/or stress tolerance. Moreover, in pathogenic interactions, a lengthy
asymptomatic phase usually precedes disease development. All this suggests for a
sophisticated and fine-tuned interaction between F. oxysporum and its host (Di, Takken &
Tintor, 2016).

Table 1 Occurrence of jasmonic acid and other jasmonates from plants and microorganisms.

Jasmonates Plant Fungi

Jasmonoyl isoleucine, glycine, serine, threonine,
phenylalanine, tyrosine, tryptophan, leucine, isoleucine
conjugates

Hamberg & Gardner
(1992); Svoboda &
Boland (2010)

Cross & Webster (1970); Miersch et al. (1992); Miersch,
Bohlmann & Wasternack (1999); Castillo et al. (2014); Cole
et al. (2014), Oliw & Hamberg (2017), Oliw & Hamberg
(2019)

9,10-didehydro-JA Hamberg & Gardner
(1992)

Eng (2012), Oliw & Hamberg (2019)

9,10-dihydro-7-iso-jasmonoyl-isoleucine Sembdner, Atzorn &
Schneider (1994)

Cross & Webster (1970); Miersch et al. (1992); Miersch,
Bohlmann & Wasternack (1999), Oliw & Hamberg (2019)

3-oxo-2-(2-pentenyl)cyclopentane-1-butyric acid, 3-oxo-2-
(2-pentenyl)cyclopentane-1-hexanoic acid, 3-oxo-2-(2-
pentenyl)cyclopentane-1-octanoic acid

– Miersch, Bohlmann & Wasternack (1999)

Curcurbic acid Sembdner & Parthier
(1993)

Miersch et al. (1987); Eng (2012)

8-hydroxy-jasmonic acid Hamberg & Gardner
(1992)

Miersch, Schneider & Sembdner (1991)

11-hydoxy-jasmonic acid Wasternack (2006) Miersch, Schneider & Sembdner (1991)

12-hydoxy-jasmonic acid or tuberonic acid Hamberg & Gardner
(1992); Wasternack
(2006)

Miersch, Schneider & Sembdner (1991)

12-hydoxy-jasmonic acid lactone, tuberonic acid-O-β-
glucopyranoside, curcubic acid-O-β-glucopyranoside

Hamberg & Gardner
(1992)

–

3-oxo-2(1-hydroxy-2’-pentenyl)-cyclopentane-1-butanoic
acid, 3-oxo-2(4-hydroxy-2’-pentenyl)-ciclopentane-1-
butanoic acid

– Miersch, Schneider & Sembdner (1991)

12-hydroxy jasmonic acid sulfate Gidda et al. (2003) Eng (2012)

4,5 didehydro-7-isojasmonic acid, 3,7-didehydrojasmonic
acid, 6-epi-curcubic acid lactone, Homo-7-isojasmonic
acid, Dihomo-7-isojasmonic acid, 11-hydroxi-
dihomojasmonic acid, 8-hydoxy-dihomojasmonic acid

Hamberg & Gardner
(1992); Asamitsu et al.
(2006)

–

Methyljasmonate Seo et al. (2001); Cheong
& Choi (2003)

Andolfi et al. (2014)

cis-Jasmone Steinegger & Hansel
(1988); Koch,
Bandemer & Boland
(1997)

Matsui et al. (2017)

Eng et al. (2021), PeerJ, DOI 10.7717/peerj.10873 6/30

http://dx.doi.org/10.7717/peerj.10873
https://peerj.com/


Phytotoxic metabolites were identified in the culture media of six species of
Lasiodiplodia isolated in Brazil causing Botryosphaeria dieback of grapevine (Cimmino
et al., 2017). It was found by LC-MS, that only four of these strains (L. brasiliense,
L. crassispora, L. jatrophicola and L. pseudotheobromae) produced JA. L. brasiliense also
synthesized also (3R,4S)-4-hydroxymellein. This was the first report on JA production
from these species. Fungal-derived cis-jasmone (CJ) was detected in L. theobromae strain
MAFF 306027 (Matsui et al., 2017). These authors carried out studies of the deuterium
labelled metabolism of 18:3(n-3)-d5, OPC:4-d6, OPC:6-d6, OPC:8-d6 and cis-OPDA-d5 to
MeJA-d5 and/or CJ-d5 in feeding experiments with this strain, revealing that the fungus
produced CJ through a single biosynthetic pathway via iso-12-oxo-phytodienoic acid
(iso-OPDA). Interestingly, it was suggested that the previously predicted decarboxylation
step of 3,7-didehydro JA to afford CJ might be not involved in CJ biosynthesis in
L. theobromae (Matsui et al., 2017). However, in plants CJ is synthetized from 18:3(n-3)
via two biosynthetic pathways using JA and iso-OPDA as key intermediates (Koch,
Bandemer & Boland, 1997).

In spite of the diversity of JAs produced by fungi, JA is the metabolite that has aroused
the most interest, due to a higher concentration detected in the culture media, the variety
of their applications and their high market values. A large number of fungi JAs with
similarities to the JAs of plants could show that probably the biosynthetic pathways and
the intermediates involved in fungi and plants are similar.

JA BIOSYNTHETIC PATHWAY
Plants
Many reviews have summarized the developments on the biosynthetic pathway of JA in
plants and our knowledge will be briefly summarized in the following section (Agrawal
et al., 2004; Creelman & Mullet, 1997; Goepfert & Poirier, 2007; Hamberg & Gardner,
1992; Schaller, Schaller & Stintzi, 2005; Vick & Zimmerman, 1984;Wasternack & Feussner,
2018; Wasternack & Hause, 2002; Wasternack & Hause, 2013).

JA biosynthesis in plants starts with the liberation of 18:3(n-3) or 16:3(n-3) from the
plastid envelope membranes by lipases (shown in Fig. 2 for 18:3(n-3)). This reaction as
well as the next three steps of the pathway are localized in plastid ending with the
formation of either cis-(+)-12-oxo-phytodienoic acid (OPDA) or dinor-oxo-phytodienoic
acid (dn-OPDA), respectively. This is the result of the sequential action of the enzyme
lipoxygenase (LOX), allene oxide synthase (AOS) and allene oxide cyclase (AOC) on 18:3
(n-3) or 16:3(n-3). The next steps take place in peroxisomes where OPDA and dn-OPDA
are activated and reduced to 10,11-dihydro-12-oxo-phytodienoic acid (OPC-8) and 3-
oxo-2(2′-pentenyl)-cyclopentane-1-hexanoic acid (OPC-6) by 12-oxo-phytodienoate
reductase isoenzyme 3 (OPR3), respectively. These reactions are followed by two or three
rounds of β-oxidation, yielding OPC-6; 3-oxo-2(2′-pentenyl)-cyclopentane-1-butanoic
acid (OPC-4) and finally (+)-7-iso-JA that rearranges into the (−)-JA isomer (with an
molar ratio of 9:1 for (−)-JA/(+)-7-iso-JA) (Wasternack & Hause, 2013). JA can be further
metabolized into its methyl ester (MeJA) by JA carboxyl methyltransferase (JMT) (Cheong
& Choi, 2003; Seo et al., 2001), or by conjugation with amino acids (such as leucine
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Figure 2 Synthesis of JA and its amino acid-conjugate JA-Ile in plants and fungi. Synthesis of JA and
its amino acid-conjugate JA-Ile in plants (A) and a scheme for OPDA formation in fungi. (B) Enzymes
known only for Arabidopsis thaliana are indicated in yellow circles and those known from fungi are
marked by grey circles. Abbreviations: AOC, allene oxide cyclase; AOS, allene oxide synthase; ddh-JA,
4,5-didehydro jasmonic acid; JA, jasmonic acid; JA-Ile, jasmonic acid isoleucine conjugate; JAR1,
jasmonoyl amino acid conjugate synthase; LOX, lipoxygenase; OPC:8, 3-oxo-2-(2-pentenyl)-cyclo-
pentane-1-octanoic acid; OPDA, cis-(+)-12-oxo-phytodienoic acid; OPR2,3, 12-oxo-phytodienoic acid
reductase. Full-size DOI: 10.7717/peerj.10873/fig-2
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and isoleucine) or sugars, respectively (Haroth et al., 2019; Oliw & Hamberg, 2019;
Sembdner & Parthier, 1993; Wasternack, 2016).

Recently an alternative pathway was discovered in Arabidopsis thaliana via direct
β-oxidation of OPDA leading to formation of 4,5-ddh-JA which is then reduced by OPR2
to JA (Chini et al., 2018). Whether the reactions downstream from OPDA may follow
preferentially this pathway or the OPR3-dependent pathway needs to be answered by
future research (Han, 2017) (Fig. 2).

Fungi
Knowledge about metabolic pathways leading to the production of JAs by fungi is scarce
(Han, 2017). Therefore, more physiological and biochemical studies are required and the
existing data will be summarized throughout the next paragraphs.

Starting with the products formed, the same ratio of isomers (−)-JA:(+)-7-iso-JA that
was found in plants was measured in the culture filtrate of F. oxysporum strain 247.61
(Miersch, Bohlmann & Wasternack, 1999). By contrast, only the (+)-7-iso-JA isomer was
found in a culture of L. theobromae strain D7/2 (Miersch et al., 1987), but later both
isomers, with a ratio of ~15:1 and 1:1 in two different experiments in the culture medium
filtrate from Lasiodiplodia sp. strain 2,334, were described (Jernerén et al., 2012).

For L. theobromae, it was shown that JA production derived from 18:3(n-3) by using a
culture medium that was supplemented either with 13C-sodium acetate or (2H6)-18:3(n-3)
(Tsukada, Takahashi & Nabeta, 2010). Appreciable amounts of (13C)-JA and (2H5)-JA
were detected in the culture supernatants, and the MeJA of OPDA was detected in
mycelium extracts.

The studies in the JAs biosynthesis from F. oxysporum f. sp. tulipae led also the detection
of some key intermediates involved in this pathway (Oliw & Hamberg, 2017; Oliw &
Hamberg, 2019). This strain released over 230 mg L−1 of (+)-JA-Ile and with about
10 times less 9,10-dihydro-(+)-7-iso-JA-Ile from potato dextrose broth cultures when
shaking at 100 rpm and 28 �C after 15 days. Incubation of mycelium of F. oxysporum f. sp.
tulipae with radiolabelled d5-18:3(n-3) was able to detected an allene oxide and 12-OPDA
derivative. They concluded that allene oxide was formed by a cytochrome P450 or
catalase-related hydroperoxidase and 12-OPDA by an allene oxide cyclase (AOC) and, as
the plants; this fungus forms JAs with an allene oxide and 12-OPDA as intermediates
(Oliw & Hamberg, 2017). However, incubation of mycelia from this fungus with
radiolabelled d5-18:2(n-6) was oxidized to 12-oxo-10-phytoenoic acid and finally
converted to 9,10-dihydro-JA-Ile in analogy with the reactions of 18:3(n-3) via 12-OPDA
into JA-Ile in fungi and plants by LOX, AOS and AOC. Therefore, the fungal AOC has
a broader substrate specificity than the plant AOC, but it may form these intermediates
from allene oxides by the same reactions (Oliw & Hamberg, 2019). Then, these results
suggest that JA is synthesised by these strains from 18:3(n-3) via OPDA and that the
enzymes involved may be similar to those governing JA biosynthesis in higher plants.
However, there are probably also some differences in the genes and enzymes of the JA
pathway between plants and fungi. For example, although higher plants and the fungus
G. fujikuroi produce structurally identical gibberellins (GAs) using similar steps, there are
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important differences in pathways and enzymes involved (Hedden, 2008). These profound
differences suggest that higher plants and fungi have evolved their complex biosynthetic
pathways to GAs independently and not by horizontal gene transfer.

In fact, the fatty acid composition in Lasiodiplodia sp. strain 2,334 showed that the
mycelium contained polyunsaturated C18 fatty acids, including 18:3(n-3) as probable
substrate for JA biosynthesis (Eng, 2012; Eng et al., 2016; Jernerén et al., 2012). However,
polyunsaturated C16 fatty acids were not detected (Jernerén et al., 2012). OPDA and
OPC:4 were also detected in culture filtrates from this fungus as probable intermediates on
the JA pathway (Eng, 2012; Eng et al., 2016). In addition, the JA precursors 3-oxo-2-
pentylcyclopentane-1-butyric acid, 3-oxo-2-(2-pentenyl)cyclopentane-1-hexanoic and
3-oxo-2-(2-pentenyl)cyclopentane-1-octanoic acid were detected in a culture filtrate from
F. oxysporum f sp matthiole strain 247.61 (Miersch, Bohlmann & Wasternack, 1999;
Miersch et al., 1993, 1989). These data suggest that an OPR3-dependent JA biosynthesis
pathway exists in this fungus (Fig. 2, left peroxisomal pathway).

Studies aiming at identifying single steps in fungal JA biosynthesis have been reported
using different exogenously applied substrates (Jernerén et al., 2012), a reverse genetic
approach (Brodhun et al., 2013) and enzyme purification (Patel, Patel & Thakkar, 2015).
In the first case, a fatty acid dioxygenase activity from three strains of Lasiodiplodia
was described (Jernerén et al., 2012). Two of the strains revealed low secretion of JA
(~0.2 mg L−1). These strains oxygenated 18:3(n-3) to 5,8-dihydroxy linolenic acid as well
as to 9R-hydroperoxy linolenic acid, which was further metabolized by an AOS activity
into 9-hydroxy-10-oxo-12Z,15Z-octadecadienoic acid. Analogous conversions were
observed with linoleic acid (18:2(n-6)) as a substrate. Studies using (11S-2H)18:2 revealed
that the putative 9R-dioxygenase catalysed the stereospecific removal of the 11R
hydrogen followed by a suprafacial attack of dioxygen at C-9. Mycelia from these strains
contained 18:2 as the major polyunsaturated fatty acid but lacked 18:3(n-3). The third
strain however secreted high amounts of JA (~200 mg L−1). It contained 18:3(n-3) as major
fatty acid and produced 5,8-dihydroxy linolenic acid from exogenously added 18:3(n-3).
From these three strains together no enzyme activity pointing to a JA pathway and being
similar to that of higher plants could be identified.

As no sequence information on the L. theobromae genome is yet available, a reverse
genetic strategy focused on a 13-LOX from F. oxysporum that may initiate JA production
was used as second approach. It was based on using sequences similar to those found
from enzymes being part of the JA biosynthetic pathway of plants (Brodhun et al., 2013).
One of the sequences called FoxLOX was cloned and expressed in E. coli. FoxLOX was
found to be the only non-heme Fe-LOX in the genome, which oxidizes polyunsatured
C18 fatty acids to 13S-hydroperoxy derivatives by an antarafacial reaction mechanism
where the bis-allylic hydrogen abstraction is the rate-limiting step. Having 18:3(n-3)
as substrate, FoxLOX was found to exhibit a multifunctional activity, because the
hydroperoxy derivatives formed were further converted to dihydroxy-, keto- and
epoxy alcohol derivatives. The identification of FoxLOX as a specific linoleate 13S-LOX
could suggest a JA biosynthetic pathway in F. oxysporum, which is analogous to that in
plants.
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A LOX enzyme was purified from the mycelium of L. theobromae strain MTCC
3,068 by chromatography (Patel, Patel & Thakkar, 2015). It was found that this fungus
contains two LOXs isoenzymes, one of 93 kDa (LOX1) and another of 45 kDa (LOX2).
The latter being most likely a degradation product of LOX1. Both LOX isozymes oxidized
linoleic acid to produce a mixture of 9- and 13-hydroperoxy linoleic acid, optimum pH at 6
and temperature in the range of 40–50 �C. Therefore, both or one these LOX may be
another candidate enzyme involved in fungal JA production.

It could be expected that fungal LOX involved in JA pathway contains Fe or Mn as the
catalytic metal, whereas animals, plants and prokaryotes express LOX with only Fe
(Wennman et al., 2016). Moreover, fungal LOX could have Ile- or the Val-group in the
amino acid sequence. The Ile-group has a conserved WRYAK sequence that appears to be
characteristics for these enzymes and has a C-terminal amino acid Ile. While the Val-group
has a highly conserved WL-L/F-AK sequence that is also found in LOXs of plant and
animal origin. Some LOXs have signal sequences implying these LOXs will be expressed
extracellular (Heshof et al., 2014).

Therefore, these first data suggest, that JA may be synthesised from 18:3(n-3) via OPDA
in fungi (Fig. 2) as was mentioned previously. Since fungi do not have plastids, the
reactions leading to the formation of OPDA most likely take place in the cytosol or
associated to a membrane leaflet facing the cytosol by LOX, AOS and AOC (Oliw &
Hamberg, 2017). Whether this pathway may be initiated by LOX enzymes or other
dioxygenases (DOX) is still unclear, just like the identity of the following enzymatic
activities. However, the reactions downstream from OPDA may follow a discovered
pathway in Arabidopsis thaliana via direct β-oxidation of OPDA leading to formation of
4,5-ddh-JA, which could be reduced by a fungal OPR2 homologue to JA (Chini et al., 2018)
or/and the OPR3-dependent pathway needs to be addressed by future research (Han,
2017) (Fig. 2).

CHEMICAL SYNTHESIS OF JAS
Chemical synthesis and isolation of JAs from microorganisms and plants started in the 70s
of the last century (Aldridge et al., 1971). JA is traditionally isolated from plants; mainly
from jasmine and tea flowers. A large number of flowers produce small amounts of
essential oils. For instance, it takes about 500 Kg of petals to obtain approximately
1 Kg of rose oil and this is a very expensive and time-consuming process that accounts for
the high price of these oils (Dhandhukia & Thakkar, 2007a). Therefore, this is a very
expensive and time-consuming process that accounts for the high price of these oils
(Dhandhukia & Thakkar, 2007b). Consequently, numerous and different chemical
synthesis strategies for obtaining JA, MeJA and other derivatives have been developed.
In that way, some of these strategies are summarized below. The synthesis of MeJA and
methyl curcubate (MeCA) have been reported by using 2-allylcyclohexan-1,3-dione as
starting compound and hydroboration-oxidation followed of seven or eight steps for
the first and second product, respectively (Kitahara et al., 1987). Moreover, the same
authors improved the total yield for MeJA to up to 20% in twelve reaction steps by
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improving the stereoselectivity of the hydroboration-oxidation by using 3-hydroxy
methylcyclopentanone as starting compound (Kitahara et al., 1991).

Shortly after these reports, racemic 7-substituted derivatives of MeJA have been
synthesized (Taapken et al., 1994). 7-Methyl MeJA was also synthesized in
enantiomerically pure form in seven steps from the Hajos-Wichert ketone. In addition, the
biological activity of the prepared compounds has been investigated for the induction of
tendril coiling in Bryonia dioica and the elicitation of the phytoalexin production in
Eschscholtzia californica. However, beside 7-methyl MeJA all synthesized compounds
showed poor activity in the bioassays (Taapken et al., 1994).

An interesting methodology leading only to racemic MeJA was proposed by Dos Santos
et al. (2001) based on the synthon equivalent to a carboxymethyl anion to enones and
nitroalkenes, through a 1,4-addition reaction of 2,4,4-trimethyl-2-oxazoline cyanocuprate
3; afforded the (±)-MeJA in 32% overall yield from 2-cyclopenten-1-one.

Suzuki, Inomata & Endo (2004) developed a new method of MeJA and MeCA synthesis
using a chiral tricyclic lactone as starting compound via a new type of tandem retro-Diels-
Alder-ene reaction activated by a trimethysilyl substituent as the key step, followed at
seven reaction steps.

Other authors have dedicated their efforts to the synthesis of β-oxidation intermediates
of JA, such as 10,11-dihydro-12-OPDA (OPC:8) and cis-(+)-OPDA by chemical or
enzymatic means with good yields (Löwe, Dietz & Gröger, 2020; Nonaka et al., 2010;
Takayuki, Michitaka & Yuichi, 2003; Zerbe, Weiler & Schaller, 2007).

JA and TA (Fig. 1C, free fatty acid is shown as compound 6) were synthesized from
the key aldehyde, all cis-2-(2-hydroxy-5-vinylcyclopentyl)acetaldehyde, which was in
turn prepared stereoselectively from the (1R)-acetate of 4-cyclopentene-1,3-diol through
a SN2-type allylic substitution with CH2-CHMgBr followed by Mitsunobu inversion,
Eschenmoser–Claisen rearrangement, and regioselective Swern oxidation of
the corresponding bis-TES ether. A Wittig reaction of the aldehyde with (PH3P(CH2)
Me)+Br- followed by oxidation afforded JA stereoselectivity over the trans isomer
(Nonaka et al., 2010). Similarly, TA was synthesized.

Secatto proposed a racemic synthesis of JA involving additional steps to obtain higher
yield. This would envisage an application at industrial scale (Secatto, 2013). This synthetic
route consisted of seven steps with an overall yield of 30%. The improvement of this
route is due to the use of a starting compound without hygroscopic characteristics and no
requirement for any pretreatment and easy handling. Moreover, the starting materials
(adipic acid and cyclohexane and ethanol as solvents) are not expensive, leading overall to
low production costs.

Two macrolactones (JA-Ile-lactones) derived from 12-OH-JA-Ile were synthesized in
seven steps with an overall yield of 33% from commercially available MeJA (Jimenez-
Aleman et al., 2015a). The biological activity of macrolactones was tested for their ability to
elicit nicotine production, a well-known jasmonate dependent secondary metabolite.
Both macrolactones showed biological activity, inducing nicotine accumulation to a
similar extent as MeJA does in Nicotiana attenuata leaves. Surprisingly, the highest
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nicotine contents were found in plants treated with the JA-Ile-lactone, which has (3S,7S)
configuration at the cyclopentanone ring and is yet not known from natural JAs.

A new synthetic route to JA-Ile-lactones was developed recently using the Z-selective
cross-metathesis of (±)-MeJA and 3-butenyl acetate (both compounds are commercially
available and inexpensive) resulting in the (±)-1-acetate derivative in excellent yield
(>80%) and Z-selectivity (>90%) (Jimenez-Aleman et al., 2015b). Saponification of the
(±)-1-acetate derivative (>85% yield) and conjugation to L-Ile resulted in the 1-hydroxy-
12-L-Ile derivative. Finally, this derivative was exposed to macrolactonization resulting
in enantiomerically pure macrolactones in only three steps. In agreement with the previous
studies (Jimenez-Aleman et al., 2015a), these macrolactones also induced the accumulation
of nicotine suggesting that these compounds open the possibility of uncoupling defence
and growth in plants by using small molecules.

So far, JAs are only accessible today in industry through very tedious multistep synthesis
(Chapuis, 2012). Together, the improvements introduced, including enantiodivergent
routes that prevent the formation of all possible isomers (Nájera et al., 2020), and with
total yields of around 33% are promising. However, further improvements of these
multistep synthesis pathways are still necessary in order to increase the overall yield even
from cheap starting materials.

FUNGI AS PRODUCERS OF JAS
The first report on JA production by microbes was published already 50 years ago
(Broadbent, Hemming & Turner, 1968). These authors obtained JA from a culture of
L. theobromae in a culture medium containing glucose, glycerol or a mixture of both as
carbon source, as well as sodium nitrate, potassium nitrate or ammonium nitrate as
nitrogen source. JA reached a concentration of 475 mg L−1 and a productivity of
37 mg L−1 d−1. In order to purify the produced JA, biomass was removed by filtration and
the filtrate was acidified and further extracted with ethyl acetate. Three years later, JA
biosynthesis was reported in a concentration of 500 mg L−1 and a productivity of 38 mg L−1

d−1 from L. theobromae, using a surface culture in 1 L ceramic vessels with Czapek
medium (Aldridge et al., 1971). These authors also observed that the culture supernatant
inhibited the growth of higher plants and that the active component was JA. Similar results
were obtained by L. theobromae strain D7/2 isolated from orange and cacao residues
(Miersch et al., 1987). This strain was grown in a liquid medium based on sucrose, soybean
meal, corn steep liquor and salt solution with a JA concentration and productivity of
500 mg L−1 and 71 mg L−1 d−1, respectively.

The same authors performed a screening for JA production using 46 species of
Ascomycetes and Basiodimicetes belonging to 23 different genera (Agrocybe, Aspergillus,
Collybia, Coprinus, Cunninghamella, Daedalea, Fomes, Fusarium, Gleooporus, Homoconis,
Marasmius, Mucor, Mycena, Paecilomyces, Phellinus, Penicillium, Pleurotus, Polyporus,
Rhizoctonia, Stropharia, Talaromyces, Trametes and Trichoderma) that were grown under
the same conditions as L. theobromae. In this screening trial, Collibya, Coprinus and
Mycena were the best producers of JA. However, the JA concentrations were four to eight
times lower than those found with L. theobromae cultures (Miersch et al., 1993).

Eng et al. (2021), PeerJ, DOI 10.7717/peerj.10873 13/30

http://dx.doi.org/10.7717/peerj.10873
https://peerj.com/


In addition, some mutants of G. fujikuroi were also able to produce JA in culture
supernatants with a maximum amount of 2.5 mg L−1 (Miersch et al., 1992). Similarly,
mycorrhizal fungi such as Laccaria laccata and Pisolithus tinctorius were identified as JA
producers but again only in trace amounts (Miersch, Regvar & Wasternack, 1999).

A mutant approach was applied to obtain better JA producers of L. theobromae (Patel &
Thakkar, 2015). The mutants were generated using ethylmethanesulfonate and two
mutants were isolated having the capacity to produce JA with 70 mg L−1 and 78 mg L−1

compared to wild type 32 mg L−1.
However, the highest rates for JA production were described however for Diplodia

gossypina strain ATCC 10936 (Farbood et al., 2001). Under optimal culture conditions, the
JA concentration and productivity were 1,200 mg L−1 and 171 mg L−1 d−1, respectively.
This study even included the up scaling of JA production up to a volume of 150 L.
Therefore, the microorganisms that provide the highest potential for JA production are the
ascomycete fungi from strains of Diplodia and Lasiodiplodia genera.

CULTURE CONDITIONS FOR JA PRODUCTION
Although the annual demand for JA increases primarily for applications in perfume
production and flavourings (Dhandhukia & Thakkar, 2007a), there are still only a few
reports published related to the practical aspects of the commercial production of JA as
shown in Table 2 and most of the information and strains is still only published in patents.

The ability of fungi to produce JA varies between strains from 1 mg L−1 to 1,300 mg L−1

of JA, even of the same species (Dhandhukia & Thakkar, 2007a; Eng, Gutiérrez-Rojas &
Favela-Torres, 1998; Farbood et al., 2001). Therefore, the first strains of L. theobromae or
D. gossypina were screened for JA production in order to select strains with higher
productivity (Altuna et al., 1996; Eng, 2012; Farbood et al., 2001).

Batch fermentation in static conditions using a stationary Fernbach flask culture, an
aseptic stationary tray culture or Erlenmeyers flasks were tested between 5 and 10 days at
temperatures between 27 �C and 30 �C and slightly acidic initial pH values between 5
and 6 of the culture medium (Altuna et al., 1996; Farbood et al., 2001;Miersch et al., 1987).
As a carbon source for producing JA, soybean meal, citrus pulp, corn steep liquor and milk
serum were used and supplemented with oilseed meal, which can supply sources of
protein, minerals and water soluble vitamins (Miersch et al., 1987). However, using more
complex media had the drawback of needing more complicated processes for purifying JA
for some applications such as in perfumery, a removal of malodorous compounds and
allergens is required. Another drawback is that the composition thereof is not constant
and therefore results may be difficult to reproduce. Primarily synthetic media were
used that are based on sucrose or glucose as carbon source and mineral salts such as
potassium nitrate as nitrogen source, with the addition of monobasic potassium
phosphate, ammonium molybdate, and the sulfates of magnesium, iron, zinc and
copper, respectively (Almeida et al., 1999; Miersch et al., 1987). Also only one type of
carbon source (glucose or sucrose) can be used for JA production (Eng, Gutiérrez-Rojas &
Favela-Torres, 1998). Then, catabolic repression is not evident as it occurs in other
biosynthic routes of secondary metabolites in fungi. However, Farbood et al. used glucose
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or a mixture of glucose and xylose in their studies of strain selection and JA production
with D. gossypina strain ATCC 10936 (Farbood et al., 2001). Broadbent, Hemming &
Turner (1968) reported that sucrose, glucose, glycerol or mixtures of these carbon sources
allowed a higher production of JA with L. theobromae strain S22L than the use of a single
carbon source. Therefore, it is possible to use either a single or a mixed carbon source
depending on the strain used.

The same was true in case of the nitrogen source when ammonium salts were replaced
by nitrate salts (Eng, Gutiérrez-Rojas & Favela-Torres, 1998; Günther et al., 1989).
The consumption of ammonium ions by the fungus during its growth very likely generates
an acid pH in the culture medium, which could be responsible for the slow growth and
therefore to the low JA production.

An early study showed that the addition of an inductor is not required to produce JA in
synthetic culture medium (Miersch et al., 1987). In fact, the addition of 18:3(n-3) (1 µM)

Table 2 Studies of jasmonic acid production by microbial way reported in the literature.

Microorganism Experimental Procedure Yield (mg L−1);
Productivity (mg L−1 d−1)

References

Lasiodiplodia theobromae strain
S22L

Surface culture, ceramic vessels (1L) 475; 37 Broadbent, Hemming &
Turner (1968)

L. theobromae Surface culture, ceramic vessels (1L) 500; 38 Aldridge et al. (1971)

L. theobromae strain D7/2 Surface culture (static), Erlenmeyer 400 mL 500; 71 Miersch et al. (1984, 1987)

L. theobromae strain 715 Surface culture (static), Erlenmeyer 250 mL 1,200; 120 Altuna et al. (1996)

Lasiodiplodia sp. strain 2334 Surface culture (static), Erlenmeyer 100 mL 900; 90 Eng, Gutiérrez-Rojas &
Favela-Torres (1998)

Fusarium oxysporum f sp
matthiolae strain 247.61

Surface culture (static), Bottle (2,000 mL) 0.5; 0.01 Miersch, Bohlmann &
Wasternack, 1999

L. theobromae strain 715 Surface culture (static), Erlenmeyer 500 mL 1,000; 83 Almeida et al. (1999)

Diplodia gossypina strain ATCC
10936

Erlenmeyer 500 mL, agitation velocity 200 rpm 1,200; 171 Farbood et al. (2001)

Reactor 150 L, agitation velocity 150 rpm 120; 17

D. gossypina strain ATCC 10936 Erlenmeyer 500 mL, agitation velocity 200 rpm 600; 86 Inho, Kyoungju & Yonghwi
(2006)

L. theobromae strain MTCC
3068

Surface culture (static), Erlenmeyer 250 mL 299; 43 Dhandhukia & Thakkar
(2007a)

L. theobromae strain RC1 Surface culture (static), Erlenmeyer 250 mL 550; 56 Eng, Gutierrez-Rojas &
Favela-Torres (2008)

Lasiodiplodia sp. strain 2334 Surface culture (static), Erlenmeyer 250 mL 1,270; 127 Eng (2012)

Botryosphaeria rhodina Surface culture (static) Erlenmeyer 250 mL 352; 25 Dos Santos et al. (2014)

L. theobromae Surface culture (static), Erlenmeyer 250 mL 784; 56 Laredo-Alcalá et al. (2016)

Solid state fermentation, Erlenmeyer 125 mL 23 mg g−1; 2 mg g−1 d−1

L. theobromae strain 2334 Surface culture (static), Erlenmeyer 500 mL 1,250; 139 Eng et al. (2016)

F. oxysporum f. sp. tulipae Shaking culture (100rpm) Erlenmeyer 250–500 mL 230; 15 Oliw & Hamberg, 2017

L. theobromae strain 3C Surface culture (static), Erlenmeyer 250 mL 565; 38 Laredo-Alcalá et al. (2016)
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(Dos Santos et al., 2014) or edible oil (1 g L−1) (Eng, 1996) as substrate and fatty acid
source for JA synthesis to the culture media of Botryosphaeria rhodina strain Kinf 3.1 or
Lasiodiplodia sp. strain 2,334, respectively, was not significantly favoured in the JA
production. However, the addition of yeast extract and/or soy peptone as a source of
vitamins and cofactors to the culture medium stimulated the rate of JA biosynthesis
(Dhandhukia & Thakkar, 2008; Eng, 2012; Eng, Gutierrez-Rojas & Favela-Torres, 2008;
Farbood et al., 2001). In fact, the addition of these nutrients could cause a positive effect on
the growth of these fungi and may promote an early onset of JA synthesis by decreasing the
time at which the maximal production and stationary phase is reached.

Under these culture conditions JA production took place at the late exponential
growth phase or stationary phase showing a behaviour similar to the accumulation of
secondary metabolites (Eng et al., 2016) and may only partially be associated with the
growth phase of the culture (Dhandhukia & Thakkar, 2007a). Using these optimized
culture conditions JA production levels reached 500–1,300 mg L−1 and productivities of
28–170 mg L−1 d−1 (Table 2).

During static conditions, some Lasiodiplodia strains formed a mat on the surface of
the culture medium (Eng, 1996). Therefore, the effect of the available surface area by
increasing the vessel diameter may be another critical aspect for JA production. This was
confirmed by a study on JA production by L. theobromae strain MTCC 3068 using the
same amount of culture medium with Erlenmeyer flasks of 250, 500 and 1,000 mL in
which the authors could show, that increasing the surface area of the culture lead to an
increase of the JA yield (Dhandhukia & Thakkar, 2007a). In another study, the surface of
the culture (100–500 mL) was simultaneously increased with the volume of the culture
medium (25–100 mL). Here, JA production was highest at the largest surface area in
combination with the highest volume of culture medium (Eng et al., 2016). However,
an increase of the flask volume to 5 or even to 50 L and for the culture medium volume up
to 10 L did not lead to further increases in JA yield (Eng, 2012), because the fungal
mycelium grows on the surface of the medium. An increase in its volume limits only the
diffusion of the nutrients from the culture medium to the fungal mycelium thereby
limiting growth and JA production.

However, scaling up JA production in a fermenter or in a shaking incubator at 190 rpm
and 30 �C with a dissolved oxygen saturation in the culture medium of up to 150 L
(Farbood et al., 2001) as well as using a fixed inoculation ratio of 0.5 g L−1 of dry biomass of
culture medium was shown to further improve JA yield (Miersch et al., 1987). In addition,
it was of advantage to use homogenized mycelium and not spores (Almeida, Altuna &
Michelena, 2001; Dos Santos et al., 2014; Dos Santos, Innocentini & Lourenco, 2014).
Agitation turned out to be another critical aspect for JA production, because shaking
speeds above 200 rpm lead to increased synthesis of extracellular polysaccharides that
visibly increased the viscosity of the culture medium (Selbmann, Crognale & Petruccioli,
2004), which had a negative effect on JA production (Eng, Gutiérrez-Rojas & Favela-
Torres, 1998; Miersch et al., 1987). These results suggest that stronger agitation of the
culture lead to a higher concentration of dissolved oxygen in the medium and as a
consequence, this microorganism produced more extracellular polysaccharides instead
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of JAs. In fact, Selbmann et al. confirmed these results by selecting Botryosphaeria
rhodina DABAC-P82 for the production of exopolysaccharides using this strategy
(Selbmann, Crognale & Petruccioli, 2004; Selbmann, Stingele & Petruccioli, 2003).
This fungal strain was capable of producing up to 17.7 ± 0.8 g L−1 of an exopolysaccharide
after only 24 h. The production of this exopolysaccharide was even further increased in
stirred fermenters or with propeller turbines by increasing the stirring speed from
300 to 500 rpm. These extracellular polysaccharides may be used by these fungi to form
capsules, which may protect them against the stress caused by the agitation of the culture
medium.

JA was also obtained by solid-state fermentation (SSF) from Lasiodiplodia sp. strain
2334 using columns with sugar cane bagasse impregnated as support, at 30 �C and with a
similar culture medium that was used in liquid fermentation. JA productivity was two
times higher in SSF probably due to growth conditions that were more similar to the
natural environment of this fungus (Eng, 1996) and monosaccharides released by the
fungal cellulolytic activity on the substrate in the stationary late phase. Using similar
conditions, JA productivity of a strain of B. theobromae isolated from cacao tissue was
reported to be three times higher by SSF as with submerged fermentation (Laredo-Alcalá
et al., 2016). Therefore, the most promising approach is to continue studying this
fermentation method taking into account the benefits of SSF with low costs and due to
the absence of free water, small fermenters can be used and therefore less effort is required
for the separation processes. The main drawback so far is its control and dissipating
the metabolic heat produced in the reactors, which potentially could reduce the fungal
activity.

Finally, it should be noted that JA production was possible with D. gossypina strain
ATCC 10936 in stirred fermenters of 150 L at an agitation velocity of 450 rpm, but
productivity decreased at about two times with respect to the production in 500 mL
Erlenmeyer flasks agitated at a speed of 200 rpm (Farbood et al., 2001).

The progress made in the production of JA by fungi is undoubted. However, the
development of new studies starting with the selection and mutagenesis of the producer
strains, culture media and conditions to scale up production, the biosynthesis pathway
and the genes involved and the evaluation of effectiveness of their applications are essential
and should continue to be explored.

The broader use of JAs has been limited by the high costs of commercial production so
far. The production of JAs from fungi, via fermentation, has emerged as a promising
alternative to reduce production costs. The use of simple and relatively inexpensive culture
conditions is an attractive strategy to bring JA production with these strains to industrial
levels. It may allow to significantly reduce the production costs which makes the
development of future bioproducts more attractive.

PATENTS
There is a growing number of patents describing the production and application of JAs
since the 60’s and their quantity have increased during the last decades showing a growing
interest in this substance class (Pirbalouti, Sajjadi & Parang, 2014). In the beginning

Eng et al. (2021), PeerJ, DOI 10.7717/peerj.10873 17/30

http://dx.doi.org/10.7717/peerj.10873
https://peerj.com/


patents dealing with the isolation, detection and culture conditions for production of
JAs in microorganisms such as L. theobromae were published (Aldridge et al., 1971;
Broadbent, Hemming & Turner, 1968; Farbood et al., 2001; Günther et al., 1989; Miersch
et al., 1984; Yoshihara, 2007).

Other topics deal with agricultural applications of JAs in order to improve plant yield
most likely by inducing plants defence against herbivores and pathogens, including the
cultivation of algae and edible fungi (Beibei et al., 2019; Beibei et al., 2018; Dathe et al.,
1990; Guo et al., 2019; Ryan & Farmer, 1991; Wang et al., 2020b; Zhang et al., 2020).
Recently these effects were combined with new formulations for JAs in water in
combination with herbicides, pesticides, bioactive or biological seed treatments and
semiochemicals (Deng, Lan & Zhao, 2020; Lulai, Orr & Glynn, 1995; Marks, 2012;
Pirbalouti, Sajjadi & Parang, 2014;Wang et al., 2020a, 2020c). The application of MeJA to
grapes in order to improve the quality of machine-harvested raisin grapes allowed the
harvest without damaging the fruit or plants associated with traditional mechanical
harvesting and thereby eliminating the need for expensive hand picking (Pirbalouti,
Sajjadi & Parang, 2014). Meanwhile a method was also reported for improving the turf
grass quality (Mcelroy, 2011) and others to applicate in plant leaf blade flavonoids that
permit the accumulation of terpene lactones using MeJA (Wang, Guo & Feng, 2019).
There is an only one patent claiming the use of a JA extract to inhibit the growth of the
bacterium Leuconostoc sp. and thereby dextran production during the juice processing of
the sugar cane industry (Michelena et al., 2010).

Nowadays, patents about JAs have expanded to medicinal, cosmetic and flavouring
applications (Pirbalouti, Sajjadi & Parang, 2014). During the last 20 years, the vast
majority of studies and inventions claim that JA, MeJA and dihydro-MeJA have anticancer
activity against various forms of cancer (Fleischer & Fingrut, 2007; Fleischer, Herzberg &
Kashman, 2012; Fleischer et al., 2010; Guzel et al., 2019; Herzberg, Harel & Mang, 2006;
Martinez et al., 2010; Pirbalouti, Sajjadi & Parang, 2014). However, convincing evidence
that supports these claims is still missing. Additional patents focus on improving the
convenience and safety of their administration and on expanding the applications for the
treatment, for example, the use of nanocarriers in order to increase the solubility of JAs,
because these compounds are poorly water-soluble, not allowing an application by an
intravenous route without an efficient nanostructured carrier system. A major problem
is still that they are not easily delivered to cancerous cells, because they often degraded
before they reach the tumour cells (Da Silva et al., 2014; Katona, Vempati & Savir,
2015; Lopes, 2014). JAs are also used as skin care and hair care products, for example, for
treating hair, the scalp, dry and greasy skin (Bababunmi, 2005; Broady, 2012; Dalko,
2006; Deyong, Mengjiao & Naixing, 2019;Malik, 2006; Pirbalouti, Sajjadi & Parang, 2014)
and also in Bladder dysfunction (Pirbalouti, Sajjadi & Parang, 2014). Jasmone, MeJA,
CJ and γ-jasmolactone are considered as the main odorous substances in the essential oil
of jasmine flowers (jasmine oil) used in perfumes (Smets et al., 2020; Steinegger &
Hansel, 1988). Other authors described the use of dihydro-MeJA as enhancer or imparter
fragrances in or to a perfume composition, perfumed articles and colognes (Boden,
Fujioka & Hanna, 1993). In addition, JAs are also used to flavour fruit beverages,
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confectionery like sweets and candy, cigarette, food products like cocoa and tooth
cleansing products like toothpaste (Hurst et al., 2015; Hurst et al., 2011; Johnson, Paul &
Favara, 1977; Mookherjee et al., 1981).

CONCLUSIONS
Beside plants, fungi are additional producers of JAs, and those providing the highest
yields for JA production are Ascomycetes from the genus Lasiodiplodia and Diplodia.

There is a great of diversity of JAs that are produced by fungi, but JA, MeJA and
dihydro-MeJA have studied the most because of their numerous applications. In the
fungus L. theobromae, plant-type jasmonate derivatives such as hydroxy and amino acids
conjugates, as methyl and sulfate ester occur. In addition, derivatives being specific
for fungi such as hydroxy-lactones, didehydro or dihomo-JAs are found. However, until
today the function of JAs being produced by these fungi is not known. However, it can be
assumed that they are involved regulating the interaction between plants and
microorganisms.

Strategies to produce JAs via microbial chemical synthesis suffer still from low yields.
In case of fungal production strategies, a the number of promising strains from the genus
Lasiodiplodia and Diplodia have been selected, but they suffer from producing jasmonate
mixtures and strategies for purifying the elaborated product are needed to develop an
industrial processes for JA production.

The knowledge gained so far provides a promising basis for additional research on
the interaction of these fungi with plants, the chemical nature of JA biosynthesis in
fungi, mechanisms that regulate this pathway in fungi and design simpler and viable
technological strategies to produce JAs in these fungi in order to satisfy the high demand
for these products will be the next challenges in this field of research.

It is very likely that applications for JAs continue to increase in the biomedical,
cosmetic, food and in agricultural sector, as soon as a better understanding of their
biosynthesis and mode of action and their molecular interactions with biological targets
will became available.

ABBREVIATIONS
12-HSO4-JA 12-hydroxy jasmonic acid sulfate

16:3 (=16:3(n-3)) raughanic acid

18:2 (=18:2(n-6)) linoleic acid, hexadecatrienoic acid

18:3 (=18:3(n-3)) a-linolenic acid

ABA abscisic acid

AOC allene oxide cyclase

AOS allene oxide synthase

CA curcurbic acid

MeCA methyl curcurbate

CJ cis-jasmone

ddh-JA didehydro jasmonic acid

dn-OPDA dinor-12-oxo-phytodienoic acid
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GA3 gibberellic acid

JA jasmonic acid

JAs Jasmonates

JA-Leu jasmonoyl leucine

JMT JA carboxyl methyltransferase

MeJA methyl jasmonate

LOX lipoxygenase

OPC-4 3-oxo-2(2′-pentenyl)-cyclopentane-1-butanoic acid
OPC-6 3-oxo-2(2′-pentenyl)-cyclopentane-1-hexanoic acid
OPC-8 10,11-dihydro-12-oxo-phytodienoic acid

OPDA 12-oxo-phytodienoic acid

SSF solid state fermentation

TA tuberonic acid
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