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ABSTRACT
We investigated the effects of low pH on the photosynthesis, chlorophyll fluorescence,
and mineral contents of the leaves of ginger plants under salt stress. This experiment
involved four treatments: T1 (pH 6, 0 salinity), T2 (pH 4, 0 salinity), T3 (pH 6, 100
mmol L−1 salinity) and T4 (pH 4, 100 mmol L−1 salinity). This study showed that
photosynthesis (Pn, Gs, WUE and Tr) and chlorophyll fluorescence (qP, 8 PSII, and
Fv/Fm) significantly decreased under salt stress; however, all the parameters of the
ginger plants under the low-pH treatment and salt stress recovered. Moreover, low
pH reduced the content of Na and enhanced the contents of K, Mg, Fe and Zn in
the leaves of ginger plants under salt stress. Taken together, these results suggest that
low pH improves photosynthesis efficiency and nutrient acquisition and reduces the
absorption of Na, which could enhance the salt tolerance of ginger.

Subjects Agricultural Science, Plant Science, Soil Science, Biogeochemistry, Environmental
Impacts
Keywords Ginger, Salt stress, Low pH, Photosynthesis, Chlorophyll fluorescence, Mineral
contents

INTRODUCTION
Soil salinity has severe effects on plant growth and development and plant productivity in
arid and semiarid regions worldwide (Kochian et al., 2015; Krasensky & Jonak, 2012; Ryu &
Cho, 2015). The increase in soil salinity and acidification is due to poor irrigation practices,
improper fertilizer application, industrial pollution, and seawater intrusion caused by
global warming (Gaudio et al., 2015; Ding et al., 2020). In particular, growers are advised
to apply large amounts of chemical fertilizers for high yields during long-term vegetable
production processes. This leads to a nutrient imbalance and excess salt accumulation in
the soil. Salt causes several adverse effects on plant growth and development, including
decreased leaf size, yellowing of the leaves, short internodes, short plant height, early
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flowering and decreased yields (Acosta et al., 2011; Thouvenot, Haury & Thiébaut, 2012;
Jan et al., 2017; Ahmad et al., 2018)

Photosynthesis is an important biological process for maintaining plant life and plays a
very important role in the evolution of ecosystems on Earth. Photosynthesis provides the
energy and carbon required for the biosynthesis of organic compounds necessary for the
growth and biomass production of plants. Increasing photosynthesis efficiency is critical to
increasing crop yields tomeet human demand for food (Long, Marshall-Colon & Zhu, 2015;
Zhu, Long & Ort, 2010). Many researchers have studied the effects of salt stress on plant
photosynthesis. There is considerable evidence for significant changes in the chlorophyll
content (Chl) (Kalaji et al., 2016), net photosynthesis rate (Pn) (Jiang et al., 2017), stomatal
conductance (Gs) (Janda et al., 2016), transpiration rate (Tr), maximum photochemical
efficiency (Fv/Fm) (Singh, Singh & Prasad, 2016), amount of ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisco) and photochemical quenching (qP) (Moles et al., 2016).
Chloroplast development and chlorophyll metabolism are important biological activities
of photosynthesis in green plants. Studies have revealed chlorophyll synthesis-related
enzymes and key regulators involved in chloroplast development (Bollivar, 2006; Cortleven
& Schmulling, 2015). Tang et al. (2018) showed that NaCl stress significantly decreased the
contents of Chl a, Chl b, and total chlorophyll in cucumber leaves. Ribose-1,5-bisphosphate
ribulose carboxylation/oxygenase is a key enzyme that is involved in plant photosynthesis
and controls both CO2 fixation and carbon. Rubisco is the key enzyme in the Calvin cycle,
converting free CO2 in the atmosphere into energy-storage molecules, such as sucrose, and
it plays a direct role in the photosynthesis rate.

Ginger (Zingiber officinale Rose), a perennial plant species of the family Zingiberaceae,
is native to tropical rainforest regions. Ginger has been cultivated and widely used for
more than 2000 years in China as a spice and as an important ingredient in traditional
Chinese medicine. Because the bioactive constituents in ginger are valuable and have
been accepted gradually by people (Ali et al., 2008; Li et al., 2015a), ginger’s demand has
increased annually worldwide. According to statistics from the FAO (Food and Agriculture
Organization of the United Nations), global ginger production was 813 340 tons in 2010
and 1 218 710 tons in 2016 but was 426 032 tons and 938 000 tons in mainland China,
respectively.

Many studies on the photosynthesis and chlorophyll content of ginger have focused
mainly on antibiotics and drought (Li et al., 2013; Li et al., 2015b; Liu et al., 2018). Salt
stress was shown to decrease the growth and biomass yield (leaf fresh weight and root
fresh weight) of ginger seedlings in a preliminary study. Moreover, low pH significantly
alleviated this inhibition under salt stress, perhaps by lowering the Na content, alleviating
osmotic stress, and enhancing plant nutrient uptake (Yin, Cao & Xu, 2019; Yin et al., 2020).
However, several studies have focused on the effects of low pH on the photosynthesis and
chlorophyll content of ginger under salt stress. As such, the objectives of this study were to
investigate the changes in photosynthesis and chlorophyll content in response to acidic salt
stress, which is important for understanding the mechanism underlying plant tolerance to
acidic salt stress.
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MATERIALS & METHODS
Plant materials and experimental treatments
The plant materials and experiment treatment reference Yin et al. (2020). In Tai’an,
Shandong Province, China pot culture experiment was performed from April to October
2017. On May 14, the Zingiber officinale cultivar Shannong No. 1 were sown in pots
(diameter, 25 cm; height, 30 cm) filled with cleaned quartz sand (Yin et al., 2020). Neutral
salt stress was simulated with NaCl and Na2SO4(NaCl/Na2SO4=1/1), and pure water
with different pH values (HCl/H2SO4=1/1) was used to simulate hydrochloric acid stress
treatments. This experiment involved four treatments: T1 (pH 6, 0 salinity), T2 (pH 4, 0
salinity), T3 (pH 6, 100 mmol L−1 salinity) and T4 (pH 4, 100 mmol L−1 salinity). Each
treatment was replicated three times, with six individual plants in each replicate. Each pot
received 400 mL of treatment solution.

Analytical methods
Photosynthesis parameters
Functional leaves of ginger were selected, and the Pn, Gs, Tr and Ci were measured by a
portable photosynthesis system (Ciras-3, PP Systems, USA) using the method of Li et al.
(2013), with slight modifications. When the Pn reached a steady state at each light intensity
level, data were recorded 5 times per treatment, and the average value was calculated to
determine the final photosynthesis parameters. Natural light was used, and the CO2 gas
source was part of an open system.

Pigment concentrations
The chlorophyll content was measured according to the methods of Holm (1954).

Chlorophyll fluorescence
The qP, NPQ, 8PSII, and Fv/Fm were measured according to the methods of Hendrickson
et al. (2005) and Liu et al. (2018). At the time of measurements, 5 plants were averaged for
each treatment.

Photosynthesis enzyme (RuBPCase, FBPase, and FBA) activity assays
Fructose 1,6-diphosphatase (FBPase) activity was measured according to the methods of
Lazro et al. (1974).

RuBPCase activity was determined using an ELISA kit (Suzhou Keming), and fructose
1,6-bisphosphate aldolase (FBA) activity was determined using an ELISA kit (GenMed).

Sugar metabolism
Sucrose synthase (SS) and sucrose phosphate synthase (SPS) activity were estimated
following the methods of Batta & Singh (1986).

Reducing sugars and sucrose contents were measured according to the methods of
Handel (1968), using a standard graph of glucose.

The starch content was calculated according to the methods of Hannachi & Van Labeke
(2018).
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Mineral analysis
Ginger leaves were dried for 48 h at 75 ◦C and ground separately in a Wiley mill to pass
through a 20-mesh screen. Afterward, 0.5 g of dried plant tissue was analyzed to determine
the following major and minor elements: N, P, K, Ca and Mg. The nitrogen concentration
in the plant tissues was determined by the Kjeldahl method after mineralization with
sulfuric acid (Bremner, 1965).

Phosphorus concentrations were determined by titration with molybdenum antimony
reagent in the presence of dinitrophenol (Shankar, Kumar & Agrawal, 2016).

K, Ca, Fe, Zn and Mg concentrations were determined by dry ashing at 400 ◦C for 24 h,
dissolving the ash in 1/20 HNO3, and assaying the solution obtained using an inductively
coupled plasma emission spectrometer (iCAP 7000 Series, Thermo Scientific).

Observations of ginger leaf chloroplast ultrastructure
Functional leaves were sampled (1 mm ×1 mm), quickly placed in a 2.5% glutaraldehyde
fixative solution, and then transferred to a 4 ◦C refrigerator. The material was rinsed with
0.1 M PB (pH 7.4). Tissues avoid light post fixed with 1% OsO4 in 0.1 M PB (pH 7.4)
for 7 h at room temperature., after which it was rinsed 3 times with 0.1 M PB (pH 7.4)
again for 15 min each time. After that, the leaf tissue was then subjected to dehydration
and infiltration, after which it was embedded. Afterward, the material was sectioned (Leica
UC7), stained, the cuprum grids are observed under transmission electron microscope
(HT7700, Hitachi) and take images.

Statistical analysis
The data are presented as means ± one standard deviation (SD) for three independent
replicates. The data were processed with DPS software. All graphs were created using the
program SigmaPlot 10.0.

RESULTS
Photosynthesis parameters
Figure 1 shows the Pn, Gs, Ci, Tr, WUE and Ls of the leaves of ginger plants under salt
stress with or without H+ application. Compared with those under the control treatment
(T1), the Pn, Gs, Tr, and WUE decreased markedly (by 47.21%, 42.67%, 17.19%, 36.26%,
respectively) under the T3 treatment, and the Ci increased by 18.92%.Moreover, compared
with those under the control treatment (T1), the Pn, Gs, Tr, and WUE under the T4
treatment decreased by 25.42%, 31.90%, 12.50%, and 14.76%, respectively, and the Ci
increased by 8.62%. Compared with that under the control treatment (T1), the Ls under
the T3 and T4 treatments decreased by 41.75% and 20.26%, respectively. However, the pH
treatment had only a certain effect on the Pn and WUE of ginger seedling leaves, but they
did not significantly differ at the level of P < 0.05.

Pigment contents
As shown in Table 1, compared with the control treatment (T1), the T3 treatment reduced
the contents of Chl a, Chl b, Car, and Chl a+b by 9.33%, 28.28%, 7.59% and 13.01%,
respectively. Moreover, the contents of Chl a, Chl b, Car, and Chl a+b slightly increased
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Figure 1 Effects of low pH on photosynthesis parameters of the leaves of ginger plants under salt
stress. T1 (pH 6, 0 salinity), T2 (pH 4, 0 salinity), T3 (pH 6, 100 mmol L−1 salinity) and T4 (pH 4, 100
mmol L−1 salinity). The different small letters in a column of the same treatment days indicate significance
at the 5% level.

Full-size DOI: 10.7717/peerj.10832/fig-1

under the T4 treatment compared to the T3 treatment. Therewas no considerable difference
caused by low pH in the Chl a, Chl b, Car, and Chl a+b contents in the leaves. Salt stress
alone decreased the root activity by 26.94%. However, at low pH, salt stress decreased the
root activity by only 19.57% (Table 2).

Chlorophyll fluorescence
To analyze the changes in different ginger light systems in response to salt stress, chlorophyll
fluorescence parameters weremeasured. These chlorophyll fluorescence parameters display
significant negative effects under salt stress (Fig. 2). These effects were manifested by
decreased Fv/Fm, qP, and 8PSII values and an increased NPQ compared to the those of
controls (the T3 and T4 treatments). Salt stress alone (T3) reduced the Fv/Fm, qP, and
8PSII by 9.62%, 12.90%, and 28.96%, respectively, under the T3 treatment and by 6.85%,
7.87%, and 14.35%, respectively, under the T4 treatment compared to those under the
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Table 1 Effects of low pH on Chlorophyll contents in ginger leaves under salt stress. T1 (pH 6, 0 salinity), T2 (pH 4, 0 salinity), T3 (pH 6, 100
mmol L−1 salinity) and T4 (pH 4, 100 mmol L−1 salinity). Different small letters in a column of the same treatment days indicate significance at the
5% level.

Treatment Chl a
(mg g−1 FW)

Chl b
(mg g−1 FW)

Car
(mg g−1 FW)

Chl a+b
(mg g−1 FW)

Root activity
(µg h−1 g FW)

T1 1.93± 0.01a 0.99± 0.0211a 0.79± 0.0122a 2.92± 0.013a 64.84± 1.36a
T2 1.8± 0.01b 0.82± 0.0049b 0.76± 0.0166b 2.62± 0.016b 61.29± 1.21b
T3 1.75± 0.01c 0.71± 0.0142c 0.71± 0.0068c 2.45± 0.017c 47.37± 0.62d
T4 1.78± 0.01c 0.74± 0.0102c 0.73± 0.0115c 2.51± 0.019c 52.15± 1.46c

Table 2 Effects of low pH on the activities of Rubisco, FBA and FBPase in ginger leaves under salt
stress. T1 (pH 6, 0 salinity), T2 (pH 4, 0 salinity), T3 (pH 6, 100 mmol L−1 salinity) and T4 (pH 4, 100
mmol L−1 salinity) Different small letters in a column of the same treatment days indicate significance at
the 5% level.

Treatment Rubisco FBA FBPase
nmol min−1 g−1 nmol min−1 g−1 nmol min−1 g−1

T1 105.65± 3.43a 155.81± 13.38a 81.23± 3.46b
T2 94.5± 2.28b 162.17± 6.07a 91.22± 4.51a
T3 65.35± 4.66d 116.65± 4.33c 65.55± 1.35c
T4 74.65± 0.83c 134.55± 8.67b 76.4± 3.26b

normal conditions (T1). In contrast, the value of NPQ increased by 23.27% under the T3
treatment and by 14.35% under the T4 treatment compared to those under the control
(T1).

Photosynthesis enzyme activities
The results related to the activities of photosynthesis enzymes are depicted in Table 2. Low
pH increased FBA and FBP activities by 4.08 and 12.30% and decreased Rubisco activity by
10.55% in the absence of salt stress, respectively, compared to those of the control seedlings
(Table 2). Salt stress significantly decreased Rubisco, FBA, and FBP activities. Compared
with the T3 treatment, the T4 treatment increased the Rubisco, FBA, and FBP activities by
14.23%, 15.34%, and 16.55%, respectively.

Reducing sugar, sucrose, and starch contents
In the salt-affected ginger leaves, the reducing sugar, sucrose and starch contents decreased
significantly (Table 3). Salt stress alone (T3) reduced the reducing sugar, sucrose, and
starch contents by 51.75, 63.42, and 54.33%, respectively, compared to those of the control.
However, at low pH, salt stress decreased reducing sugar, sucrose, and starch contents by
only 35.06, 48.62, and 31.48%, respectively, compared to those under the T1 treatment.
Table 3 shows that low pH had a weak effect on reducing sugar, sucrose, and starch
contents, but they did not significantly differ at the level of P < 0.05.

Activity of SS and SPS
SS and SPS are key enzymes involved in carbon metabolism. The different treatments had
significant effects on the activity of SS and SPS in the ginger leaves (Fig. 3). Salt stress
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Figure 2 Effects of low pH on chlorophyll parameters of the leaves of ginger plants under salt stress.
T1 (pH 6, 0 salinity), T2 (pH 4, 0 salinity), T3 (pH 6, 100 mmol L−1 salinity) and T4 (pH 4, 100 mmol L−1

salinity). The different lowercase letters in a column of the same treatment days indicate significance at the
5% level.

Full-size DOI: 10.7717/peerj.10832/fig-2

Table 3 Effects of low pH on Reducing sugar, Sucrose and Starch content in ginger leaves under salt
stress.DW stands for dry weight. T1 (pH 6, 0 salinity), T2 (pH 4, 0 salinity), T3 (pH 6, 100 mmol L−1

salinity) and T4 (pH 4, 100 mmol L−1 salinity) Different small letters in a column of the same treatment
days indicate significance at the 5% level.

Treatment Reducing sugar Sucrose Starch
mg g−1 DW mg g−1 DW mg g−1 DW

T1 46.32± 0.73a 14.46± 0.59a 323.89± 2.68a
T2 40.51± 1.15b 12.31± 0.35b 319.44± 2.71a
T3 22.35± 1.05d 5.29± 0.08d 147.92± 5.12c
T4 30.08± 0.64c 7.43± 0.29c 221.94± 7.87b

alone reduced SS and SPS activity by 41.57 and 30.34%, respectively, compared to that of
the control (T1). The activity of SS and SPS was reduced by 30.3 and 6.15%, respectively,
under the salt +low pH treatment (T4) compared to the control treatment (T1).

Content of phosphorus and nitrogen
Figure 4 shows the results of the content of P and N in the leaves of ginger plants under
salt stress or under low pH. Compared with the control (T1), salt stress alone (T3) reduced
the content of P and N by 57.90 and 16.35%, respectively. Low pH with salt stress (T4)
decreased the contents of P and N by 47.48 and 11.08%, respectively, compared to those
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Figure 3 Effects of low pH on the activity of SS (A) and SPS (B) in the leaves of ginger plants under salt
stress. T1 (pH 6, 0 salinity), T2 (pH 4, 0 salinity), T3 (pH 6, 100 mmol L−1 salinity) and T4 (pH 4, 100
mmol L−1 salinity). The different small letters in a column of the same treatment days indicate significance
at the 5% level.

Full-size DOI: 10.7717/peerj.10832/fig-3

Figure 4 Effects of low pH on the contents of P (A) and N (B) in the leaves of ginger plants under salt
stress. T1 (pH 6, 0 salinity), T2 (pH 4, 0 salinity), T3 (pH 6, 100 mmol L−1 salinity) and T4 (pH 4, 100
mmol L−1 salinity).

Full-size DOI: 10.7717/peerj.10832/fig-4

of the control. Under low pH, the contents of P and N were slightly affected, but they did
not significantly differ at the level of P < 0.05.

Mineral composition content
As shown in Fig. 5, salt stress significantly increased the Na content in leaves of the plants
and significantly decreased the contents of K, Mg, Ca, Fe and Zn. The content of Na in
ginger seedling leaves increased by 101.55% under salt stress alone and increased by 40.62%
under low pH and salt stress. Salt stress alone significantly reduced the contents of K, Mg,
Ca, Fe and Zn by 27.27%, 32.52%, 28.08%, 47.01% and 41.73%, respectively, compared to
those of the control. The contents of K, Mg, Ca, Fe and Zn decreased by 17.36, 29.38, 13.78,
40.64 and 31.75%, respectively, under low pH with salt stress (T4), respectively, compared
to those under the control treatment (T1).
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Figure 5 Effects of low pH on the contents of Na (A), K (B), Mg (C), Ca (D), Fe (E) and Zn (F) in the
leaves of ginger plants under salt stress. T1 (pH 6, 0 salinity), T2 (pH 4, 0 salinity), T3 (pH 6, 100 mmol
L−1 salinity) and T4 (pH 4, 100 mmol L−1 salinity).

Full-size DOI: 10.7717/peerj.10832/fig-5

Ultrastructure morphological changes
Changes in whole mesophyll cells and chloroplasts are shown in Fig. 6. Seedlings grown
under normal conditions exhibited regular cell shape and typical chloroplasts; moreover,
there were several well-packed starch grains (Fig. 6). However, cell morphological
disturbance and plasmolysis occurred when the seedlings were treated with salt stress alone.
The shapes of chloroplasts were severely swollen. Furthermore, there was an abundance
of osmiophilic granules and fewer starch grains in the chloroplasts compared with those
of control (Fig. 6). For low-pH-treated seedlings under salt stress conditions, there was
a small improvement in cell morphology. The chloroplasts contained more starch grains
than did those of seedlings under salt stress alone (Fig. 6).
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Figure 6 Effects of low pH on the leaf ultrastructure in the leaves of ginger plants under salt stress: T1
(pH 6, 0 salinity), T2 (pH 4, 0 salinity), T3 (pH 6, 100 mmol L−1 salinity) and T4 (pH 4, 100 mmol L−1

salinity). GL: Granum lamellae; S: Starch grains; ch: Chloroplast; N: Cell nucleus.
Full-size DOI: 10.7717/peerj.10832/fig-6

DISCUSSION
Photosynthesis
The damage caused by salt to plants is primarily attributed to the inhibition and disruption
of photosynthesis, and the decrease of photosynthetic efficiency is one of the important
reasons for the decrease of plant biomass under salt stress. The Pn decreases because of
stomatal limitation or nonstomatal limitation. IfGs andCi are positively correlated, then the
reason for the Pn decrease is related to stomatal limitation; if the two showed no correlation
or contrast, then it is related to nonstomatal limitation. In the present experiment, the Pn
and Gs decreased under the T3 treatment, and the Ci increased. This suggests that the main
factor of photosynthesis limitation is nonstomatal limitation. This is consistent with the
research results of Tang et al. (2018). However, damaged photosynthetic structures may be
another factor affecting the photosynthesis rate. The photosynthesis enzyme (Rubisco, FBA,
and FBP) activities were related to the degree of damage to the photosynthetic structure.
1,5-Ribulose diphosphate oxygenase/shuttle enzyme is an important enzyme involved in
CO2 fixation in plant leaves and plays an important role in maintaining photosynthesis
(Parry et al., 1997). In this study, the activity of Rubisco, FBA and FBP decreased under
the T3 treatment. These results suggest that the reason for photosynthesis under salt stress

Yin et al. (2021), PeerJ, DOI 10.7717/peerj.10832 10/19

https://peerj.com
https://doi.org/10.7717/peerj.10832/fig-6
http://dx.doi.org/10.7717/peerj.10832


alone is nonstomatal limitation. Similar results were reported previously (Feng et al., 2014;
Ning et al., 2018) However, low pH with salt stress reduced the Ci and increased the Pn;
Gs; and the activities of Rubisco, FBA and FBP. Taken together, these results indicated that
low pH could protect photosynthetic structures and increase the photosynthesis enzyme
activities, thereby increasing the photosynthesis rate.

The water-use efficiency (WUE) of leaves is an important factor affecting whether
plants can adapt to extreme environmental conditions (Martin, Tauer & Lin, 1999). In our
experiment, the WUE value decreased under salt stress alone. This decrease was related
to the reduced leaf transpiration rate, which was caused by the decreased Gs (Bacha et al.,
2017). These conditions were unfavorable for substance transport in ginger. However, low
pH increased the WUE of leaves under salt stress and improved substance transport in
ginger.

Chlorophyll fluorescence
The absorption and transformation of light energy by plants are mainly divided into
three closely related parts: chlorophyll fluorescence, qP-related photosynthetic electron
transport, and qN-related heat consumption (Schreiber, Schliwa & Bilger, 1986). As an
important physiological index for evaluating plant growth and development characteristics,
the chlorophyll content can reflect plant health and adaptability of plants (Guo et al., 2015;
Xiao, Sang & Wang, 2008). Salt stress causes the decrease of chlorophyll and carotenoid
contents in mung bean leaves, which may be caused by the expansion of chloroplast
membrane and/or excess Na+ ions in the leaves (Alharby et al., 2019). In this study, the
levels of Chl a, Chl b, and carotenoids decreased under salt stress alone. This is consistent
with the research results of Do et al. (2018) and Patil et al. (2016). Chlorophyll content has
an obvious correlation with the photosynthesis ability of leaves (Dhanapal et al., 2016), and
a decrease in chlorophyll content can lead to an irreversibly decreased photosynthesis rate.

The maximal photochemical efficiency of PSII (Fv/Fm) was used to evaluate the primary
conversion efficiency of light energy in the PSII reaction center (Jagerbrand & Kudo, 2016).
8PSII is the actual light-harvesting efficiency of PSII when the reaction center is partially
closed, and 8PSII reflects the ratio of energy consumed by photosynthetic transmission
of electrons when the leaves absorb energy. The qP reflects the relative proportion of light
energy captured by light-harvesting pigments for photochemical electron transfer (Awlia et
al., 2017). The values of Fv/Fm, 8PSII, and qP were significantly reduced under salt stress,
suggesting that salinity induced the inhibition of PSII electron transport and dissipated
the excess excitation in the form of heat. This resulted in the reduction in the fluorescence
quantum yield (Mehta et al., 2010). The decrease in qP also indicated an increase in the
fraction of reduced QA in PSII (Bacha et al., 2017; Hu, Yan & Yu, 2016). The NPQ value,
which represents heat dissipation, increased by 23.27%, which indicated that a greater share
of excess energy was released as heat, whereas the ability to utilize light energy decreased.
The Fv/Fm, 8FPSII, and qP values increased significantly under low pH with salt stress,
indicating that the photochemical activity and electron transfer in ginger leaves were
positively affected and thereby enhanced the light energy conversion efficiency of PSII.
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Metal elements
Salt stress leads to specific ion toxicity and plant growth inhibition (Park, Kim & Yun, 2016).
Excessive accumulation of Na+ is harmful to plant cells, which can lead to significant
changes in metabolism and malnutrition (Liang et al., 2018). Nitrogen is an important
major element in plant growth and development. It is a component of many plant cell
components, including amino acids, proteins, and nucleic acids. The results show that salt
treatment induced a decrease in N concentration in ginger plants in our study. However,
the plants that were grown under low pH had consistently higher N concentration than the
normal plants under salt stress. The decrease in N concentration due to salt stress may be
caused by interference by salinity in N acquisition and utilization. Our study corroborates
the findings of Zhang et al. (2016), who reported that phosphorus concentration decreased
under salt stress. The effect is compounded by the deficiency of other elements (K, Mg,
etc.) due to the excessive Na content, which also severely reduces photosynthesis (Lu et al.,
2017). In this study, as expected, in the salt-stressed plants, Na accumulated excessively in
the leaves. On the other hand, the K content under salt stress alone wasmarkedly lower than
that without salt stress treatment, which implied that there is a competitive relationship
between K+ and Na+ in ginger leaves. A similar result was reported byWakeel et al. (2011).
However, low pH with salt stress decreased the Na content and increased the K content.
Moreover, the results showed that low pH with salt stress resulted in a stronger ability for
the absorption and transport of K+ to ensure an adequate concentration of the ions that
participate in key metabolic activities (e.g., photosynthetic metabolites) in leaves. As is well
known, Mg also plays an important role in photosynthetic metabolism. Mg accumulations
were shown to be significantly positively correlated with the relative photosynthesis rate
under salt stress (Ning et al., 2018). In the present study, the Mg content decreased under
salt stress alone. These results suggest that salt stress reduced chlorophyll concentrations
and photosynthesis by imparting a negative impact on Mg2+ uptake. Under salt stress,
the concentrations of micronutrients (Fe and Zn in) ginger leaves decreased. Similarly,
the concentration of Fe and Zn in chickpea plants decreased with NaCl stress, as reported
by Shankar, Kumar & Agrawal (2016). However, compared with salt stress alone, low pH
with salt stress resulted in a significantly higher concentration of micronutrients in plants.
This may be attributed to the low pH reducing the Na content and thus enhancing the
absorption of trace micronutrients.

CONCLUSIONS
Salt stress is one of the major abiotic stresses that inhibit plant growth. As shown in Fig. 7,
salt stress significantly inhibited the growth and decreased the photosynthesis, pigment
contents and mineral contents of ginger leaves. Low pH with salt stress enhanced the
activities of RuBPCase, FBPase, and FBA and increased the pigment contents, increasing the
photosynthesis rate. Moreover, it is worth noting that low pH simultaneously increased the
accumulation of K, Mg, Ca, Fe, and Zn. In summary, the improvement of photosynthesis,
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Figure 7 Impacts of low pH on photosynthesis processes of ginger under salt stress. ‘‘ ↓ ’’ indicates a
decrease, ‘‘ ↑ ’’ indicates an increase.

Full-size DOI: 10.7717/peerj.10832/fig-7

pigment contents, and accumulation of minerals due to low pH ultimately increased the
biomass accumulation of ginger seedlings under salt stress.
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