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ABSTRACT
Background. Malignant ovarian cancer is associated with the highest mortality of all
gynecological tumors. Designing therapeutic targets that are specific to OC tissue is
important for optimizing OC therapies. This study aims to identify different expression
patterns of genes related to FGFR1 and the usefulness of FGFR1 as diagnostic biomarker
for OC.
Methods. We collected data from The Cancer Genome Atlas (TCGA) and the Gene
Expression Omnibus (GEO) databases. In the TCGA cohort we analyzed clinical
information according to patient characteristics, including age, stage, grade, longest
dimension of the tumor and the presence of a residual tumor. GEO data served as a
validation set. We obtained data on differentially expressed genes (DEGs) from the two
microarray datasets. We then used gene set enrichment analysis (GSEA) to analyze the
DEG data in order to identify enriched pathways related to FGFR1.
Results. Differential expression analysis revealed that FGFR1 was significantly down-
regulated in OC specimens. 303 patients were included in the TCGA cohort. The
GEO dataset confirmed these findings using information on 75 Asian patients. The
GSE105437 and GSE12470 database highlighted the significant diagnostic value of
FGFR1 in identifying OC (AUC = 1, p = 0.0009 and AUC = 0.8256, p = 0.0015
respectively).
Conclusions. Our study examined existing TCGA and GEO datasets for novel factors
associated with OC and identified FGFR1 as a potential diagnostic factor. Further
investigation is warranted to characterize the role played by FGFR1 in OC.

Subjects Bioinformatics, Gynecology and Obstetrics, Oncology, Women’s Health, Medical
Genetics
Keywords Ovarian cancer, Targeted treatment, FGFR1, RNA-sequencing

INTRODUCTION
Ovarian cancer is a common gynecological malignant cancer. Because its mortality rate
ranks first among gynecological tumors, it has become a major health risk for women
(Chen et al., 2018; Meys et al., 2018). The onset of ovarian cancer is usually hidden and
most patients have no obvious symptoms in the early stages (Partridge, Phillips & Menck,
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1996). Therefore, at the time of diagnosis patients may have already reached relatively
advanced stages of OC. The five-year survival rate of patients is approximately 40%
(Partridge, Phillips & Menck, 1996; Stewart et al., 2017) while the overall five-year survival
rate for patients whose cancer has reach an advanced stage is only 20–30% (Bhatt et al.,
2016). The ovarian cancer patients who received guideline-based treatment have better
five-year survival rate. However, even after initial treatment, most patients with epithelial
ovarian cancer will experience a recurrence, and currently there is no cure (Beltrame et
al., 2015; Bruchim et al., 2016; Ganapathi et al., 2016). Moreover, traditional treatment
methods, including surgery and chemotherapy, do not significantly affect the survival rate
of the disease. In consequence, the development of new methods to detect OC in the early
stages of its progression as well as individualized treatment plans for ovarian cancer are
key steps for improving clinical efficacy and safety.

The targeted treatment of OC plays an increasingly important role in the comprehensive
treatment of OC and new tumor treatment strategies depend on the search for new targets
(Huang et al., 2018; Shivange et al., 2018; Villar-Prados et al., 2018; Zhai et al., 2018). With
the development of sequencing technology and acquirement of a large amount of biological
data, bioinformatics can be used to understand and find new biomarkers of tumor (Yang
et al., 2020; Wu et al., 2019; Tao et al., 2019). The Vascular Endothelial Growth Factor
(VEGF) signaling pathway is essential for tumor angiogenesis (Albini et al., 2018; Caron-
Beaudoin, Viau & Sanderson, 2018; Lee et al., 2018a; Lee et al., 2018b; Lin et al., 2018). Anti
VEGF therapies clearly display anti-angiogenic efficacy in the treatment of pathological
angiogenesis as well as cancers including lung cancer (Kabbinavar et al., 2014), glioma
(Griveau et al., 2018), metastatic renal cell carcinoma (Escudier et al., 2007; Grünwald et al.,
2011), metastatic colorectal cancer (Bennouna et al., 2018), and ovarian cancer (González
Martín et al., 2018; Lee et al., 2018a; Lee et al., 2018b). Clinical data has shown that current
anti-angiogenic targeted drugs have been successfully introduced in the anti-cancer therapy,
but they still have more drawbacks (Abdullah & Roman, 2012; Poletto et al., 2018; Wang
et al., 2018). VEGF is a crucial angiogenic factor. A lot of angiogenic factors, including
angiopoietins, platelet derived growth factor (PDGF) and fibroblast growth factor (FGF),
collaborate with VEGF in the angiogenic process (Abdullah & Roman, 2012; Ip et al., 2018;
Lieu et al., 2011; Semrad & Mack, 2011).

The human fibroblast growth factor receptor (FGFR) family consists of four members:
FGFR1 to FGFR4 and the native ligand of FGFRs is fibroblast growth factors (FGFs)
(Lemmon & Schlessinger, 2010; Weiner & Zagzag, 2000). Dysregulation of FGFRs has been
implicated in a wide variety of cancers, such as urothelial carcinoma, hepatocellular
carcinoma, ovarian cancer and lung adenocarcinoma (Cole et al., 2010; Fearon, Gould
& Grose, 2013; Shuyan et al., 2019). There is evidence that differential expression in
specific FGFR may be related to prognosis or sensitivity to cancer treatments (Turner
et al., 2010). At this time, several FGFR inhibitors are FDA approved for treatment of
cancer, including lenvatinib approved for iodine-refractory, well-differentiated thyroid
carcinoma, regorafenib approved for advanced colorectal carcinoma and drug-resistant
gastrointestinal stromal tumors (GIST), ponatinib approved for drug-resistant chronic
myelogenous leukemia (CML) and Philadelphia chromosome-positive acute lymphocytic
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leukemia (ALL), and pazopanib approved for renal cell carcinoma and sarcoma. The
FGF/FGFR-system plays a critical role in carcinogenesis, but little is known of its influence
in ovarian cancer.

This study aims to provide insight into the differential expression of FGFR-linked genes
in OC and normal tissues by comparing TCGA and GEO data. The detection of DEGs
between OC and non-OC tissues may facilitate the identification of novel therapeutic
targets of OC. To better understand the role of FGFR1 in ovarian cancer in individual
studies, a meta-analysis was designed to synthesize current findings. Here, DEGs found by
comparing gene expression in OC and non-OC samples were screened using the R software.
The enrichment pathway analysis of DEGs was performed using GSEA. Our results suggest
that the significant diagnostic ability of FGFR1, but also note that more evidence is needed
to improve disease prognosis and to design effective drugs to treat ovarian cancer.

METHODS
TCGA data description
To obtain a dataset based on studies listed in The Cancer Gene Atlas (TCGA) database,
patients’ gene expression and clinical information were downloaded from the publicly
available TCGA Data Portal at https://tcga-data.nci.nih.gov/tcga/. For the TCGA cohort,
gene expression profiles were studied in 303 female patients with histologically confirmed
ovarian cancer who had undergone prior surgical resection and received no pretreatment.
Gene expression profiles were measured experimentally using an Illumina HiSeq2000 RNA
Sequencing instrument at the University of North Carolina TCGA genome characterization
center. Level 3 data was downloaded from the TCGA data coordination center. This dataset
shows gene-level transcription estimates, as in log2(x+1) transformed RSEM normalized
counts. Genes were mapped onto the human genome coordinates using HUGO probeMap.
Reference to method description from University of North Carolina TCGA genome
characterization center. All analyses were performed using FDR (False Discovery Rate)
corrected q-values adjusted to 0.05.

GEO dataset selection
We obtained OC microarray profiles from the GEO database (http://www.ncbi.nlm.
nih.gov/geo/). The following keywords were used to query the GEO database: (ovary OR
ovariumORoophoronORoothecaORgermarium)AND(cancerOR carcinomaOR tumor
OR tumour OR neoplas* OR malignan*). All the functional genomics data of FGFR1 were
requested and assembled from the GEO Database (http://www.ncbi.nlm.nih.gov/geo/)
with the closing date of 10 February 2019. The inclusion and exclusion criteria of this study
were as follows: (1) only human tissue studies were included, and samples from cell lines
and animal models were excluded; (2) the expression data of the experimental and control
groups must be provided or calculated; (3) dual-channel microarray studies were excluded;
(4) DNA methylation arrays studies were excluded; (5) studies without a control group,
as well as studies on other cancers were excluded; (6) studies with less than 20 cases were
excluded. Differentially expressed genes (DEGs) identified by comparing expression in
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ovarian cancer and normal samples were analyzed using the R language software. Samples
with both corrected P-values <0.05 and log fold changes (FC) >1 were deemed to be DEGs.

Gene set enrichment analysis (GSEA)
GSEA was performed using GSEA software 3.0 from the Broad Institute as previously
described (Subramanian et al., 2005). GSEA evaluates gene expression profiles from
samples belonging to normal and tumorous samples, and analyzes data in terms of
gene sets. Normalized enrichment scores (NES) were acquired by analyzing genes with
permutations 1,000 times. A gene set was considered to be significantly enriched if it had a
normal p-value <0.05. However, if the number of samples per group was fewer than 7, gene
set was selected as permutation type, and FDR <0.05 was set as the criterion of statistical
significance.

Statistical analysis
Overall survival was calculated from the data of surgery to the date of death or last
follow-up. Recurrence-free survival was defined as the time from the date of surgery to the
date of first recurrence or last follow-up. Patients without events or death were recorded as
censored at the time of last follow-up. Pathological stage and grade were considered to be
distinct categorical variables. Age, longest dimension and residual tumor were included in
the model as continuous variables. Gene expression levels from the TCGA database were
included as continuous variables.

All data are displayed as mean ± standard deviation (SD) for each group. Student’s
t -tests were performed to test for differences in mean values of vaviables of interest
between two groups, whereas one-way analyses of variance (ANOVAs) were used to test
for differences inmeans among three ormore groups. Standardizedmean difference (SMD)
was applied to evaluate the association between FGFR1 levels and OC using RevMan 5.3.0.
We pooled SMDs across GEO datasets using the Mantel-Haenszel formula (fixed-effect
model) or the DerSimonian-Laird formula (random-effect model). A fixed-effect model
was adoptedwhen theQ statistic was considered significant (p> 0.1, or I2<50%); otherwise,
a random-effect model was used.

RESULTS
Study Characteristics
The present study consists of several processes sequentially (Fig. 1), that is, TCGA-based
RNA-seq data aggregation and clinical values, GEO-based data verification, meta-analyses
based on GEO and TCGA, and multiple bioinformatics analyses. A total of twelve GEO
datasets (GSE105437, GSE66957, GSE66387, GSE40595, GSE29450, GSE29156, GSE27651,
GSE26712, GSE18521, GSE18520, GSE17308, and GSE12470) were collected for use in our
study. Two datasets (GSE105437 and GSE12470) contained detailed information on Asian
populations, and these were used in this study. The platform for GSE105437 was GPL570,
the [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array, includes 5
normal ovarian surface epithelial samples and 10 high-grade stage III invasive serous
ovarian cancer samples. The platform for GSE12470 was GPL887, the Agilent-012097
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Figure 1 Flow chart of study selection for GEO and TCGA based data.
Full-size DOI: 10.7717/peerj.10817/fig-1

Human 1A Microarray (V2) G4110B; this platform, included 10 normal peritoneum
samples, 35 advanced stage serous ovarian cancer samples and 8 early stage serous ovarian
cancer samples. In addition, 308 cases with EGFR or FGFR expression data were screened
in TCGA database excluding 5 cases with recurrence, and 303 patients form this database
were included in this study. A flowchart and other detailed information regarding the
studies included in the meta-analysis are shown in Fig. 1.

FGFR expression in OC based on GEO
FGFR or EGFR expression was initially assessed in a series of ovarian tumor and normal
tissues based on GEO dataset (Fig. 2). The datasets were analyzed with GeneSpringGX and
mapped with Graphpad 6.0 software. The expression levels of FGFR1 in ovarian cancer
tissues were significantly lower than in non-cancer control tissues in both GSE105437 and
GSE12470 with analyses performing Fold change cut-off adjusted to 2.0 and corrected
p-values cut-off adjusted to 0.05(p< 0.0001 and p= 0.0032, respectively; Figs. 2A and
2B). The expression of FGFR1 was significantly different in advanced ovarian cancer, but
not in early ovarian cancer in GSE12470 (p= 0.0124; Fig. 2C). The expression levels of
EGFR in ovarian cancer tissues were significantly lower than in non-cancer control tissues
in GSE105437 (p= 0.0008; Fig. 2D), whereas no difference was found in GSE12470. The
expression levels of FGFR2 and FGFR3 were significantly different only in GSE12470
(p= 0.0046 and p= 0.0049, respectively; Figs. 2E and 2F). Therefore, FGFR1 was chosen
for subsequent analysis.
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Figure 2 Expression date in OC tissue from the GEO dataset. (A) differential expression of FGFR1 in
GSE105437; (B) differential expression of FGFR1 in GSE12470; (C) differential expression of FGFR1 in
GSE12470 with subgroup analysis; (D) differential expression of EGFR in GSE105437; (E) differential ex-
pression of FGFR2 in GSE12470; E differential expression of FGFR3 in GSE12470.

Full-size DOI: 10.7717/peerj.10817/fig-2

To have a more comprehensive understanding of the biomedical predictive value of
FGFR1, ROC Curves were provided to investigate the diagnostic value of GSE105437 and
GSE12470 in distinguishing OC tissues from normal controls. As shown in Fig. 3, the Area
Under the Curve (AUC) of GSE105437 outperformed GSE12470 (AUC=1, p= 0.0009
and AUC = 0.8256, p= 0.0015 respectively). Therefore, we considered FGFR1 might play
an important role in diagnosing ovarian cancer. In brief, no significant differences were
found between OC and nontumor groups based on the GSE105437 and GSE12470 data
considered here (SMD = −6.22; 95% CI, −7.48 to −4.96; p= 0.93, Fig. 4A). Moreover,
we found no significant heterogeneity by fixed-effected model (p< 0.00001, I2 = 0%).
Finally, the funnel plot shown in Fig. 4B did not imply significant publication bias.

Identification of DEGs in ovarian cancer using integrated
bioinformatics
The two ovarian cancer gene expression microarray datasets GSE105437 and GSE12470
were analyzed using the R limma package and were sorted according to logfold-change
values with corrected p-values <0.05. The results of DEGs from the two databases showed
in Fig. 5, and FGFR was identified both in the down-regulated genes (Green points).

GSEA enrichment analysis of DEGs
To find enriched pathways related to FGFR1 and to identify its potential function, we
performed a GSEA (Fig. 6). First, common pathways were found by comparing the
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Figure 3 ROC analysis of GSE105437 and GSE12470 of FGFR1 for the diagnosis of OC. (A)
GSE105437: The area under the ROC curve (AUC) 1.000, p = 0.0009; (B) GSE12470: AUC 0.8256,
p= 0.0015.

Full-size DOI: 10.7717/peerj.10817/fig-3

Figure 4 Meta-analysis of the combined SMD for FGFR1 expression between OC and normal groups
in the GEO database using the fixed effects models. (A) Forest plot; (B) funnel plot.

Full-size DOI: 10.7717/peerj.10817/fig-4

GSE105437 (Fig. 6A) and GSE12470 (Fig. 6B) datasets. Although, many of these common
pathways were not significantly associated with FGFR1, we found that the KEGG adherent
junction signaling pathway was significantly correlated with FGFR1 in the GSE105437
dataset (Fig. 6C).

Clinical characteristics of patients from the TCGA
The TCGA cohort consisted of 303 female patients with histologically confirmed ovarian
cancer who had undergone prior surgical resection and received no pretreatment. Summary
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Figure 5 Differential expression of data between two sets of samples. (A) GSE105437 (B) GSE12470.
Red points represent upregulated genes (i.e., |FC| > 2.0 and a corrected P-value of < 0.05). Green points
represent downregulated genes(i.e., |FC| > 2.0 and a corrected P-value of < 0.05). Black points represent
genes with no significant difference in expression. FC is the fold change.

Full-size DOI: 10.7717/peerj.10817/fig-5

data of clinical indicators such as age, stage, grade, the longest dimension of the tumor,
ANS, and residual tumor were shown in Table 1. We tested whether these variables were
correlated with the relative expression of FGFR1 mRNA in OC tissues. We found no
significant differences in the clinical features for all the tested parameters. The median
follow-up time was 26.11 months and 182 patients died during follow-up. The results of
the overall survival (OS) analyses, as calculated using the Kaplan–Meier method are shown
in Table 2 and Fig. 7; we found significant differences in survival between all groups. We
combined stage I and II into a single group, as well as grades G1 and G2 into another group
for statistical analysis, since only 1 patient was included in the dataset for both stage I and
grade G1. Residual tumors were found to be independently associated with increased OS
according to univariate analysis (p= 0.001). In contrast, we found no statistical evidence
that other characteristics, including age, stage, grade, tumor longest dimension, and ANS
were independent prognostic factors. In addition, our results showed that patients with
larger residual tumors, high FGFR expression, and advanced cancer stages were associated
with shorter OS (p= 0.001, p= 0.233, p= 0.148, respectively; Fig. 7).

DISCUSSION
Ovarian cancer is the deadliest gynecological malignant tumor due to the fact that
this cancer is associated with delayed diagnosis, recurrence, and metastasis (Chen et
al., 2018; Meys et al., 2018; Partridge, Phillips & Menck, 1996). Targeted treatments and
immunohistochemistry offer the hope of improved treatments for OC patients in the
future. Moreover, identifying biomarkers for targeted treatments is important for effective
cancer diagnosis and treatment (Shivange et al., 2018; Villar-Prados et al., 2018). RNA
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Figure 6 Enrichment plots from gene set enrichment analysis (GSEA). Common pathways in the
GSE105437 (A) and GSE12470 (B) datasets according to GSEA, specific pathways involved FGFR1
GSE105437 datasets according to GSEA (C). ES, enrichment score; NES, normalized ES; NOM p-val,
normalized p-value.

Full-size DOI: 10.7717/peerj.10817/fig-6
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Table 1 Correlations between the relative expression of FGFR1mRNA in OC tissues and patient clini-
cal indicators.

Clinicopathological
parameters

N Relative expression
of FGFR1mRNA

P value

Age
≤40 10 11.45± 0.3398
40–60 157 11.60± 0.0887
≥60 136 11.75± 0.1039

0.4750

Stage
I & II 24 11.59± 0.2201
III & IV 279 11.67± 0.06965

0.7667

Grade
G1+ G2 34 11.59± 0.1480
G3+ G4 261 11.67± 0.0741
Gx 8 11.94± 0.3241

0.8451

Longest dimension
≤1 cm 92 11.60± 0.1201
1–2 cm 169 11.63± 0.0881
≥2 cm 42 11.93± 0.1843

0.2510

ANS
Bilateral 209 11.63± 0.0783
Unilateral 94 11.73± 0.1246

0.5104

Residual tumor
0 95 11.72± 0.1156
≤1 cm 133 11.59± 0.0973
1–2 cm 23 11.88± 0.2868

0.6568

2 cm 52 11.62± 0.1671

sequencing is an accurate method used to identify such biomarkers (Coenen-Stass et al.,
2018; Jiang et al., 2018). Thus, RNA-sequencing will likely become more important during
patient treatment, both for predicting the efficacy of different therapies as well as in
monitoring toxicity.

FGFR is a promising cancer biomarkers and has a canonical tyrosine kinase receptor
structure (Lieu et al., 2011; Semrad & Mack, 2011). The FDFR family contains four
members, FGFR1, FGFR2, FGFR3, and FGFR4 (Eswarakumar, Lax & Schlessinger,
2005). FGFR signaling is initiated by interaction with 23 different FGF ligands, and is
involved in many cellular processes, including proliferation, differentiation, migration,
survival, organogenesis, angiogenesis, and embryonic development (Eswarakumar, Lax &
Schlessinger, 2005; Klint & Claesson-Welsh, 1999; Ornitz & Itoh, 2015; Touat et al., 2015).
Recently, several mutations and alterations in FGFRs have been reported in cancers. In
addition, specific alterations of FGFR have been found to be more frequent in certain types
of tumors, thus making FGFR a suitable biomarker (Brooks, Kilgour & Smith, 2012; Ornitz
& Itoh, 2015). However, the relationship between FGFR1 and ovarian cancer has not been
well determined.
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Table 2 Univariate analyses of survival of 303 OC patients (using the Kaplan-Meier method).

Factor n 3-year
survival(%)

X2 P

Age(years) 6.463 0.04
≤40 10 71.4
40–60 157 70.5
≥60 136 51.2
Stage 2.088 0.148
I & II 24 77.9
III & IV 279 60.9
Grade 2.547 0.28
G1+ G2 34 78.1
G3+ G4 261 59.0
Gx 8 87.5
Longest dimension 0.47 0.79
≤1 cm 92 59.7
1–2 cm 169 65.4
≥2 cm 42 51.8
ANS 0.574 0.449
Bilateral 226 62.7
Unilateral 77 58.3
Residual tumor 16.670 0.001
0 95 74.9
≤1 cm 133 61.1
1–2 cm 23 50.5
2 cm 52 50.0
FGFR1 1.425 0.233
High expression 152 58.2
Low expression 151 65

In this study, we examined FGFR1 expression in OC by examining RNA expression
profiles in cancerous tissues sourced from the TCGA andGEOdatasets. In samples from the
TCGA database, we identified the clinical characteristics of OC patients that were found to
be associated with FGFR1 expression. However we were not able to draw a strong functional
link between FGFR1 and OC, since the TCGA dataset contained too fewer noncancerous
samples, thus reducing the statistical power of the analysis. To gain insight into the
functional molecular pathways of FGFR1 that are implicated in the development and
progression of ovarian cancer, two samples from the GEO database (datasets GSE105437
and GSE12470, containing 53 OC samples and 15 non-OC samples) were subjected to
further examination. No clinical data was available for these datasets, and therefore we were
not able to corroborate our previous finding. Next, we investigated the expression patterns
of FGFR1 in ovarian cancer samples from both datasets. Survival analysis showed that low
expression of FGFR1 was closely associated with poor OS. Moreover, using data from the
GEO datasets, we also found that FGFR1 was downregulated in ovarian cancer samples
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Figure 7 Kaplan–Meier estimates of OC overall survival of by residual tumor, stage and expression of
FGFR1. (A) Residual tumor, p= 0.001; (B) Stage, p= 0.148; (C) Expression of FGFR1, p= 0.233.

Full-size DOI: 10.7717/peerj.10817/fig-7

relative to normal tissues. However, no evidence indicated that FGFR1 is an independent
factor affecting the clinical outcomes of ovarian cancer patients. Taken together, the results
of our investigation, we found that FGFR1 might have significant diagnostic value in
predicting OC for Asian populations (i.e., for the GSE105437 dataset: AUC= 1, p= 0.0009
and GSE12470 dataset: AUC = 0.8256, p= 0.0015). These results suggest that FGFR1 may
be a very good diagnostic biomarker but not a good prognosis marker. More samples
should be examined to validate these findings.

CONCLUSIONS
In conclusion, this is a preliminary study designed to investigate the role played by FGFR1
in ovarian cancer. The meta analyses of ovarian cancer that we report here significantly
extends our knowledge base to cognize that FGFR1 may be a good diagnostic biomarker
in Asian populations (Fig. 3). In the future, these findings should be validated using
new datasets, and immunohistochemistry or western blotting should be used to confirm
transcriptomic results by examining protein contents. Finally, research into the value
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of FGFR1 in cancer diagnosis should be performed in order to assess its usefulness for
potential clinical application.
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