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ABSTRACT
Rendzic Leptosols are intrazonal soils formed on limestone bedrock. The specialty of
these soils is that parent rock material is more influential in shaping soil characteristics
than zonal factors such as climate, especially during soil formation. Unlike fast evolving
Podzols due to their leaching regime, Leptosols do not undergo rapid development due
to the nature of the limestone. Little is known how microbiome reflects this process,
so we assessed microbiome composition of Rendzic Leptosols of different ages, arising
from disruption and subsequent reclamation. The mountains and foothills that cover
much of the Crimean Peninsula are ideal for this type of study, as the soils were formed
on limestone and have been subjected to anthropogenic impacts through much of
human history. Microbiomes of four soil sites forming a chronosequence, including
different soil horizons, were studied using sequencing of 16S rRNA gene libraries and
quantitative PCR. Dominant phyla for all soil sites were Actinobacteria, Proteobacteria,
Acidobacteria, Bacteroidetes, Thaumarchaeota, Planctomycetes, Verrucomicrobia and
Firmicutes. Alpha diversity was similar across sites and tended to be higher in topsoil.
Beta diversity showed that microbiomes diverged according to the soil site and the
soil horizon. The oldest and the youngest soils had the most similar microbiomes,
which could have been caused by their geographic proximity. Oligotrophic bacteria
from Chitinophagaceae, Blastocatellaceae and Rubrobacteriaceae dominated the mi-
crobiome of these soils. The microbiome of 700-year old soil was the most diverse. This
soil was from the only study location with topsoil formed by plant litter, which provided
additional nutrients and could have been the driving force of this differentiation.
Consistent with this assumption, this soil was abundant in copiotrophic bacteria from
Proteobacteria and Actinobacteria phyla. The microbiome of 50-year old Leptosol was
more similar to themicrobiome of benchmark soil than themicrobiome of 700-year old
soil, especially by weightedmetrics. CCA analysis, in combination with PERMANOVA,
linked differences in microbiomes to the joint change of all soil chemical parameters
between soil horizons. Local factors, such as parent material and plant litter, more
strongly influenced the microbiome composition in Rendzic Leptosols than soil age.
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INTRODUCTION
The soil microbiome is an essential part of the soil structure (Attwood et al., 2019; Dubey
et al., 2019; Wei et al., 2019). Understanding soil microbiome composition and function
help reveal key processes of soil formation and implementation of vital ecosystem services
(Doula & Sarris, 2016; Saleem, Hu & Jousset, 2019). The process of soil formation, or
pedogenesis, depends on multiple factors, including climate, vegetation, topography, and
parent material (Dokuchaev, 1883). The type of the parent material determines the rate of
soil profile differentiation (Gagarina, Khantulev & Chikhikova, 1981; Gagarina, 1996), thus
affecting microbiome formation. Hard limestone rock as a parent material promotes the
formation of weakly developed soils, called Rendzic Leptosols (Homolák et al., 2017). Such
soils are considered to be intrazonal, because local factors, such as parent material, affect
their characteristics much more than climate (Perkins & Gettys, 1951). Limed soils have
highermicrobial biomass than unlimed (Bakina et al., 2014;Narendrula-Kotha & Nkongolo,
2017). Soil liming also affects the stability of humic acids, reducing labile humic content
(Bakina et al., 2014). However, it does not affect organic matter content. Actinobacteria
and Acidobacteria are more prevalent in more acidic soils with high carbon content
and leaching of nitrates, while in less acidic soils with lower carbon content, nitrogen is
accumulated, encouraging the growth of Proteobacteria (Bárta & Tahovská, 2017).

According to Targulian, every disruption of the soil surface sets soil formation
process, or pedogenesis, to zero (Targulian & Bronnikova, 2019). Thus, different stages
of the pedogenesis can be approached by studying chronosequences, which are series of
soils, formed at different times under similar climatic and biogenic conditions (Emmer,
1995; Mokma, Yli-Halla & Lindqvist, 2004; Cerli et al., 2008; Abakumov et al., 2010). Soil
chronosequences form at the terraces of reservoirs, on the dunes, under the barrows and the
quarry dumps (Gennadiev, 1990). Series of coastal bars in Lake Ladoga (Russia), formed by
a gradual lowering of the water level showed that in the process of pedogenesis, bulk soil is
divided into horizons, and microbiome composition is divided according to these horizons
(Ivanova et al., 2020a). Other objects used to evaluate pedogenesis are soils on reclaimed
mining heaps (Anderson, 1977; Frouz, 2014; Sokolov et al., 2015). Initially, microbiomes of
young soils are abundant in Chloroflexi and Cyanobacteria, photosynthetic bacteria which
can survive with limited number of nutrients (Gladkov et al., 2019). Quite rapidly after
development, however, copiotrophic bacteria populate these soils (Kimeklis et al., 2020).

The Crimean Peninsula contains numerous diverse climatic zones, ranging from the
dry steppes in the north to the forest-steppe and forest in the mountains and subtropics
on the southern coast (Lisetskii & Ergina, 2010). Origins, texture classes and chemical
composition of parent material also have variation in different parts of the peninsula.
Intensive human activity over thousands of years on the limestone formed differently
aged soils on the calcareous parent material in this area (Dragan, 2005; Stolba, Lisetskii &
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Marinina, 2015). Moreover, open cast mining is the most severe type of current exogenic
transformation of environments in the Crimean Peninsula. These parent materials are
the most problematic in terms of ecosystem reclamation and restoration. Parent material
alongside with topography constitute geogenic conditions, which determine the speed of
soil formation (pedogenesis rate) (Brevik & Lazari, 2014). The role of parent materials
in soils formation is directly connected with degree of consolidation and mineralogical
composition, while the topography seriously effects the insolation rate and the degree
of water retention capacity in elevated forms of relief (Targulian & Krasilnikov, 2007).
In this context, the soils of the first two ridges of Crimea mountains represent well
drained calcaric polypedones covered with Leptosols (or Lithosols) with weak profiles, not
essentially differentiated in vertical scale. Thus, the chronosequences of soils in conditions
of Crimea are less explored in sense of soil profiles developments rate in comparison
with soil series of humid climate, located on acid or neutral parent materials. While in
taiga zone 100-200 years is enough for development of embryonic soil profile, in case of
Crimean forest-steppes of the mountain ridges the zonal soil profile normally forms 4–7
times longer.

Here we address the subject of microbiome composition in soils of different ages in
multiple Rendzic Leptosols horizons of the Crimean forest-steppe zone. The subject of this
study were four territories, formed under the same climatic conditions and from the same
parent rock material, composing a chronosequence. Their age ranged from native soil to
700, 70 and 50 years, the range resulting from different anthropogenic impacts (Lisetskii
& Ergina, 2010). The aim of this study was to investigate microbiome diversity, including
bacteria and archaea, of the soil chronosequence on derivatives of limestones in different
stages of ecosystem development, using quantitative PCR and high-throughput sequencing
of 16S rRNA gene libraries. Investigation of these chronosequences may provide new
information about the rates of soil formation during different stages of ecogenesis on the
surface of limestones.

MATERIALS & METHODS
Study sites and sample collection
All sites are represented by the Rendzic Leptosols located in the first and second mountain
ridges in the forest-steppe zone of Crimean Peninsula. The climate of this zone is more
humid than in northern part of the Peninsula. The annual precipitation rate is about 380–
500 mm per year while the evaporation rate is 750–850 mm. Annual average temperature
is +20–22 ◦C. The depth of soil freezing is no more than 20 cm. Overall, the climate of
the investigated area is very close to Mediterranean one. The heights of the relief range
between 300–750 m, while topography of the territory is strongly affected by composition
and texture of limestones. Limestones are presented by sedimentary rocks strongly affected
by karst and denudation processes. Originally, limestone surface was not covered by any
other quaternary sediment and this fact provides the possibility for the soil to be formed
according to the model of primary soil formation. Thus, all sites are comparable in terms
of pedogenesis conditions. Meanwhile, all sites comprise different chronosequence stages,
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which originated from anthropogenic exploitation of mines for construction and other
processes in different historical periods. Age of each chronosequence stage was confirmed
by historical documents (Lisetskii & Ergina, 2010). Benchmark site K3 was presented by
native brown soil, formed around the Holocene. Site K1 with the oldest anthropogenic
impact is located in the 700-year-old territory of medieval fortress city Eski-Kermen,
which was destroyed at the end of the 14th century. Near K3 site is site K2, representing
75-year-old WWII trenches in Holmovka village. Site K6 is an overgrown quarry in
the north of Belogorsky district with gravel-sandy textured carbonate containing heaps,
which was reclaimed approximately 50 years ago. All soil profiles are Leptosols of various
thicknesses; the thickness of the humus horizon and the degree of weathering of the fine
earth soil increased with age. Samples were collected in the summer of 2018. They were
taken from each soil profile for each horizon in 5 replicates. Quantity of horizons differed
through sites due to differences in soil profiles: O, AY and C from the K1, AY and C from
K2 and K3, AY from K6. The coordinates of the K1 site were 44◦36.554 N, 33◦44.376 E; K2
and K3 sites 44◦39.171 N, 33◦44.968 E; K6 site 45◦07.644 N, 34◦35.537 E (Fig. 1). All soil
samples were acquired with the approval of V.I. Vernadsky Crimean Federal University.

Soils for routine analyses were ground and passed through a 2 mm sieve; the large root
debris was removed manually. The main agrochemical parameters were measured: P2O5

and K2O by the Machigin method (GOST 26205-91, 1991), pH (GOST 26213-91, 1991)
and total nitrogen (GOST 26107-84, 1984). Total organic carbon (TOC) was determined
using a CHN analyser Leco CHN-628 (Leco Corporation, USA) in Research Park of St
Petersburg State University.

DNA isolation, real-time and 16S rDNA library preparation
For the microbiome analysis, five replicate soil samples were collected from each horizon
from each site (40 total samples). From each sample, total DNA was isolated from 0.5 gram
of soil using the NucleoSpin R©Soil Kit (Macherey-Nagel GmbH & Co. KG, Germany)
using a combination of SL1+SX buffers, recommended for soils with low organic content
(Lazarevic et al., 2013). Samples were mechanically disintegrated using a Precellys 24
homogeniser (Bertin Technologies, France). The quality of isolation was tested by gel
electrophoresis in 1% agarose gel (0.5× TAE buffer). DNA concentrations were measured
at 260nm using SPECTROstar Nano (BMG LABTECH, Ortenberg, Germany). The final
DNA concentration was, on average, 50 ng/µL.

Quantitative PCR (qPCR) was conducted for two groups of organisms: bacteria and
archaea as previously described in Gladkov et al. (2019). Each sample, including standards,
was analysed in triplicate. The mean values with standard errors were calculated for
replicates of both PCR and DNA samples. After processing, the results were expressed as
the common logarithm of the number of ribosomal operons per 1 g soil.

Construction and sequencing of the 16S rRNA amplicon libraries was conducted
using an Illumina MiSeq (Illumina, Inc, USA) at the Centre for Genomic Technologies,
Proteomics and Cell Biology (ARRIAM, Russia) as described in Gladkov et al. (2019).
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Figure 1 Map of the Crimean Peninsula and the location of sampling sites. Modified after Soil Regions
Map of the European Union and Adjacent Countries (BGR, 2005). Colour and numbers 1-4 mark differ-
ent soil types. Sampling sites are marked with red circles.

Full-size DOI: 10.7717/peerj.10871/fig-1

Data processing
Amplicon libraries of the 16S rRNA gene were processed using packages in the R (R
Core Team, 2018) and QIIME2 (Bolyen et al., 2019) software environments. RStudio
Team (2016) was used as the development environment for R. Trimming, combining
sequences into phylotypes and subsequent processing was performed through dada2
package (Nearing et al., 2018), which provides more reproducible and accurate results due
to the use of denoising algorithms rather than clustering of phylotypes, in contrast to
more classical approaches (Callahan et al., 2016). The taxonomic affiliation of phylotypes
was determined using the RDP classifier (Wang et al., 2007) based on Silva 132 (Quast
et al., 2013). The phylogenetic tree was built in the QIIME2 software environment using
the SEPP package (Janssen et al., 2018). For some analyses, data were normalised by
phyloseq (McMurdie & Holmes, 2013) using the rarefaction algorithm according to the
sample with the smallest number of readings, and were stabilised by variation through
the Deseq2 package (Love, Huber & Anders, 2014) to compare the relative abundances
of phylotypes in the samples. For the analysis of alpha diversity, the following indices
were used: the observed OTU, Shannon (Shannon & Weaver, 1949), the inverse Simpson
(Simpson, 1949) and Faith phylogenetic diversity (Faith, 1992). Significance of mean
differences was calculated by the Mann–Whitney test (Mann &Whitney, 1947). For the
analysis of beta diversity, communities were compared using the construction of their
dissimilarity matrix using the weighted UniFrac, unweighted UniFrac (Lozupone & Knight,

Kimeklis et al. (2021), PeerJ, DOI 10.7717/peerj.10871 5/24

https://peerj.com
https://doi.org/10.7717/peerj.10871/fig-1
http://dx.doi.org/10.7717/peerj.10871


2005) and Bray-Curtis algorithms (Bray & Curtis, 1957). When visualising the data on
beta diversity, the dimensions of the dissimilarity matrices were reduced using NMDS
(Kruskal, 1964). The significance of sample separation in the analysis of beta diversity was
assessed by PERMANOVA (Anderson, 2017) in the form of the adonis2 test as part of
the vegan package (Oksanen et al., 2019). To analyse the variation of beta diversity by soil
chemical parameters, the constrained correspondence analysis (CCA) was used (Ter Braak,
1986; Palmer, 1993; McCune, 1997). To assess the possible multicollinearity of the CCA
model, generalised variance-inflation factors for linear models were used (Fox & Monette,
1992; Fox, 1997). The CCA function and reliability analyses of the model were conducted
using the vegan package. To estimate the significance of differences between phylotypes,
previously normalised data were processed using theWald test, with a Benjamin-Hotchberg
false discovery rate (FDR) correction in the DEseq2 package (Benjamini & Hochberg, 1995).

The R packages phyloseq, ggpubr (Kassambara, 2019), picante (Kembel et al., 2010),
ggforce (Pedersen, 2019), tidyverse (Wickham et al., 2019), ggtree (Yu et al., 2018), ampvis2
(Andersen et al., 2018) were used for post-processing and visualisation of the obtained
data.

RESULTS
Soil chemical parameters
All soils demonstrated alkalinity (from 8.2 to 7.6) and a high content of carbonates
(4.8–45.6%), which is typical of Rendzic Leptosols. For the K1 and K2 sites, pH and
carbonates decreased towards the upper horizons (topsoil), due to leaching processes.
Carbonate content in the C horizon at the K3 site (4.8%) was lower than in the AY horizon
(28.57%) because most of the carbonates are immobilised in the skeleton of the soil. K1 was
the only site with an O horizon in a soil profile; this type of horizon is formed by herbage
without grazing. Therefore, it had the highest amount of total organic carbon (TOC) and
nitrogen content. Leptosol in site K6 was of a slightly alkaline pH (7.7) and had significant
reserves of potassium (1,110 mg/kg) and phosphorus (285 mg/kg), caused by the use of the
surrounding territory by the locals of the Vishennoe village to dispose of household waste
(Table 1).

Quantitative PCR
Quantitative PCR showed that the number of bacteria ribosomal operons per 1g of soil was
high across all sites and horizons (Fig. 2). The archaea operon count varied by horizon, but
for K1 and K2 sites, it increased towards the lower horizons.

Initial quality control and phyla composition
After initial processing of 40 amplicon libraries of 16S rRNA genes, three samples were
excluded from the subsequent analysis due to their poor agreement with a rarefaction
curve (Fig. S1). All data is available at SRA database (SRA Toolkit Development Team,
2020) under BioProject ID PRJNA645404. The final output of the 16S rRNA gene library
sequencing included 37 samples with a total of 1145454 reads. The minimum number of
detected reads were 13,925, maximum – 41,384 and average read number – 30,958.22. A
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Table 1 Main soil chemical parameters.

Site Description Horizon P2O5 (mg/kg) K2O (mg/kg) pH TOC (%) Ccarb (%) Ntot (%)

K1 Eski-Kermen.
700 years

O 123 515 7.6 >22.95 20.24 1.47

AY 12 212 8.0 7.32 34.50 0.78
C 6 45 8.2 0.23 33.12 0.03

K2 Holmovka.
75 years

AY 8 595 7.9 6.84 34.13 0.10

C 2 14 8.2 0.47 45.60 0.43
K3 Holmovka. Benchmark soil AY 11 820 7.8 8.88 28.57 0.48

C 5 56 8.1 0.67 4.80 0.05
K6 Leptosol. 50 years AY 285 1110 7.7 11.70 23.81 0.58

total of 12,311 OTUs were observed: 11,705 (95%) OTUs were assigned to the kingdom
level, 11,026 (89.56%) –phylum level, 10,814 (87.84%) –class level, 9406 (76.4%) –order
level, 7800 (63.36%) –family level, 3993 (32.43%) –genus level and 277 (2.25%) –species
level.

The most abundant phyla across all samples were Actinobacteria, Proteobacteria,
Acidobacteria, Bacteroidetes, Thaumarchaeota, Planctomycetes, Verrucomicrobia,
Firmicutes and Chloroflexi (Fig. 3). Site K1 was most clearly distinct from other sites
by phyla composition, the most drastic difference being the almost complete absence of
Firmicutes representatives. Some phyla demonstrated shifts in abundance correlating with
the soil horizon: Bacteroidetes and Proteobacteria were more abundant in topsoil horizons,
while Thaumarchaeota, Acidobacteria and Verrucomicrobia were more abundant in lower
horizons. This observation is consistent with qPCR data. Bacterial ribosomal count was
approximately equal between horizons probably because different bacteria groups shift
their abundance in opposing directions through the horizons; and Thaumarchaeota, being
the dominant archaeal phyla, was responsible for total archaea increase in lower horizons.

On a family level, the most abundant taxa were Nitrososphaeraceae (Thaumarchaeota),
Chitinophagaceae and Microscillaceae (Bacteroidetes), 67-14 and Micromonosporaceae
(Actinobacteria), Xanthobacteriaceae and Burkhorderiaceae (Proteobacteria) and
Pyrinomonadaceae (Acidobacteria) (Fig. S2). In K1 site samples, phylotypes from
Rubrobacteriaceae and Bacillales were less abundant than in other samples and
Solirubrobacteriaceae were more abundant. Sphingomonadaceae were more abundant
in topsoil. Xiphinematobacteriaceae were more abundant in deeper AC and C horizons.

Alpha diversity
All alpha diversity indices revealed the higher horizons demonstrated a tendency towards
higher diversity (Fig. 4). The maximum observed number of OTUs was detected in K1-O
and K6-AY, and the minimum in K3-C. In the K1 and K3 sites, observed OTU significantly
decreased toward the lower horizon. AY horizons across all sites had comparable OTU
numbers. The Faith index, which demonstrates phylogenetic distance (PD), was evenly
distributed between samples, with no apparent maximum or minimum. However, it
also showed separation of samples by horizon. The Shannon index evaluates diversity,
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Figure 2 Abundance of bacteria and archaea in all samples assessed by qPCR.Values are given as the
common logarithm of the means of ribosomal operon number per 1g soil (n= 15). Significance is given as
a standard error of means.

Full-size DOI: 10.7717/peerj.10871/fig-2

particularly evenness, with respect to minor taxa, while the inverted Simpson index takes
into account more abundant taxa. Using the Shannon index, K1-O was similar in diversity
to K6-AY but was different according to the inverted Simpson index. In general, the
inverted Simpson index shows that K1-O was most diverse, while samples from K2, K3
and K6 sites show significant, but slight, separation from each other. Furthermore, K6-AY
was closer in diversity to K1-O and K1-AY than K2 and K3 sites by the Shannon index.
In summary, all diversity indices to varying extents show a separation of samples by soil
horizon, alongside with secluded position of samples from K1 and K6 sites.

Beta-diversity and CCA
Beta diversity demonstrated two clear trends, coinciding with the axes (Fig. 5). Along the
‘‘Y’’ axis samples tended to line up according to the soil horizons. Along the ‘‘X’’ axis,
samples were divided into ‘‘site’’ groups: Bray-Curtis and UniFrac algorithms showed
that one group included all samples from the K1 site, the second group included the only
sample from K6 site and the third, all samples from both K2 and K3 sites. According to the
weighted UniFrac algorithm, samples from the K6 site group together with samples from
K2 and K3 sites, which is consistent with results of the inverted Simpson index.
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Figure 3 Heatmap for the 20 most abundant phyla across all samples.Orange stands for more abun-
dant, and blue for less abundant.

Full-size DOI: 10.7717/peerj.10871/fig-3

Figure 4 Alpha diversity indexes for each soil horizon. (A) Observed, (B) PD, (C) Shannon, (D) in-
verted Simpson. Data presented by violin and box plots, which show the kernel probability density of the
data at different sample values. P-values are given above plots.

Full-size DOI: 10.7717/peerj.10871/fig-4
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Figure 5 NMDS plots of Beta diversity. (A) Bray–Curtis distance matrix. (B) UniFrac. (C) weighted
UniFrac. Sample repeats are surrounded by ellipses, estimated using the Khachiyan algorithm.

Full-size DOI: 10.7717/peerj.10871/fig-5

Table 2 Coefficient of determination (R2) for each soil factor assessed by PERMANOVA.

Factor R2 Pr(>F)

Horizon 0.52179978 0.001
Site 0.49421618 0.001
Ntot 0.18573955 0.001
TOC 0.17705733 0.001
pH 0.15795176 0.001
K2O 0.14989736 0.001
P2O5 0.11987081 0.002
Ccarb 0.04737008 0.100

PERMANOVA showed that soil horizon had the maximum coefficient of determination
(Table 2). The next factor was the sampling site. All the soil agrochemical parameters,
except for carbonates (Ccarb), demonstrated similar significance, but with low coefficient
of determination values. PERMANOVA nested by horizon showed that all agrochemical
factors, including Ccarb, became significant (Table S1).

The model of CCA performed for agrochemical factors is statistically significant,
although it demonstrated that these factors could not explain the discrepancy between
sample sites (Fig. 6). However, they explained soil stratification into horizons. The test on
the variance inflation factor showed all agrochemical factors, including pH, demonstrated
multicollinearity. A combination of CCA and PERMANOVA confirm that variability
between soil horizons was associated with agrochemical factors.

K1/K3 phylotype comparisons
Previous analyses concluded that microbiomes across all sites separate by soil horizon,
but also that microbiomes from the K1 site are more distinct from other sites. To
assess more precise differences in microbiome composition between sites, we visualised
significant shifts of phylotype abundance in AY and AC/C horizons between the K1
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Figure 6 CCA.Direction of the vectors shows the degree of covariation between factors.
Full-size DOI: 10.7717/peerj.10871/fig-6

and K3 sites (Fig. 7). Despite the major trend of microbiome differences between
soil horizons, our analysis shows that the reactive component of the soil microbiome
shifted together in both soil horizons between different soil sites. Firmicutes, in particular
Planococcaceae and B. longiquaestium, increased in K3; Actinobacteria (Solirubrobacter,
Gaiella, 67-14, Microlunatus, Ilumatobacteraceae) mostly increased in K1, except for
Rubrobacter ; Proteobacteria (Deltaproteobacteria, Bradyrhizobium, Xanthobacteriaceae,
Rhodoplanes, Pedomicrobium, Reyranella, Geminicoccaceae, Burkhordeliaceae, MND1,
Steroidobacter uvarum) were more abundant in K1. Representatives of Verrucomicrobia
(Xiphinematobacter, Udaeobacter), Thaumarchaeota (Nitrososphaeraceae) and
Acidobacteria (NA, RB41) varied in both K1 and K3 sites. Variation of Thaumarchaeota
in both K1 and K3, the growth of which depends on nitrogen content, supports the earlier
conclusions that nitrogen content doesn’t explain site differences. However, the K1 site
was abundant in Actinobacteria and Proteobacteria related phylotypes.

K2/K3 phylotype comparisons
Microbiomes of the AY and C horizons from two sites in Holmovka village (K2 and
K3) were the closest to each other on the beta diversity plots. These data are supported
by log2FoldChange values for the 30 of the most abundant phylotypes of both horizons
between sites (Table S2). Almost half of these phylotype changes were not significant. The
greatest differences in topsoil (more than 10 times more at K3-AY than K2-AY) were for
Seq13 (Oxyphotobacteria from Cyanobacteria), Seq101 and Seq136 (Planococcaceae from
Firmicutes), Seq322 (Chitinophagaceae from Bacteroidetes) and Seq339 (Romboutsia from
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Figure 7 Phylogenetic tree with phylotypes, which abundance shifts significantly (padj< 0.05) be-
tween K1 and K3 sites. Shifts are presented as log2foldchange values. The left column shows shifts in the
AY horizon, right column, the AC/C horizon. Red indicates an increase in K3, blue, in K1.

Full-size DOI: 10.7717/peerj.10871/fig-7
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Firmicutes). For the deeper horizon, the only phylotype matching these conditions was
Seq445 (Adhaeribacter from Bacteroidetes).

K6/K3/K1 phylotype comparisons
To assess the specificity of microbiome composition of the Leptosol at the K6 site, similar
to K2 and K3 sites, we estimated shifts in abundance by calculating log2FoldChange
values for 30 phylotypes for K6-AY/K3-AY and K6-AY/K1-AY pairs (Table S3). All
log2FoldChange values were significant, except for the only phylotype in the K6-AY/K3-
AY pair. Eleven phylotypes appeared in both pairs of comparisons, and most of them were
more abundant in K6-AY: Seq20 and Seq161 (Nitrososphaeraceae from Thaumarchaeota),
Seq11 and Seq119 (RB41 from Acidobacteria), Seq94 (Subgroup 6 from Acidobacteria),
Seq53 (Chitinophagaceae from Bacteroidetes) and Seq165 (Oxyphotobacteria from
Cyanobacteria). However, a lot of other phylotypes were underrepresented in K6 compared
to the other two sites. In comparison with K3-AY, the K6-AY site contained more than 10
times fewer of the following phylotypes: Seq13 (Oxyphotobacteria from Cyanobacteria),
Seq5 (Candidatus_Xiphinematobacter from Verrucomicrobia), Seq37 (Chitinophagaceae
from Bacteroidetes), Seq101 and Seq136 (Planococcaceae from Firmicutes), Seq60
(Aridibacter famidurans from Acidobacteria) and Seq34 (Thermoleophilia from
Actinobacteria). Compared to K1-AY, the K6-AY site contained more than 10 times less of
the following phylotypes: Seq6 and Seq36 (Thermoleophilia from Actinobacteria), Seq33
(Nitrososphaeraceae from Thaumarchaeota), Seq25 (Microlunatus from Actinobacteria)
and Seq49 (MND1 from Proteobacteria). K6-AY was more abundant than K1-AY by
Seq3 (Bacillus longiquaesitum from Firmicutes) and Seq32 (Candidatus _Nitrososphaera
from Thaumarchaeota). These differences show that topsoil microbiomes of all sites were
composed of similar major phylotypes, including both oligo- and copiotrophic taxa, which
shifted between sites regardless of their trophic group. These data are consistent with
the observation that the changing soil chemical parameters have not explained the beta
diversity observed between sites.

DISCUSSION
In our comparisons we focused on differences between Leptosols of various ages.
Microbiomes of all these soil samples shared some similar taxa at the phylotype level,
but most of them shifted their abundance according to the soil site or soil horizon. One
of the major groups of phylotypes was composed of archaea from the Nitrososphaeraceae
family in the Thaumarchaeota phylum. These archaea are capable of ammonia oxidation
and are considered to play a significant role in nitrogen cycling in the soil, especially
in an arid and low-nutrition environment (Pester, Schleper & Wagner, 2011; Kimble et
al., 2018; Nelkner et al., 2019). Consistent with this, we found Nitrososphaeraceae more
frequently inhabited deep soil horizons that were poor in nutrients across all studied sites.
Moreover, it was the least frequent in the O horizon at the K1 site, which was the richest
in total nitrogen. Notably, microbiomes from each site had dominant Nitrososphaeraceae
of different phylotypes, e.g., Seq1 was more abundant in K3, Seq2 in K1 and Seq16 in
K6. However, this segregation of phylotypes did not affect the overall dominance of
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Nitrososphaeraceae across horizons at different sites (Fig. S2). It should be noted that
high amount of archaeal phylotypes goes in concordance with high amount of archaea in
samples shown by qPCR.

The second largest family across all sites was Chitinophagaceae from Bacteroidetes.
Bacteroidetes are oligotrophs (Fierer, Bradford & Jackson, 2007). Representatives within
this phylum, Chitinophagaceae in particular, are essential for carbon decomposition,
especially in sandy, loamy soils (Ho et al., 2017; Fernandes et al., 2018). Consistent with this
data, Bacteroidetes were more abundant in the lower nutrient soils of K2 and K3 sites.

The representatives of the phylum Acidobacteria are sensitive to soil acidity, macro- and
micronutrients, capable of utilising nitrite and playing a role in cellulose decomposition
(Kielak et al., 2016). They are also considered oligotrophs (Fierer et al., 2012). This phylum
is one of the major ones in our dataset, but in comparison with previous data on soil
microbiome composition (Janssen, 2006; Jones et al., 2009), its relatable abundance was
quite low. At the first sight this is consistent with the fact that its representatives are usually
linked to acidic environments (Belova et al., 2018; Ivanova et al., 2020b), while soils from
our dataset are alkaline. However, acidobacteria are gram negative and very sensitive to
drought (Barnard, Osborne & Firestone, 2013; Chodak et al., 2015; Zhou et al., 2016), so
another explanation of low relative abundance of acidobacteria, in our dataset can be
connected to the season of sample collection (summer) or microbiome alterations during
sample transportation. For instance, representatives of Pyrinomonadaceae family, present
in all samples, live in arid conditions and be able to utilise a limited spectrum of carbon
and energy sources (Wüst et al., 2016). Sites K2 and K3 were abundant in Blastocatellaceae,
whose members have been isolated from African Savannah soils with low nutrient contents
and were reported to be able to degrade complex carbon compounds (Huber et al., 2017).

In contrast to Bacteroidetes and Acidobacteria, Proteobacteria (especially
Alphaproteobacteria)—are considered to be mostly copiotrophs (Campbell et al., 2010;
Ramirez et al., 2010; Fierer et al., 2012). As expected, Proteobacteria members were the
most abundant in the most nutrient-rich soil of the K1 site. Xanthobacteraceae members,
dominant in this dataset, demonstrate a variety of metabolic strategies, including aerobic
chemoheterotrophy, facultative chemolithoautotrophy and nitrogen fixation (Kappler
& Nouwens, 2013; Oren, 2014). Some also live in association with leguminous plants.
Sphingomonadaceae are commonly isolated from the soil and rhizosphere in particular
(Glaeser & Kämpfer, 2014). They are reported to be a possible tool of bioremediation due
to their ability to degrade xenobiotic and recalcitrant (poly)aromatic compounds.

Actinobacteria is one of the essential bacteria groups in the soil, significantly contributing
to the carbon cycle via their cellulolytic activity (Lewin et al., 2016), so they are usually
associated with the rhizosphere (Oberhofer et al., 2019). It is the most abundant phylum
in our dataset, but the least amount was detected in the Leptosol of the K6 site, which
could mean that its vegetation cover is not yet restored. The Actinobacteria phylum has
been shown to include both copio- and oligotrophic bacteria (Morrissey et al., 2016).
Representatives of Rubrobacteriaceae family, found in the K2 and K3 sites, have been
reported to be oligotrophic. Some studies have shown that these bacteria are also associated
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with lime wall paintings and painted statues of Maijishan Grottoes (Schabereiter-Gurtner
et al., 2001; Duan et al., 2017).

One of themost abundant phyla, determined using standardmicrobiological approaches,
was Firmicutes. However, sequencing of 16S amplicon libraries showed that this is not
always the case (Janssen, 2006). Sometimes they comprise as low as 2% of the total soil
microbiome. Meanwhile, spore-forming Bacillus was reported to be highly associated with
the rhizosphere (Toyota, 2015). Firmicutes, as gram-positive bacteria, are very resistant to
many adverse environmental conditions. They are also drought resistant. In our dataset
Firmicutes is a minor phylum, appearing mostly in the lower horizons of K2 and K3 sites,
and the topsoil of the K6 site.

Another major phylotype from our dataset belonged to Xiphinematobacter, a nematode
symbiont (Brown et al., 2015). Interestingly, it was mostly found in AC and C horizons. It
was likely an amplification artefact since deeper horizons of soil had much less DNA.

Despite age differences, soil microbiomes from the K2 and K3 sites were the closest
to each other based on beta diversity. However, alpha diversity analysis revealed that the
difference between horizons in K3 was more pronounced than in K2. Probably, disturbance
of soil in K2 did not affect the composition of themicrobiome, but facilitated its penetration
into lower soil horizons. According to the results of weighted metrics (inverted Simpson
index, weighted unifrac algorithm), the microbiome from the Leptosol of the K6 site is
grouped with samples from the K2 and K3 sites. However, by the results of unweighted
metrics (Shannon index, Bray-Curtis and unweighted unifrac), the K6 site diverged from
other sites, which could indicate that the major microorganisms are similar in all these
sites, but the K6 site has a significant portion of a minor microbiome component. Soil
from the K1 site was the most unique of all sites, likely because it was under anthropogenic
influence from the 6th to the 14th centuries (AD).

The structure of Rendzic Leptosol leads to a horizontal organisation, where the upper
horizon contains high amounts of humic compounds, and between it and the rock
lies a fine-earth transition horizon. In these conditions, it is reasonable to assume that
microbiome composition would be significantly different between these horizons (Taş
et al., 2018). Therefore, we tried to link diversity of microbiome composition to several
factors, such as site, horizon and different agrochemical parameters. Beta-diversity showed
that samples grouped according to both site and soil horizon. Combination of CCA and
PERMANOVA revealed that themost significant factor for beta-diversity were the nutrients
associated with the soil horizon. Although we could discern that the difference between
microbiomes of different soil horizons was linked with the changing of all soil agrochemical
parameters, all these parameters, including pH, shifted together, and it was impossible to
identify the influence of any individual factor.

CONCLUSIONS
Here we focused on a microbiome composition of differently aged Rendzic Leptosols. As
they are intrazonal, these Rendzic Leptosols soils are profoundly affected by their parent
material and undergo very slow paedogenic process. Our research demonstrated that
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soil type on a limestone rock is the driving force behind microbiome shaping, without
any apparent influence of its age. Overall, microbiomes from all sites were deficient in
Acidobacteria due to the alkalinity or aridity of the environment. The benchmark soil was
rich in oligotrophic bacteria (Chitinophagaceae, Blastocatellaceae, Rubrobacteriaceae),
able to decompose complex carbon sources. The youngest soil microbiome was the
most similar to the benchmark, with only slight differences in microbiome diversity
between horizons. Site K1 was the only one with topsoil, formed by plant litter. It
introduced additional organic matter, thus promoting an increase in copiotrophic bacteria
(Xanthobacteriaceae, representatives of Actinobacteria). Despite that, the major factor
determining soil microbiome composition was the nutrients associated with the soil
horizon, and our analysis showed that the reactive component of the soil microbiome
shifted simultaneously in both soil horizons between different soil sites.
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