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Biological dinitrogen (N2) fixation is one mechanism by which specific microorganisms
(diazotrophs) can ameliorate nitrogen (N) limitation. Historically, rates of N2 fixation were
believed to be limited outside of the low nutrient tropical and subtropical open ocean,
however, emerging evidence suggests that N2 fixation is also a significant process within
temperate coastal waters. Using a combination of amplicon sequencing, targeting the
nitrogenase reductase gene (nifH), quantitative nifH PCR, and 15N2 stable isotope tracer
experiments, we investigated spatial patterns of diazotroph assemblage structure and N2

fixation rates within the temperate coastal waters of southern Australia during Austral
autumn and summer. Relative to previous studies in open ocean environments, including
tropical northern Australia, and tropical and temperate estuaries, our results indicate that
high rates of N2 fixation (10 - 64 nmol L-1 d-1) can occur within the large inverse estuary

Spencer Gulf, while comparatively low rates of N2 fixation (2 nmol L-1 d-1) were observed in
the adjacent continental shelf waters. Across the dataset, low concentrations of NO3/NO2

were significantly correlated with the highest N2 fixation rates, suggesting that N2 fixation
could be an important source of new N in the region as dissolved inorganic N
concentrations are typically limiting. Overall, the underlying diazotrophic community was
dominated by nifH sequences from Cluster 1 unicellular cyanobacteria of the UCYN-A
clade, as well as non-cyanobacterial diazotrophs related to Pseudomonas stutzeri, and
Cluster 3 sulfate-reducing deltaproteobacteria. Diazotroph community composition was
significantly influenced by salinity and SiO4 concentrations, reflecting the transition from
UCYN-A-dominated assemblages in the continental shelf waters, to Cluster 3-dominated
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assemblages in the hypersaline waters of the inverse estuary. Diverse, transitional
diazotrophic communities, comprised of a mixture of UCYN-A and putative heterotrophic
bacteria, were observed at the mouth and southern edge of Spencer Gulf, where the
highest N2 fixation rates were observed. In contrast to observations in other environments,
no seasonal patterns in N2 fixation rates and diazotroph community structure were
apparent. Collectively, our findings are consistent with the emerging view that N2 fixation
within temperate coastal waters is a previously overlooked dynamic and potentially
important component of the marine N cycle.
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38

39 Abstract

40 Biological dinitrogen (N2) fixation is one mechanism by which specific microorganisms 

41 (diazotrophs) can ameliorate nitrogen (N) limitation. Historically, rates of N2 fixation were 

42 believed to be limited outside of the low nutrient tropical and subtropical open ocean, however, 

43 emerging evidence suggests that N2 fixation is also a significant process within temperate coastal 

44 waters. Using a combination of amplicon sequencing, targeting the nitrogenase reductase gene 

45 (nifH), quantitative nifH PCR, and 15N2 stable isotope tracer experiments, we investigated spatial 

46 patterns of diazotroph assemblage structure and N2 fixation rates within the temperate coastal 

47 waters of southern Australia during Austral autumn and summer. Relative to previous studies in 

48 open ocean environments, including tropical northern Australia, and tropical and temperate 

49 estuaries, our results indicate that high rates of N2 fixation (10 - 64 nmol L-1 d-1) can occur within 

50 the large inverse estuary Spencer Gulf, while comparatively low rates of N2 fixation (2 nmol L-1 

51 d-1) were observed in the adjacent continental shelf waters. Across the dataset, low 

52 concentrations of NO3/NO2 were significantly correlated with the highest N2 fixation rates, 

53 suggesting that N2 fixation could be an important source of new N in the region as dissolved 

54 inorganic N concentrations are typically limiting. Overall, the underlying diazotrophic 

55 community was dominated by nifH sequences from Cluster 1 unicellular cyanobacteria of the 

56 UCYN-A clade, as well as non-cyanobacterial diazotrophs related to Pseudomonas stutzeri, and 

57 Cluster 3 sulfate-reducing deltaproteobacteria. Diazotroph community composition was 

58 significantly influenced by salinity and SiO4 concentrations, reflecting the transition from 

59 UCYN-A-dominated assemblages in the continental shelf waters, to Cluster 3-dominated 

60 assemblages in the hypersaline waters of the inverse estuary. Diverse, transitional diazotrophic 

61 communities, comprised of a mixture of UCYN-A and putative heterotrophic bacteria, were 

62 observed at the mouth and southern edge of Spencer Gulf, where the highest N2 fixation rates 

63 were observed. In contrast to observations in other environments, no seasonal patterns in N2 

64 fixation rates and diazotroph community structure were apparent. Collectively, our findings are 

65 consistent with the emerging view that N2 fixation within temperate coastal waters is a 

66 previously overlooked dynamic and potentially important component of the marine N cycle. 

67

68 Introduction

69 By providing a source of new nitrogen (N), dinitrogen (N2) fixation, the microbially mediated 

70 conversion of N2 gas to ammonia, represents a fundamental process within oligotrophic marine 

71 environments (Eugster and Gruber, 2012; Karl et al., 2012). Based on global ocean estimates, the 

72 activity of N2 fixing microorganisms (termed diazotrophs) contributes approximately 160 Tg of 

73 new N to the ocean annually (Wang et al., 2019). However, the majority of empirical 

74 observations contributing towards global N2 fixation estimates have been derived from tropical 

75 and subtropical oceanic gyres (Luo et al., 2012), which have traditionally been deemed the 

76 principal ecological niche for marine N2 fixation due to the activity of large filamentous and 

77 heterocystous cyanobacterial diazotrophs (Breitbarth et al., 2007; Goebel et al., 2010; Karl et al., 
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78 2002). In contrast, temperate coastal habitats have generally been thought to be enriched in 

79 dissolved inorganic N derived from terrestrial and upwelled sources (Jickells, 1998), thereby 

80 restricting the niche for biological N2 fixation. 

81

82 Temperate coastal waters are some of the most productive regions on Earth, which have 

83 historically been believed to be fuelled by the influx of bioavailable nutrients from rivers, 

84 groundwater, and through the mixing of offshore waters (Jickells, 1998). Often these 

85 hydrodynamic properties result in the development and maintenance of relatively eutrophic 

86 conditions, which in combination with typically cool sea surface temperatures, resulted in the 

87 supposition that diazotrophic growth and activity, particularly for the large filamentous 

88 cyanobacterium Trichodesmium sp., would be limited (Breitbarth et al., 2007; Howarth et al., 

89 1988; Knapp, 2012). However, largely due to the newly recognised abundance and activity of 

90 non-cyanobacterial diazotrophs and unicellular cyanobacteria (UCYN) outside of the traditional 

91 oceanic niches of N2 fixation, there has been a recent paradigm shift in the potential importance 

92 of N2 fixation in temperate coastal regions, where annual N2 fixation rates have been estimated to 

93 exceed 16 Tg N (Tang et al., 2019b). Therefore, an enhanced understanding of N2 fixation rates 

94 and patterns in diazotroph diversity and activity within temperate coastal habitats is required to 

95 inform models of marine N availability at regional and global scales.

96

97 The widespread application of molecular surveys targeting the gene encoding a subunit of the 

98 nitrogenase enzyme complex (nifH), have greatly expanded the known diversity and global 

99 distribution of numerically important diazotrophs (Cornejo-Castillo et al., 2018; Farnelid et al., 

100 2011; Langlois et al., 2015; Moisander et al., 2010; Zehr et al., 1998, 2000, 2003). For example, 

101 nifH containing UCYN clades, Candidatus Atelocyanobacterium thalassa (UCYN-A), UCYN-B, 

102 and UCYN-C, and putative heterotrophic, non-cyanobacterial diazotrophs, from the gamma-, 

103 delta-, and alphaproteobacteria, have recently been detected throughout the major ocean basins 

104 (Díez et al., 2012; Farnelid et al., 2013; Fernández-Méndez et al., 2016; Gradoville et al., 2017; 

105 Langlois et al., 2015). Investigations into the ecology of these novel diazotrophs have revealed a 

106 range of physiologies and patterns of biogeography. Both free-living (e.g. UCYN-B, and C; Zehr 

107 et al., 2001; Taniuchi et al., 2012; Stenegren et al., 2018) and symbiotic (e.g. UCYN-A) UCYN 

108 groups have been identified, and evidence suggests a diversity of closely related sub-lineages are 

109 representative of distinct ecological niches typically associated with “open ocean” (e.g. UCYN-

110 A1) and “coastal” (e.g. UCYN-A2) environments (Cornejo-Castillo et al., 2018; Farnelid et al., 

111 2016; Thompson et al., 2014). 

112

113 The isolation of non-cyanobacterial diazotrophs from specific habitats, such as the Peruvian 

114 oxygen minimum zone (Martinez-Perez et al., 2018), and estuarine waters of the Baltic Sea 

115 (Bentzon-Tilia et al., 2014; Farnelid et al., 2014), imply relatively specialised niches for these 

116 organisms. However, genomic analysis of isolates, and metagenome-assembled genomes from 

117 the alphaproteobacteria and Planctomycetes, have revealed the metabolic flexibility of these 
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118 groups, particularly in regard to their N cycling capabilities (Delmont et al., 2018; Martinez-

119 Perez et al., 2018). Non-cyanobacterial diazotrophs are distributed throughout tropical and 

120 temperate latitudes and are sometimes the dominant members of diazotrophic communities 

121 (Bombar et al., 2016; Delmont et al., 2018; Langlois et al., 2015; Moisander et al., 2014). 

122 Notably, both non-cyanobacterial diazotrophs and UCYN have recently been identified as 

123 important constituents of temperate and coastal diazotroph communities (Bentzon-Tilia et al., 

124 2015b; Messer et al., 2015; Mulholland et al., 2012; Needoba et al., 2007; Rees et al., 2009; 

125 Shiozaki et al., 2015a; Short and Zehr, 2007), with their presence often associated with high rates 

126 of N2 fixation (Bentzon-Tilia et al., 2015b; Tang et al., 2019b).

127

128 In the coastal waters surrounding the Australian continent, bioavailable sources of N are 

129 regularly depleted (Condie and Dunn, 2006). Significant rates of N2 fixation have been observed 

130 throughout much of the tropical northern seas surrounding Australia (Bonnet et al., 2015; Messer 

131 et al., 2016, 2017; Montoya et al., 2004; Raes et al., 2014) and in the subtropical waters of the 

132 eastern Indian Ocean (Raes et al., 2015). High levels of diversity in nifH phylotypes have been 

133 detected throughout these regions, including important contributions by Trichodesmium 

134 erythraeum, UCYN-A, and the gammaproteobacterial group, Gamma A (Moisander et al., 2014; 

135 Bonnet et al., 2015; Messer et al., 2017). In contrast, our understanding of the importance of N2 

136 fixation within the temperate waters along the southern coastline of Australia, which are 

137 dominated by large inverse estuaries, is severely limited. 

138

139 Inverse estuaries represent unique ecosystems within the coastal zone of arid climates (Eyre, 

140 1998), where an excess of evaporation over precipitation results in the formation of strong 

141 positive salinity gradients from marine at the mouth to hypersaline at the head (Nunes Vaz et al., 

142 1990; Pritchard, 1952). In contrast to classical estuaries, inverse estuaries receive little to no 

143 freshwater input (Eyre, 1998; Smith and Veeh, 1989), and can become seasonally isolated from 

144 the adjacent continental shelf-waters when density fronts restrict oceanic inflow at the mouth 

145 (Petrusevics et al., 2011). Consequently, inverse estuaries can experience relatively oligotrophic 

146 conditions, giving rise to nutrient limitation in some systems (Middleton et al., 2013; Smith and 

147 Veeh, 1989). 

148

149 Previously, we detected the presence of UCYN-A sub-lineages, UCYN-A1 and UCYN-A2, 

150 within the inverse estuary Spencer Gulf (Messer et al., 2015), an ecologically and economically 

151 important region of the south Australian marine environment (Deloitte Access Economics, 

152 2017). Despite the fact that Spencer Gulf is typically oligotrophic, and primary production is 

153 reportedly N limited (Middleton et al., 2013), productive aquaculture industries and commercial 

154 fisheries are housed within the region, and the shallow waters act as foraging and nursery 

155 grounds for > 30 species of threatened, protected, and iconic marine macro-organisms (Robbins 

156 et al., 2017). Seagrass-based N2 fixation has historically been suspected to be an important 

157 source of new N in the shallow upper region (Smith and Veeh, 1989), however, how pelagic 
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158 productivity is maintained within the low-nutrient waters of Spencer Gulf remains an open 

159 question. To test the hypothesis that N2 fixation is a significant process within the temperate 

160 coastal waters of southern Australia, we investigated spatial and seasonal dynamics of N2 

161 fixation activity, and diazotroph diversity, in Spencer Gulf and the surrounding shelf waters.

162

163

164 Materials & Methods

165 Sample collection

166 Surface seawater samples were collected from Spencer Gulf, a large inverse estuary within the 

167 South Australian Gulf System (~ 22 000 km2), and from adjacent continental shelf waters. 

168 Spencer Gulf is characterised by steep gradients in sea surface temperatures and salinity and 

169 demonstrates marked differences in physicochemical characteristics during autumn/winter and 

170 spring/summer (Nunes and Lennon, 1986; Nunes Vaz et al., 1990; Petrusevics, 1993). Therefore, 

171 samples were collected during two contrasting seasons, in the Austral autumn between 28th April 

172 - 8th May 2014, and in the Austral summer between 2nd - 9th December 2014. Although 

173 considered oligotrophic, Spencer Gulf hosts productive aquaculture industries, which have been 

174 implicated in localised nutrient enrichment (Fernandes et al., 2007; Lauer et al., 2009). To 

175 capture local environmental variability, sampling was performed along a latitudinal gradient 

176 within the estuary, from an offshore site situated near Kangaroo Island [35.84S, 136.45E] on the 

177 continental shelf, through to the hypersaline region in the north of Spencer Gulf. Four locations 

178 inside Spencer Gulf were selected, including, Spencer Gulf mouth [35.25S, 136.69E] and three 

179 locations along the edge of the basin, southern Gulf [34.377S, 136.11E], mid-Gulf [33.92S, 

180 136.58E] and northern Gulf [33.04S, 137.59E] (Figure 1). 

181

182 Sampling at the mouth and shelf sites were conducted from on-board the RV Ngerin in 

183 conjunction with routine monitoring for the Southern Australian node of the Integrated Marine 

184 Observing System (IMOS). Samples were collected at the Kangaroo Island National Reference 

185 Station (NRSKAI; referred to as “shelf” hereafter), and SAM8SG mooring locations (referred to 

186 as “mouth” hereafter) (Lynch et al., 2014). A shore-based sampling protocol was adopted for the 

187 southern, mid, and northern Gulf sampling sites, whereby surface samples were collected from 

188 jetties (piers), approximately 227, 154 and 440 m from the shore, respectively. In all cases, 60 L 

189 of water was collected from ~ 1m below the surface using a plastic bucket. Buckets and sample 

190 storage carboys were rinsed three times with sample water prior to filling and washed with 10 % 

191 HCl and MilliQ between stations. The temperature and salinity of each sample was immediately 

192 recorded using a multi-parameter portable meter (WTW Profiline Multi 3320; Xylem Analytics, 

193 Germany). 

194

195 Dissolved inorganic nutrient analyses

196 To determine ambient concentrations of dissolved inorganic nutrients, including NO3
- + NO2

-, 

197 PO4
3- and SiO4

4- (hereafter referred to as NO3/NO2, PO4, and SiO4 respectively), subsamples (45 
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198 ml) were collected in triplicate 50 ml Falcon tubes from each sampling site. Samples were 

199 immediately frozen at -20 °C and kept frozen prior to analysis. A Flow Injection Analyser 

200 (Lachat QuikChem 8000) was used to determine concentrations of NO3/NO2, PO4, SiO4 in the < 

201 0.45 µm filtrate from each thawed sample, with a limit of detection of 0.01 . 

202

203 Particulate carbon, nitrogen, and 15N analyses

204 To provide an estimate of the concentrations of particulate carbon (C) and N in the planktonic 

205 material and the natural abundance of the 15N isotope in particulate matter ( 15N, N2 fixation 

206 incubation T0), subsamples of between 2 – 4 L of surface seawater were collected from each site. 

207 Subsamples were filtered onto GF/F grade 0.7 µm filters (Whatman, Kent, UK) which were 

208 previously individually packaged in aluminium foil and pre-combusted at 450 °C for 4 h. 

209 Samples were stored double contained in two snap-lock bags and kept frozen at -20 °C, prior to 

210 being dried for 48 h at 60 °C. As previously described in Messer et al. (2017), filters were 

211 analysed on an elemental analyser (Thermo Finnigan MAT Conflo IV) coupled to an isotope 

212 ratio mass spectrometer (IRMS; Thermo Finnigan Delta XP; limit of detection = 15 g N per 

213 filter) at the Research Corporation of the University of Hawaii.

214

215 Biological N2 fixation incubations

216 To measure rates of N2 fixation activity among planktonic diazotrophs, we performed stable 

217 isotope tracer addition experiments at each site with 15N-labelled N2 gas. Acid-clean (10 % HCl) 

218 4 L Nalgene incubation bottles were rinsed three times with seawater from the site prior to being 

219 filled to over-flowing via silicone tubing, then capped with rubber septa head-space free. 15N2 

220 gas (3 ml, 98 atom%, Sigma-Aldrich, Australia, lot SZ1670V, 2013 batch) was injected into each 

221 incubation bottle prior to inversion 100 times to disperse the gas bubble. 

222

223 Samples for whole community N2 fixation (bulk seawater) and unicellular N2 fixation (< 10 µm 

224 size fraction) were incubated in triplicate at in situ sea surface temperature using aquaria heaters 

225 and water circulation pumps attached to an outdoor 60 L plastic incubator, which was exposed to 

226 a natural diurnal light cycle at surface seawater intensity. 15N2 incubations were terminated via 

227 filtration after 24 h, by directly filtering the entire contents onto a pre-combusted (450 °C for 4 h; 

228 packaged in aluminium foil) GF/F grade 0.7 µm filter (Whatman; whole community), or through 

229 a 10 µm polycarbonate membrane filter (Isopore, Merck Millipore) onto a pre-combusted GF/F 

230 grade 0.7 µm filter (Whatman; unicellular size fraction). Enriched filters were stored double 

231 contained in two snap-lock bags to prevent any possible cross-contamination and kept frozen at -

232 20 °C prior to analysis.

233

234 Following methods described in Messer et al. (2017), 15N2 amended GF/F filters were dried (60 

235 °C for 48 h) separately to natural abundance samples to prevent cross-contamination. Total 

236 particulate N and C and isotopic composition were determined on an elemental analyser (Thermo 

237 Finnegan MAT Conflo IV) coupled to an IRMS (Thermo Finnegan Delta XP, limit of detection 
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238 = 15 µg N per filter) at the Research Corporation of the University of Hawaii. Assimilation rates 

239 were calculated following Montoya et al. (1996). An atom% enrichment equivalent to 75 % of 

240 the theoretical for a 24 hour incubation was used as the enrichment factor for volumetric rate 

241 calculations to account for the incomplete dissolution of the 15N2 gas bubble (Großkopf et al., 

242 2012; Mohr et al., 2010), following Messer et al. (2017). 

243

244 Collection, preservation, and extraction of microbial nucleic acids

245 In order to concentrate microbial cells for nucleic acid extraction, amplicon sequencing, and 

246 quantitative PCR, triplicate 2 L samples were filtered onto 0.2 µm membrane filters (Durapore, 

247 EMD Merck Millipore, Billerica, MA, USA). Filters were stored at -20 °C during the field 

248 sampling (~ 2 weeks) and transported to the laboratory on dry ice before being stored at -80 °C 

249 until extraction. The MoBio PowerWater DNA isolation kit (MoBio Laboratories, Carlsbad, CA, 

250 USA; now Qiagen) was used to extract microbial community DNA, following the 

251 manufacturer’s guidelines including an additional incubation with solution PW1 (10 min at 60 

252 °C) prior to 10 min of bead beating, to ensure complete cell lysis.

253

254 nifH amplicon sequencing and analyses

255 To determine the diversity of diazotrophic bacterioplankton, a fragment of the nifH gene was 

256 amplified using a nested protocol and the degenerate primers nifH3 and nifH4, and nifH1 and 

257 nifH2 (Zani et al., 2000; Zehr and Turner, 2001), largely following methods previously described 

258 (Messer et al., 2015, 2016, 2017). The following PCR reaction conditions were used to amplify 

259 the nifH gene: 95 °C (2 min) followed by 30 cycles of 95 °C (1 min), 48 °C (1 min) and 72 °C (1 

260 min) followed by 72 °C (10 min). Amplification was confirmed using gel electrophoresis, 

261 replicates were pooled, and the resultant fragment was sequenced using the 454 FLX Titanium 

262 pyrosequencing platform (Roche, Nutley, NJ, USA) at Molecular Research LP (Shallowater, TX, 

263 USA).

264

265 The Quantitative Insights Into Microbial Ecology (QIIME) (Caporaso et al., 2010) open source 

266 software was used to process nifH pyrosequencing reads. Briefly, sequences were de-multiplexed 

267 and the low-quality sequences were removed (q < 25 and < 200 bp in length) using default 

268 parameters. Chimeric sequences were removed using USEARCH61 with default parameters 

269 against an unaligned version of a curated nifH reference database exported from Arb 

270 (downloaded from: http://wwwzehr.pmc.ucsc.edu/nifH_Database_Public/; Heller et al., 2014; 

271 Zehr et al., 2003). The remaining high-quality reads were clustered at 99 % sequence identity 

272 using UCLUST, whereby sequences within 1 % identity of the most abundant read were 

273 classified as operational taxonomic units (OTUs; Edgar, 2010). A representative sequence set 

274 was generated based on the most abundant sequence comprising an OTU. The PyNAST aligner 

275 tool (Caporaso et al., 2010a) was used with default parameters to BLAST and pairwise align 

276 representative nifH OTU sequences to those from the aligned version of the same curated nifH 

277 database used for chimera removal, providing putative taxonomy and “best hits” to primarily 
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278 uncultured environmental sequences (Heller et al., 2014; Zehr et al., 2003). Any potential stop 

279 codons and frameshifts in the nifH sequences were identified using the FrameBot tool from the 

280 FunGene pipeline using default parameters (Fish et al., 2013). As part of this pipeline, taxonomy 

281 was assigned to the closest representatives within the Ribosomal Database Project’s nifH 

282 database based on amino acid identity (AAI) and sequence alignment (Fish et al., 2013). Finally, 

283 an OTU by sample matrix was generated, in which each sample was rarefied to the lowest 

284 number of sequences per sample (3068) and singletons were removed prior to downstream 

285 analyses. 

286

287 Quantification of UCYN-A nifH genes 

288 Based on our previous observations (Messer et al., 2015), we hypothesised that UCYN-A would 

289 be the most important diazotrophic group within Spencer Gulf and the adjacent continental shelf 

290 waters. In order to determine UCYN-A abundance, previously designed TaqMan qPCR probes 

291 (Table S1) were utilised to quantify the UCYN-A1 (Langlois et al., 2008) and UCYN-A2 

292 (Thompson et al., 2014) clades. qPCR standards were either cloned into the P-Gem T Easy 

293 Vector (Promega, Sydney, NSW, Australia) following the manufacturer’s guidelines (UCYN-

294 A2) as previously described (Messer et al., 2017), or synthesised into the PUC-57 Amp 

295 (Genewiz) vector (UCYN-A1). The nifH gene inserts were then amplified from the plasmid 

296 DNA using plasmid specific PCR primers targeting the M13 binding site of the vector. A band of 

297 the correct size was purified from an electrophoresis gel using the Isolate II Gel/PCR Purification 

298 kit (Bioline, Eveleigh, NSW, Australia). DNA was then quantified using a Qubit Fluorometer 

299 and serially diluted to generate a standard curve incorporating 107 to 101 nifH copies. 

300

301 qPCR reactions were performed as previously described in Messer et al. (2017). Specifically, 

302 template DNA was diluted 1:5 using nucleic-acid-free H2O to prevent inhibition and 5 µl of the 

303 template dilution was subsequently used in the qPCR assay. Each qPCR reaction included 200 

304 nM of forward and reverse primer, 100 nM of TaqMan probe, 2x TaqMan Master Mix II, and 3 

305 µl of nucleic-acid-free H2O. Samples were analysed in triplicate, with additional triplicate 

306 technical replicates and triplicate no template negative controls (5 l nucleic-acid-free H2O), 

307 alongside the relevant standards (also analysed in triplicate). Reaction conditions were optimised 

308 for each primer and probe set using a combination of temperature, annealing time, and extension 

309 time gradients on a StepOnePlus™ Real-Time PCR machine (software v2.3; Applied 

310 Biosystems, Thermo Fisher Scientific, Scoresby, Victoria, Australia). The final optimal reaction 

311 conditions were identified to be: 50 °C (5 min), 95 °C (10 min) and 40 cycles of 95 °C (15 sec) 

312 and 64 °C (60 sec) for UCYN-A2; and 95 °C (10 min) followed by 40 cycles of 95 °C (15 sec), 

313 55 °C (15 sec) and 72 °C (60 sec) for UCYN-A1. Linear regression analyses of quantification 

314 cycle (Cq) versus log10 nifH gene copies demonstrated that the UCYN-A2 assay had a mean R2 

315 of 0.999 and an efficiency between 99.2 - 99.9 % and the UCYN-A1 assay had a mean R2 of 

316 0.993 and an efficiency between 92.0 - 98.7 %. The Cq limit of detection and quantification for 

317 each assay was identified to be equivalent to ~1 - 10 nifH copies per reaction.
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318

319 Statistical analyses

320 Prior to testing for significant differences between “season” and “site”, environmental data, N2 

321 fixation rates, and qPCR data were checked for normality and homogeneity of variance using the 

322 Shapiro-Wilk and Brown-Forsythe tests respectively (SPSS, IMB Statistics 24). Data meeting 

323 these criteria were tested for significance using a one-way ANOVA, while a Kruskal Wallis 

324 ANOVA on ranks was used for data that failed to meet the stipulations of normality (SPSS, IMB 

325 Statistics 24). Pearson correlation coefficients and significance values were calculated (SPSS, 

326 IMB Statistics 24) between biological and environmental variable pairs across the entire dataset, 

327 and independently for samples collected in Austral autumn or summer. 

328

329 Statistical analyses of diazotroph community dissimilarity were performed using the PRIMER 7 

330 + PERMANOVA software. The final OTU by sample matrix was square-root transformed and a 

331 Bray Curtis resemblance matrix was generated. Significant differences between nifH amplicon 

332 sequencing profiles were explored using the non-parametric Analysis of Similarity (ANOSIM) 

333 test, using either “season” or “site” as a factor, while the contribution of each OTU to the 

334 observed dissimilarity between sampling sites was determined using Similarity Percentage 

335 analysis (SIMPER). In addition, a distance-based linear model (DistLM) was generated from the 

336 Bray-Curtis resemblance matrix, using the corresponding site-specific environmental metadata as 

337 predictor variables. Relationships between the environmental predictor variables and diazotroph 

338 community composition were also investigated using the BEST, biota and environment 

339 (BIOENV) test, using Spearman rank correlation. 

340

341 The multivariate relationships between individual diazotroph OTUs, environmental metadata, 

342 and N2 fixation rates were explored using a negative binomial many-generalised linear model 

343 (Wang et al., 2012). The model was performed using the mvabund (v.4.1.3) package (Wang et 

344 al., 2012) in R (v4.0.2) and R studio (v1.3.959) (R Core Team, 2013). The nifH OTU by sample 

345 matrix was input as count data and converted to an mvabund object prior to model creation using 

346 the ‘manyglm’ function. The analysis of deviance table was generated using the ‘anova’ function 

347 with ‘p.uni = adjusted’ selected to correct for the effect of multiple testing. 

348

349

350 Results

351 Environmental characteristics of Spencer Gulf and shelf waters 

352 Consistent with the inverse estuarine nature and seasonal variability of Spencer Gulf, patterns in 

353 sea surface temperature (SST) and salinity exhibited a clear transition from cooler oceanic 

354 conditions in southern shelf waters, to warmer and hypersaline conditions in the northern region 

355 of the Gulf (Figure 1; Table 1). Across this gradient, SST ranged from 18 °C to ~23 °C, while 

356 salinity increased from 36 at the mouth to ≥ 40 at the northern site (Table 1). During the Austral 

357 autumn, SST was typically lower than SST observed during the summer (Table 1), with mean 
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358 temperature (± standard deviation) across the five sites, 18.9 ± 0.8 °C relative to 21.0 ± 1.8 °C, 

359 respectively. In contrast, the salinity profile of Spencer Gulf was highly similar during both the 

360 Austral autumn and summer across the five sampling sites, with means for each season (± 

361 standard deviation) of 37.3 ± 1.65 and 37.1 ± 1.81, respectively. 

362

363 Concentrations of dissolved inorganic nutrients were relatively stable between the southern shelf 

364 and northern Spencer Gulf waters. Indeed, NO3/NO2 concentrations were always < 0.05 µM, and 

365 PO4 concentrations were generally low, ranging from 0.01 (i.e., limit of detection) to 0.08 µM 

366 across the five sampling locations (Table 1). Mean (± standard deviation) NO3/NO2 and PO4 

367 concentrations were similar between the two sampling periods, at 0.02 ± 0.01 and 0.03 ± 0.02 

368 µM during Austral autumn, and 0.03 ± 0.01 and 0.04 ± 0.03 µM during Austral summer, 

369 respectively. Conversely, concentrations of SiO4 showed a sharp increase from the southern shelf 

370 to northern Gulf waters, ranging from 0.22 up to 1.10 µM (Table 1). While mean SiO4 

371 concentrations were typically elevated during Austral autumn compared to summer, at 0.49 ± 

372 0.36 and 0.38 ± 0.14 µM, respectively.

373

374 Biological N2 fixation rates in temperate southern Australia

375 Measurable rates of N2 fixation occurred at all sites during both the Austral autumn and summer, 

376 but rates were highly heterogeneous ranging from 2 nmol L-1 d-1 to 64 nmol L-1 d-1 (Figure 2). 

377 Across the entire dataset, no significant differences were observed between whole community 

378 (WC) and unicellular size fraction (USF) N2 fixation rates (Kruskal-Wallis test, H = 0.32, d.f. = 

379 1, n = 30, P = 0.574), indicating that the unicellular size fraction contributed the majority of the 

380 observed N2 fixation activity. Overall, no significant differences in N2 fixation rates were 

381 observed between incubations conducted during Austral autumn compared to summer (Kruskal-

382 Wallis test, H = 1.397 and 1.931, d.f. = 1, P = 0.237 and 0.165, for WC and USF respectively; n 

383 = 15 per season). During both Austral autumn and summer, WC and USF N2 fixation rates were 

384 highly correlated, with Pearson correlation coefficients (r) of 0.85 and 0.76 respectively, further 

385 supporting the proposition that the unicellular size fraction contributed the majority of the 

386 observed N2 fixation activity

387

388 When grouped by “site” as opposed to “season”, N2 fixation rates exhibited significant spatial 

389 heterogeneity (One-way ANOVA, P ≤ 0.001, F = 37.38, d.f. = 4, n = 6 per site). The lowest rates 

390 of N2 fixation during both the Austral autumn and summer occurred in the southern shelf waters, 

391 with maximum rates at this site reaching only 8  2 nmol L-1 d-1 (mean ± standard deviation; 

392 Figure 2). In contrast, N2 fixation rates peaked in the waters at the mouth of Spencer Gulf, where 

393 they reached 64 ± 3 and 40 ± 19 nmol L-1 d-1, in Austral autumn and summer respectively 

394 (Figure 2). Relative to rates observed at the mouth of Spencer Gulf, N2 fixation rates decreased at 

395 the southern and mid-western sites of the gulf during both autumn and summer (Figure 2). N2 

396 fixation rates then showed a notable increase at the northern-gulf site, reaching 29  4 nmol L-1 

397 d-1 during Austral autumn, and 14 ± 10 nmol L-1 d-1 during Austral summer (Figure 2).
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398

399 N2 fixation rates were significantly correlated with low concentrations of NO3/NO2 (Pearson’s r: 

400 -0.53; P = 0.002, n = 30, USF). This relationship was maintained when considering only Austral 

401 summer samples (r: -0.64; P = 0.01; n = 15, USF), but not when only considering those collected 

402 during Austral autumn. In contrast, during the Austral autumn N2 fixation rates were positively 

403 correlated to PO4 concentrations (r: 0.73; P = 0.002; n= 15, WC). No significant relationships 

404 were observed between N2 fixation and SST or salinity, despite clear spatial gradients in these 

405 environmental parameters (Table 1).

406

407 Diversity and composition of nifH containing bacterioplankton 

408 After rarefaction to 3068 sequences per sample and the removal of singletons, between 159 and 

409 332 nifH OTUs were detected at each sampling site. The diversity of nifH containing 

410 bacterioplankton increased along the latitudinal gradient of Spencer Gulf, whereby Shannon’s 

411 Diversity (H’) was lowest in the southern shelf waters, where H’ = 1.95 and 2.86 and peaked at 

412 the mid-western edge of Spencer Gulf, where H’ = 4.97 and 4.37, during Austral autumn and 

413 summer respectively (Table S2). Despite the site-specific differences in diazotroph diversity, 

414 mean H’ across the Gulf was approximately equal for both sampling seasons, whereby H’ = 3.67 

415 during austral autumn, and H’ = 3.58 during austral summer. 

416

417 Phylogenetic analyses of nifH sequences demonstrated that the most abundant OTUs (n = 25), 

418 equivalent to ~53 % of total sequences and between 15 and 82 % of sequences for any given 

419 sample, comprised a mixture of Cluster 1 and Cluster 3 diazotrophs at ≥ 83 % amino acid 

420 identity (AAI; Table S3). A Bray-Curtis resemblance matrix of rarefied nifH sequence data was 

421 used to compare diazotroph community composition within and between the southern shelf 

422 waters and Spencer Gulf sampling locations, revealing significant spatial variability in 

423 diazotroph assemblage structure (ANOSIM, R: 0.59, P = 0.005). SIMPER analysis revealed 99.7 

424 % and 100 % community dissimilarity between northern Gulf diazotroph assemblages and those 

425 in the shelf waters and at the mouth of the Gulf, respectively. Diazotroph assemblages in the 

426 shelf waters and mouth were dominated by five OTUs identified to be the UCYN-A1 open ocean 

427 ecotype (OTU51120, OTU3535, OTU45147, OTU7980, and OTU1115; Fig. S1), which 

428 collectively represented 75 % and 56 % of sequences at the shelf during Austral autumn and 

429 summer respectively (Figure 3). Similarly, these OTUs comprised 54 % and 58 % of sequences 

430 at the mouth during Austral autumn and summer (Figure 3). Correspondingly, diazotroph 

431 communities in the southern shelf waters and at the mouth of the gulf shared the greatest 

432 similarity in composition, with SIMPER analysis revealing only 63.4 % dissimilarity between 

433 these populations. The dissimilarity between the shelf waters and the mouth was largely driven 

434 by the coastal and open ocean ecotypes UCYN-A2 and UCYN-A4 (OTU9097 and OTU67260, 

435 respectively), which were collectively present at higher relative abundances at the mouth (Figure 

436 3).

437
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438 Spencer Gulf communities showed a decline in the abundance of UCYN-A OTUs, and a greater 

439 proportion of sequences associated with non-cyanobacterial diazotrophs, along with a small 

440 proportion of OTUs closely related to filamentous cyanobacteria such as Trichodesmium 

441 erythraeum (Figure 3; Table S3). The average relative abundance of two UCYN-A1 open ocean 

442 group OTUs, (OTU51120 and OTU3535), were identified by SIMPER analysis as the main 

443 drivers of community dissimilarity between the shelf waters, Spencer Gulf mouth, and northern 

444 gulf diazotroph assemblages. At the southern gulf site, a transitional community was observed, 

445 which comprised UCYN-A1 and UCYN-A2 (12 - 44% of sequences), Pseudomonas stutzeri (7 

446 %), Desulfovibrio aespoeensis (8 - 12 %), Coraliomargarita akajimensis (7 %), and 

447 Desulfonatronospira thiodismutans (7 %). In contrast, at the northern site the community was 

448 primarily comprised of OTUs related to Desulfovibrio aespoeensis (10 - 28 %), Pseudomonas 

449 stutzeri (11 %), and Verrucomicrobiae (11 %; Figure 3). SIMPER analysis identified the 

450 Desulfovibrio aespoeensis OTU (OTU41624; 96 % AAI similarity) as also being responsible for 

451 the between-site discrimination of the diazotroph community, with this OTU absent from 

452 assemblages detected in the southern waters. Interestingly, only a small proportion of the most 

453 abundant 25 OTUs were represented at the mid-Spencer Gulf site (15 - 38 %) and northern-

454 Spencer Gulf site (32 - 36 %) especially during the Austral autumn. Instead, overall low 

455 abundance OTUs, which were typically unique to these sites (i.e., OTUs representing < 0.5 % of 

456 total sequences), were responsible for the high alpha diversity associated with these sites. 

457

458 Across the dataset, several variables were identified as having a significant effect on the relative 

459 abundance and composition of diazotrophic bacterioplankton within Spencer Gulf and the 

460 adjacent shelf waters. These included NO3/NO2 (P = 0.002), N2 fixation by the unicellular size 

461 fraction (P = 0.007) and the whole community (P = 0.016), salinity (P = 0.017), temperature (P = 

462 0.037), particulate nitrogen (PN; P = 0.039), and PO4 (P = 0.048; Many GLM, Table S4). Only 

463 three of these predictors displayed significant relationships (adjusted P-value < 0.1) with 

464 individual OTUs, including PN (1 OTU), N2 fixation by the unicellular size fraction (14 OTUs), 

465 and salinity (4 OTUs; Table S4). 

466

467 Approximately 33 % of the spatial variation in diazotroph community dissimilarity could be 

468 explained by ambient salinity and SiO4 concentrations (DistLM R2: 0.33; salinity F = 2.24, P = 

469 0.001; SiO4 F = 1.56, P = 0.028; n = 10). The importance of salinity and SiO4 in structuring the 

470 diazotroph community was further confirmed by BEST/BIOENV analyses, resulting in a 

471 significant (P = 0.01, n = 10) coefficient, Rho = 0.67, using Spearman’s Rank correlation. The 

472 sequential addition of the environmental parameters, PN, NO3/NO2, and PO4, reduced the 

473 strength of the correlation to 0.56, 0.52, and 0.49, respectively. In contrast to the observed spatial 

474 heterogeneity in diazotroph assemblage structure, no significant differences in diazotroph 

475 community dissimilarity were observed between the Austral autumn and summer sampling times 

476 (ANOSIM, R: -0.12, P = 0.80). 

477
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478 Abundance of UCYN-A1 and UCYN-A2 nifH genes

479 qPCR derived abundances of UCYN-A1 and UCYN-A2 nifH genes demonstrated higher 

480 abundances of these organisms in shelf waters and at the more southern sites of Spencer Gulf 

481 (Figure 4). Specifically, the maximum mean abundance of UCYN-A1 occurred in the southern 

482 shelf waters during Austral summer, whereby 5.4 ± 4.7 x 104 nifH copies L-1 were detected 

483 (Figure 4). Similarly, UCYN-A2 also reached maximum abundance in the shelf waters during 

484 Austral summer, with mean nifH copies 1.9 ± 1.4 x 104 L-1 (Figure 4).

485

486 Across all sampling locations, UCYN-A1 was significantly more abundant during the Austral 

487 summer compared to autumn (Mann Whitney test, U: 69, P < 0.05). While UCYN-A2 

488 abundances did not differ significantly between the Austral autumn and summer sampling.  

489 Across the entire dataset, UCYN-A1 abundance was positively correlated with concentrations of 

490 PO4 (r: 0.39; P = 0.03, n = 30). In contrast, overall UCYN-A2 abundance was not significantly 

491 correlated with any of the measured environmental parameters. However, when analysed by 

492 “season”, UCYN-A2 abundance was negatively correlated to SST during both Austral autumn 

493 and summer (n = 15 per season; r: -0.55 and r: -0.53, P = 0.03 and 0.04, respectively). In 

494 addition, during Austral autumn UCYN-A2 abundance was negatively correlated to PO4 

495 concentrations (r: -0.53; P = 0.04; n = 15). Despite the potential importance of salinity in 

496 structuring the overall diazotroph community, no significant relationships were observed 

497 between UCYN-A qPCR derived abundances and salinity.

498

499

500 Discussion

501 Increasing evidence suggests that temperate coastal waters may be overlooked hotspots of N2 

502 fixation activity (Mulholland et al., 2012, 2019; Tang et al., 2019b). Determining the distribution 

503 and activity of diazotrophs, and the environmental processes that influence them within coastal 

504 zones is therefore important to further our understanding of N availability across diverse marine 

505 environments. Compared to previous studies in temperate and tropical estuarine environments, 

506 where maximum N2 fixation rates of 30 - 85 nmol L-1 d-1 have been observed (Ahmed et al., 

507 2019; Bentzon-Tilia et al., 2015b; Bhavya et al., 2016), here we report relatively high rates of N2 

508 fixation in temperate coastal waters of southern Australia within the inverse estuary Spencer 

509 Gulf. We show that N2 fixation rates, diazotroph diversity, and community structure, can vary 

510 considerably across relatively small spatial scales, however the dynamics of N2 fixation were 

511 relatively stable across two contrasting seasons. Our findings suggest that N2 fixation, possibly 

512 mediated by UCYN-A and non-cyanobacterial diazotrophs, may provide an important source of 

513 fixed N to support primary production within the oligotrophic, temperate coastal waters of 

514 southern Australia.

515

516 N2 fixation in temperate coastal environments
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517 Recent efforts to determine the importance of N2 fixation as a source of new N within temperate 

518 coastal waters have revealed N2 fixation activity in these regions is similar to, and at times higher 

519 than, rates reported for tropical and subtropical open ocean environments (Mulholland et al., 

520 2019; Tang et al., 2019b). For example, maximum N2 fixation rates of 65, 130, and 100 nmol L-1 

521 d-1 have recently been observed in coastal waters of the north-eastern, mid-, and western Atlantic 

522 Ocean respectively (Fonseca-Batista et al., 2019; Mulholland et al., 2019; Tang et al., 2019b). In 

523 environments representing the traditional niche of N2 fixation, such as the North Pacific 

524 Subtropical Gyre (NPSG) and the Eastern South Pacific (ESP), maximum N2 fixation rates have 

525 been reported to be considerably lower at ≤ 20 nmol L-1 d-1 (Böttjer et al., 2017; Gradoville et al., 

526 2017; Shiozaki et al., 2017). 

527

528 In the temperate coastal waters of southern Australia, we observed relatively high rates of N2 

529 fixation, with a maximum N2 fixation rate of 64 nmol L-1 d-1. This observation is similar in 

530 magnitude to the high N2 fixation rates reported for the tropical oligotrophic seas of northern 

531 Australia (Bonnet et al., 2015; Messer et al., 2016), and is almost double maximum N2 fixation 

532 rates previously reported for tropical estuarine systems (31 - 34 nmol L-1 d-1; Ahmed et al., 2019; 

533 Bhavya et al., 2016). The lowest rates of N2 fixation (2 nmol L-1 d-1) occurred in the continental 

534 shelf waters. This finding is comparable to observations from other continental shelf ecosystems 

535 where N2 fixation rates are typically lower that those observed in sites closer to the coast 

536 (Mulholland et al., 2012; Shiozaki et al., 2015a; Singh et al., 2019). Intermediate rates of N2 

537 fixation (10 - 45 nmol L-1 d-1) were measured within Spencer Gulf, and these rates are placed 

538 within the upper end of those previously reported for other temperate coastal, and tropical 

539 estuarine waters (Ahmed et al., 2019; Bentzon-Tilia et al., 2015b; Bhavya et al., 2016; 

540 Mulholland et al., 2012; Rees et al., 2009; Shiozaki et al., 2015a). Importantly, our findings 

541 demonstrate that N2 fixation in the temperate waters of southern Australia are similar to, and can 

542 exceed, those observed in the NPSG and ESP (Gradoville et al., 2017). 

543

544 While N2 fixation rates demonstrated clear spatial patterns in their magnitude between southern 

545 shelf and Spencer Gulf waters, we observed relatively consistent N2 fixation rates across 

546 opposing seasons. This is in contrast to previous seasonal observations of N2 fixation from 

547 distinct marine environments, where N2 fixation rates are typically higher during spring/summer 

548 than autumn/winter and are accompanied by shifts in the abundance of different diazotrophic 

549 taxa (Bentzon-Tilia et al., 2015b; Böttjer et al., 2017; Fernandez et al., 2015; Mulholland et al., 

550 2019). We hypothesised that seasonal differences in N2 fixation rates would occur within 

551 Spencer Gulf and shelf waters due to the known seasonality in physico-chemical characteristics, 

552 such as temperature, salinity, and dissolved nutrients, which ultimately influence the distribution 

553 and activity of marine diazotrophic microorganisms (Monteiro et al., 2011; Moore et al., 2013; 

554 Ward et al., 2013). However, while limited in replication, we observed relatively stable site-

555 specific physico-chemical conditions between the two contrasting seasons, and no significant 

556 differences in the composition of the underlying diazotrophic community. While limited in scope 

PeerJ reviewing PDF | (2020:05:48794:2:0:NEW 17 Dec 2020)

Manuscript to be reviewed



557 to two time-points, our observations suggest that relatively high N2 fixation rates can be 

558 maintained within Spencer Gulf while favourable conditions prevail. In future, increased 

559 sampling resolution is required to define the seasonal dynamics of N2 fixation within the 

560 temperate coastal waters of southern Australia. 

561

562 Regional significance of biological N2 fixation

563 Our previous research indicated that the pelagic microbial community of Spencer Gulf includes a 

564 diverse array of diazotrophic clades (Messer et al., 2015). However, the presence of diazotrophic 

565 groups cannot solely be used as evidence for the importance of pelagic N2 fixation, as the 

566 physiological process is tightly regulated (Paerl et al., 1987). To the best of our knowledge, our 

567 observations of N2 fixation within the pelagic realm of Spencer Gulf represent the first N2 

568 fixation measurements from a temperate inverse estuary. Our N2 fixation rate measurements 

569 support our hypothesis that pelagic N2 fixation may provide a supply of fixed N within Spencer 

570 Gulf and the southern shelf waters, at considerably high rates relative to tropical and subtropical 

571 open ocean environments. In an earlier study, Middleton et al. (2013) estimated the influx of 

572 bioavailable N (in the form of NO3 and NH4) within Spencer Gulf to be 16.9 kilotonnes yr-1, 

573 including anthropogenic N sources and mixing of upwelled nutrients from continental shelf 

574 waters. This estimate did not include biological N2 fixation as a source of N, using their estimate 

575 of the volume of Spencer Gulf (4.58 x 1014 L), the N2 fixation rates measured herein could 

576 theoretically contribute an additional 23-149 kilotonnes N yr-1, albeit assuming consistent daily 

577 N2 fixation rates for a given site. Indeed, an accurate N budget would require extensive 

578 additional N2 fixation rates, with the appropriate modifications to the bubble method used to 

579 measure N2 fixation (White et al., 2020). Nevertheless, based on our estimates, we propose that 

580 the process of biological N2 fixation could be one mechanism by which productivity is 

581 maintained throughout the region. 

582

583 It must be noted that the N2 fixation rates presented herein have been corrected to allow for the 

584 incomplete dissolution of the 15N2 gas bubble at 75 % of the theoretical for a 24 hour incubation 

585 (Großkopf et al., 2012; Mohr et al., 2010). However, recent methodological comparisons suggest 

586 no “global factor” exists for rate corrections to the bubble method (Wannicke et al., 2018; White 

587 et al., 2020). Despite the known caveats of the bubble method, this approach was used in the 

588 present study due to the predicted highly dissimilar environmental conditions at each site, which 

589 would be very difficult to replicate with pre-prepared 15N2 saturated artificial seawater (Wilson et 

590 al., 2012). In particular, the observed gradient in ambient temperature and salinity, which 

591 determines gas solubility and is accounted for in the rate calculations based on our observations 

592 at each site, would be difficult to anticipate ahead of sample collection. We also note that 

593 contamination of Sigma-Aldrich commercial 15N2 gas stocks was reported after our initial study 

594 (Dabundo et al., 2014). Although we cannot explicitly rule out contamination in the batch of 15N2 

595 that we used, assuming the mean values for Sigma Aldrich lot SZ1670V reported in Table 1 of 

596 Dabundo et al. (2014) are consistent across batches, we estimate that potential contamination 
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597 from 15NO3, 15NH4, and 15N2O, would represent an extremely small proportion of additional 15N 

598 in our incubations, equivalent to a total of 3.2 x 10 -7 moles. In our experiments, the relative 

599 concentration of 15N gas added was 2.7 x 10 -4 moles. Including this estimate of additional 15N in 

600 our trace additions, any potential contamination would inflate our N2 fixation rates by between 

601 0.001 - 0.079 nmol L-1 d-1, which is within the lower end of the inferred N2 fixation rates 

602 resulting from 15NH4 contamination for 4.5 L incubations, presented in Table 2 of Dabundo et al. 

603 (2014). Moreover, this estimate is within our calculated standard error of mean N2 fixation rates 

604 across triplicate samples (equivalent to 0.05 - 10.77 nmol L-1 d-1). Therefore, any potential 

605 contamination would have a negligible effect on the ultimate N2 fixation rates reported herein. In 

606 future work, the modified bubble method should be employed, including additional 

607 determination of 15N2 atom% enrichment of individual incubation bottles and 15N2 gas purity, as 

608 recently suggested by the scientific community (Jayakumar et al., 2017; Klawonn et al., 2015; 

609 White et al., 2020). 

610

611 Identifying the key players in coastal N2 fixation 

612 Understanding the abundance and composition of the diazotrophic community underlying N2 

613 fixation activity is important for deciphering the potential impact of newly fixed N to a given 

614 region (Mulholland, 2007; Zehr and Kudela, 2011). For instance, throughout tropical and 

615 subtropical open ocean environments, N2 fixation by autotrophic diazotrophs such as 

616 Trichodesmium sp. will contribute directly to local primary production and may also release 

617 recently fixed N2 into the water column to support the growth of non-diazotrophic organisms 

618 (Berthelot et al., 2015; Caffin et al., 2018; Garcia et al., 2007; Glibert and Bronk, 1994; 

619 Mulholland et al., 2004). On the other hand, symbiotic diazotrophs such as the heterocystous 

620 cyanobacterium Richelia, which is typically associated with “tropical” phytoplankton species, 

621 transfer fixed N2 directly to their eukaryotic phytoplankton host (Foster et al., 2011), and 

622 therefore contribute to new production and carbon sequestration in regions where they are 

623 abundant, such as the NPSG (Karl et al., 2012). While the contribution of newly fixed N by non-

624 cyanobacterial diazotrophs is not yet clear (Turk-Kubo et al., 2014), their combined high 

625 abundances and widespread transcriptional activity in areas of high N2 fixation rates (Bird and 

626 Wyman, 2013; Chen et al., 2018; Langlois et al., 2015; Moisander et al., 2014), indicate that they 

627 could make an important contribution to support primary production in both open ocean and 

628 coastal environments. 

629

630 The diversity of diazotrophic organisms detected in the present study indicates that N2 fixation 

631 activity may directly and indirectly support primary production within Spencer Gulf. Within the 

632 diverse diazotrophic communities detected, Cluster 1B UCYN-A, and Cluster 1G and Cluster 3 

633 Proteobacteria, dominated diazotroph community profiles. Specifically, we observed high 

634 relative abundances of sequences closely related (≥ 96 % AAI) to the symbiotic UCYN-A, in 

635 addition to the presumed free-living Pseudomonas stutzeri and Desulfovibrio aespoeensis, as 

636 well as lower relative abundances of the large filamentous tropical cyanobacterium 
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637 Trichodesmium erythraeum. To date, UCYN-A and gammaproteobacterial diazotrophs (related 

638 to Pseudomonas stutzeri), have consistently been observed within temperate coastal diazotroph 

639 communities (Bentzon-Tilia et al., 2015b; Mulholland et al., 2019; Needoba et al., 2007; 

640 Shiozaki et al., 2015b), but they are also key components of subtropical and tropical assemblages 

641 (Bonnet et al., 2015; Langlois et al., 2015; Moisander et al., 2014). Our observations provide 

642 further support for the global significance of these groups, although it must be noted that the 

643 Pseudomonas stutzeri OTUs did not cluster with known sequences from the globally distributed 

644 Gamma A clade. 

645

646 While the presence of Trichodesmium erythraeum was somewhat unexpected due to its tropical 

647 and subtropical distribution (Capone et al., 2005), sequences related to Trichodesmium sp. have 

648 previously been observed at temperate latitudes of the Atlantic and Pacific Oceans (Mulholland 

649 et al., 2019; Rivero-Calle et al., 2016; Shiozaki et al., 2015a), and their presence has also been 

650 reported in south Australian waters based on microscopic observations (Paxinos, 2007). We did 

651 not determine the specific activity of Trichodesmium sp. within our samples, however, it 

652 comprised up to 17 % of the diazotroph community at the mid-Gulf site during Austral summer. 

653 Owing to its presence and potential importance for both local primary production and N 

654 availability, further investigation into the significance of Trichodesmium sp. within temperate 

655 coastal waters is required. 

656

657 Consistent with our previous observations of UCYN-A diversity and distribution within Spencer 

658 Gulf (Messer et al., 2015), we observed differences in the abundances of the open-ocean UCYN-

659 A1 and the coastal UCYN-A2 within and between the southern shelf waters. The emerging sub-

660 lineage UCYN-A4 (Farnelid et al., 2016) was also detected in our amplicon sequencing profiles 

661 during Austral summer. Due to the similarity between this OTU and the UCYN-A2 qPCR assay 

662 of Thompson et al. (2014), we cannot rule out that our qPCR derived abundances do not contain 

663 a mixture of the UCYN-A2 and UCYN-A4 sub-lineages (Farnelid et al., 2016). Since UCYN-

664 A1, and to a lesser extent UCYN-A2 (possibly A2/A3/A4 sub-lineages), have recently been 

665 shown to be highly abundant (≤ 106 nifH copies L-1) and reasonably active, fixing N2 at rates of 6 

666 nmol L-1 d-1 in the cold surface waters of the Western Arctic Ocean (Harding et al., 2018), 

667 UCYN-A are highly likely to be important mediators of N2 fixation within Spencer Gulf and 

668 more broadly across temperate and coastal marine environments. 

669

670 What environmental factors influence N2 fixation in temperate southern Australian 

671 waters?

672 Across the global ocean, SST and subsurface minimum dissolved oxygen concentrations have 

673 been identified as the major environmental variables influencing pelagic N2 fixation rates (Luo et 

674 al., 2014; Tang et al., 2019a). In addition, the availability of dissolved iron, phosphorus, other N 

675 sources (Landolfi et al., 2015; Ward et al., 2013), and grazing by zooplankton (Wang et al., 

676 2019), have all been identified as factors shaping the distribution and magnitude of marine N2 
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677 fixation. Although limited in scope and replication, in the temperate southern Australian waters 

678 examined here, high N2 fixation rates during the Austral autumn were significantly correlated 

679 with increased PO4 concentrations, as was the overall abundance of UCYN-A1 (derived by 

680 qPCR). This is consistent with patterns observed in other temperate coastal waters, where N2 

681 fixation has previously been shown to be significantly correlated with phosphorus availability 

682 (Tang et al., 2019b). This pattern is also in-line with patterns observed within more oceanic 

683 waters, where PO4 availability has been shown to influence nifH expression and N2 fixation rates 

684 in experimentally manipulated and natural diazotroph assemblages (Rees et al., 2006; Sañudo-

685 Wilhelmy et al., 2001; Turk-Kubo et al., 2012; Watkins-Brandt et al., 2011). As phosphorus is an 

686 important constituent of cellular and molecular machinery, there is likely a direct causal 

687 relationship between PO4 and N2 fixation, whereby diazotroph abundances and N2 fixation rates 

688 are increased under P-replete conditions, as has previously been observed for the UCYN-A1-

689 haptophyte symbiosis (Krupke et al., 2015). Within Spencer Gulf, phytoplankton growth is 

690 estimated to be limited by PO4 availability year-round (Middleton et al., 2013), indicating that 

691 while higher N2 fixation rates may provide a source of bioavailable N to the dissolved pool, the 

692 increased diazotrophic activity may deplete PO4 concentrations for non-diazotrophic 

693 microorganisms. 

694

695 In the present study, overall N2 fixation rates were also negatively correlated with concentrations 

696 of NO3/NO2, which are typically depleted in Gulf waters during Austral summer yet may remain 

697 relatively high on the continental shelf due to a permanent deep nutrient pool (Doubell et al., 

698 2018). Spencer Gulf and the adjacent continental shelf waters are characterised by a unique 

699 combination of oceanographic and regional circulation processes that create seasonal and 

700 localised east-west gradients in ambient concentrations of key macro- and micro-nutrients, 

701 underpinning variability in microbial productivity (Doubell et al., 2018; Middleton et al., 2013; 

702 van Ruth et al., 2018). During Austral autumn, the density front at the entrance to Spencer Gulf 

703 begins to break down and an influx of continental shelf water, relatively rich in macronutrients, 

704 enters the Gulf along the western edge, while the oligotrophic Gulf water exits from the eastern 

705 side of the mouth (Middleton and Bye, 2007). These north-south and east-west gradients in 

706 NO3/NO2 and PO4 concentrations (low to relatively high, respectively) (Middleton et al., 2013), 

707 may explain the observed correlations between N2 fixation rates and these nutrients. This 

708 suggests that increased N2 fixation activity may occur due to the low concentrations of 

709 bioavailable N, further indicating that N derived from N2 fixation could sustain productivity 

710 within the N limited Spencer Gulf region. Recently, N2 fixation by UCYN-A was shown to occur 

711 even when dissolved inorganic nitrogen sources are replete, and may even be stimulated by 

712 increased NO3 concentrations (Mills et al., 2020), highlighting the complexity of factors 

713 governing N2 fixation activity in the environment. Collectively, our observations in fact represent 

714 the classic nutrient regime within which diazotrophs gain a competitive advantage over non-

715 diazotrophic microorganisms (Ward et al., 2013), utilising excess PO4 and fixing N2 to support 

716 growth. 
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717

718 While PO4 and NO3/NO2 were correlated with rates of N2 fixation at the sites examined in this 

719 study, they were not significant predictors of diazotroph assemblage structure. Rather, the 

720 structure of the underlying diazotroph community was significantly influenced by the prevailing 

721 salinity and SiO4 concentrations. Regional variability in SiO4 concentrations may reflect abiotic 

722 indicators of different water masses, and may drive distinct differences in the composition of 

723 microbial assemblages (Foster et al., 2007; Weber et al., 2017). The observed transition towards 

724 increased non-cyanobacterial diazotrophs in the upper shallow waters of the Gulf could be 

725 indicative of their redistribution from the sediment or seagrass microbiome (Brown et al., 2003; 

726 Lehnen et al., 2016), and warrants further exploration of their specific activity, source and 

727 contribution to N cycling in Spencer Gulf.

728

729 Salinity is a major structuring factor for estuarine microbial communities, driving the transition 

730 from freshwater- to marine-adapted lineages (Bouvier and del Giorgio, 2002; Jeffries et al., 

731 2016; Kirchman et al., 2005), and influencing rates of biogeochemical nutrient cycling (Bernhard 

732 et al., 2007; Bhavya et al., 2016). Unlike classical estuaries, inverse estuaries such as Spencer 

733 Gulf experience hypersaline conditions at the head of the estuary and marine salinities at the 

734 mouth, which has previously been shown to influence the overall composition of specific 

735 cyanobacterial ecotypes (Messer et al., 2015). In the present study, hypersaline regions of 

736 Spencer Gulf were associated with an increase in the relative abundance of non-cyanobacterial 

737 diazotrophs and a decrease in the abundance of UCYN-A at sites with salinities > ~37 PSU, 

738 which may reflect an inhibitory effect of high salinity on UCYN-A and it’s eukaryotic host. In 

739 contrast, members of the deltaproteobacteria, related to the Cluster 3 diazotrophs observed in the 

740 present study, have previously been shown to be moderately halophilic (Gam et al., 2009; 

741 Warthmann et al., 2005), and their increased relative abundances at the northern most stations of 

742 Spencer Gulf suggests they are likely to be halotolerant.

743

744

745 Conclusions

746 This study provides further evidence that marine N2 fixation is not limited to tropical and 

747 subtropical open ocean environments, yet is widespread throughout diverse, temperate 

748 ecosystems, which have previously been overlooked as hotspots of N2 fixation activity. Our 

749 results indicate that N2 fixation is influenced by an interplay of physical and chemical 

750 environmental variables, which may have direct and indirect effects on the distribution and 

751 activity of diazotrophs in coastal waters. Our data revealed notable stability in N2 fixation across 

752 contrasting seasons, suggesting that the oligotrophic conditions of southern Australian coastal 

753 waters promote diazotrophy within the region. Notably, our findings suggest that pelagic N2 

754 fixation, mediated by UCYN and non-cyanobacterial diazotrophs, could provide a greater source 

755 of fixed N than upwelled and anthropogenic bioavailable N within the coastal waters of southern 

756 Australia.
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Figure 1
Sampling locations within Spencer Gulf and the adjacent continental shelf waters.

Samples were collected from the Kangaroo Island National Reference Station (Shelf), Spencer
Gulf mouth (Mouth), south western edge (S-Gulf), mid western edge (M-Gulf), and northern
Spencer Gulf (N-Gulf), with ocean bathymetry shown as a colour chart generated using
Ocean Data View (Schlitzer, 2018).
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Figure 2
Biological N2 fixation rates measured during Austral autumn and summer in south
Australian coastal waters.

Rates have been corrected to account for the incomplete dissolution of the 15N2 gas bubble

(see Methods). Error bars represent the standard deviation about the mean (n = 3).
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Figure 3
Relative abundance of the top 25 nifH OTUs and their taxonomic assignment (closest
representative) detected within south Australian coastal waters during Austral autumn
(A_) and summer (S_).
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Figure 4
Mean qPCR derived abundances of UCYN-A1 and UCYN-A2 in south Australian coastal
waters (n = 3).
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Table 1(on next page)

Physico-chemical metadata associated with each sampling site.

Abbreviations: A = Autumn, S = Summer; Temp. = sea surface temperature; PC = particulate
carbon; PN = particulate nitrogen. Sampling Time refers to the local time at the point of
sample collection (Australian Eastern Standard Time).
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Sample Sampling 

Time 

Temp. 

(°C)

Salinity NO3/NO2 

(µM)

PO4 

(µM)

SiO4 

(µM)

PC 

(µg)

PN (µg)

A_Shelf 14:30 18.9 36.0 0.04 0.03 0.22 373 50.3

A_Mouth 8:00 18.7 36.0 0.02 0.06 0.36 377.8 53.2

A_S-Gulf 15:00 18 37.0 0.01 0.01 0.25 419.6 54.6

A_M-Gulf 7:30 18.8 37.7 0.01 0.02 0.52 341.7 37.8

A_N-Gulf 16:00 20.1 40.0 0.04 0.03 1.1 389.9 47.9

S_Shelf 6:30 18.7 36.0 0.02 0.08 0.24 1184.2 36.7

S_Mouth 9:00 19.6 36.0 0.01 0.04 0.24 762.7 44.6

S_S-Gulf 15:50 22.3 36.5 0.03 0.02 0.52 376.8 45.5

S_M-Gulf 7:55 21.1 36.9 0.03 0.05 0.53 755.5 62.8

S_N-Gulf 16:00 23.1 40.3 0.04 0.02 0.39 342.3 42.8

1
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