Comparing impacts of metal contamination on macroinvertebrate and fish assemblages in a northern Japanese river (#53178)

First submission

Guidance from your Editor

Please submit by 11 Oct 2020 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 4 Figure file(s)
- 2 Table file(s)
- 1 Raw data file(s)
- 1 Other file(s)

Custom checks

Vertebrate animal usage checks

- Have you checked the authors <u>ethical approval statement?</u>
- Were the experiments necessary and ethical?
- ! Have you checked our <u>animal research policies</u>?

Field study

- Have you checked the authors field study permits?
- Are the field study permits appropriate?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Comparing impacts of metal contamination on macroinvertebrate and fish assemblages in a northern Japanese river

Hiroki Namba ¹, Yuichi Iwasaki ^{Corresp., 2}, Kentaro Morita ³, Tagiru Ogino ⁴, Hiroyuki Mano ², Naohide Shinohara ², Tetsuo Yasutaka ⁵, Hiroyuki Matsuda ¹, Masashi Kamo ²

Corresponding Author: Yuichi Iwasaki Email address: yuichiwsk@gmail.com

Researchers have long assessed the ecological impacts of metals in running waters, but few such studies investigated multiple biological groups. Our goals in this study were to assess the ecological impacts of metal contamination on macroinvertebrates and fishes in a northern Japanese river receiving treated mine discharge and to evaluate whether there was any difference between the metrics based on macroinvertebrates and those based on fishes in assessing these impacts. Macroinvertebrate communities and fish populations were little affected at the downstream contaminated sites where concentrations of Cu, Zn, Pb, and Cd were 0.1-1.5 times higher than water-quality criteria established by the U.S. Environmental Protection Agency. At the two upstream contaminated sites with metal concentrations 0.8-3.7 times higher than the water-quality criteria, we detected a significant reduction in a few macroinvertebrate metrics such as mayfly richness and the abundance of heptageniid mayflies. There were, however, no remarkable effects on the abundance or condition factor of the four dominant fishes, including masu salmon. These results suggest that the richness and abundance of macroinvertebrates are more sensitive to metal contamination than abundance and condition factor of fishes in the studied river. Because the sensitivity to metal contamination can depend on the biological metrics used, and fish-based metrics in this study were limited, it would be valuable to accumulate empirical evidence for ecological indicators sensitive to metal contamination within and among biological groups to help in choosing which groups to survey for general environmental impact assessments in metal-contaminated rivers.

¹ Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan

² Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

³ Japan Fisheries Research and Education Agency, Sapporo, Hokkaido, Japan

⁴ Geological Survey of Hokkaido, Hokkaido Research Organization, Sapporo, Hokkaido, Japan

⁵ Research Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

a northern Japanese river 2 3 Hiroki Namba¹, Yuichi Iwasaki², Kentaro Morita³, Tagiru Ogino⁴, Hiroyuki Mano², Naohide 4 Shinohara², Tetsuo Yasutaka⁵, Hiroyuki Matsuda¹, Masashi Kamo² 5 6 7 ¹Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan 8 9 ²Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan 10 11 ³Japan Fisheries Research and Education Agency, Sapporo Hokkaido, Japan ⁴Geological Survey of Hokkaido, Hokkaido Research Organization, Sapporo, Hokkaido, Japan 12 ⁵ Research Institute for Geo-Resources and Environment, National Institute of Advanced 13 Industrial Science and Technology, Tsukuba, Ibaraki, Japan 14 15 Corresponding Author: 16 Yuichi Iwasaki² 17 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan 18 19 Email address: yuichiwsk@gmail.com 20 21

Comparing impacts of metal contamination on macroinvertebrate and fish assemblages in

22 Abstract

23	Researchers have long assessed the ecological impacts of metals in running waters, but few such
24	studies investigated multiple biological groups. Our goals in this study were to assess the
25	ecological impacts of metal contamination on macroinvertebrates and fishes in a northern
26	Japanese river receiving treated mine discharge and to evaluate whether there was any difference
27	between the metrics based on macroinvertebrates and those based on fishes in assessing these
28	impacts. Macroinvertebrate communities and fish populations were little affected at the
29	downstream contaminated sites where concentrations of Cu, Zn, Pb, and Cd were 0.1-1.5 times
30	higher than water-quality criteria established by the U.S. Environmental Protection Agency. At
31	the two upstream contaminated sites with metal concentrations 0.8-3.7 times higher than the
32	water-quality criteria, we detected a significant reduction in a few macroinvertebrate metrics
33	such as mayfly richness and the abundance of heptageniid mayflies. There were, however, no
34	remarkable effects on the abundance or condition factor of the four dominant fishes, including
35	masu salmon. These results suggest that the richness and abundance of macroinvertebrates are
36	more sensitive to metal contamination than abundance and condition factor of fishes in the
37	studied river. Because the sensitivity to metal contamination can depend on the biological
38	metrics used, and fish-based metrics in this study were limited, it would be valuable to
39	accumulate empirical evidence for ecological indicators sensitive to metal contamination within
40	and among biological groups to help in choosing which groups to survey for general
41	environmental impact assessments in metal-contaminated rivers.
42	Keywords: Aquatic insects, fish, trace metals, abandoned mines, legacy mines, cross taxon
43	congruence, environmental assessment, ecological risk assessment

Introduction

45	The impact of trace metals on aquatic ecosystems is an important issue in many regions of the
46	world (Iwasaki & Ormerod 2012; Nriagu & Pacyna 1988). Laboratory toxicity tests of surrogate
47	species are routinely used to assess the potential effects of metals on aquatic organisms and to
48	provide a first step in inferring the effects on ecosystems. Responses of surrogate species in the
19	laboratory, however, are not necessarily a good indicator for predicting responses of natural
50	populations and communities (Clements, Cadmus & Brinkman 2013; Hickey & Clements 1998;
51	Kimball & Levin 1985; Niederlehner et al. 1990). Thus, biological assessments of natural aquatic
52	populations and communities that likely reflect time-integrated effects can provide useful
53	information for evaluating ecological impairments in actual environments (Barbour et al. 1999).
54	In conducting the biological assessments in natural environments, the first question to answer
55	is which aquatic organisms are to be investigated. For example, benthic macroinvertebrates have
56	a wide range of sensitivities to contamination by metals (Iwasaki, Schmidt & Clements 2018).
57	Also, macroinvertebrates have been the most frequently used in assessing the ecological impacts
58	of metals in streams and rivers (Namba et al. 2020). Studies have indicated, however, that in
59	aquatic ecosystems there are generally low correlations between changes in different biological
50	groups (de Morais et al. 2018; Heino 2010; Namba et al. 2020). Despite this observation,
51	surprisingly a limited number of studies published in peer-reviewed journals have investigated
52	multiple biological groups in metal-contaminated rivers (Freund & Petty 2007; Namba et al.
63	2020). Therefore, to provide a more comprehensive assessment for overall ecosystem protection,
54	it is important to investigate responses of not only macroinvertebrates but also other biological
55	groups in metal-contaminated rivers.
56	The closed Motokura mine is located in the upstream area of the Tokushibetsu River in
57	northern Ianan (Figure 1). The mine mainly produced Cu. Ph. and Zn. In 1962, there were mass

68	mortalities of Pacific salmon (<i>Oncorhynchus</i> spp.) in the river and Takayasu et al. (1964)
69	concluded that mine drainage discharged into the river was likely a major cause. The mine was
70	closed in 1967, and discharge from the mine is currently treated by using artificial wetlands. A
71	bioassessment in 2017 using only macroinvertebrates showed that the abundance and richness of
72	macroinvertebrates were little affected at downstream sites in the Tokushibetsu River (Iwasaki et
73	al. 2020). Given that hatchery-reared masu salmon (Oncorhynchus masou) are released into the
74	river system, it is important to evaluate the effects of mine drainage on not only
75	macroinvertebrates as food resources for fish, but also on fish communities. However, no recent
76	studies have evaluated the effects of mine discharge on fish in the river (but see Takayasu et al.
77	1964). We thus aimed to assess whether there are ecological impacts in the contaminated river by
78	investigating macroinvertebrates and fishes. By doing so, we also evaluated whether there were
79	any differences between metrics based on macroinvertebrates and those using fishes in detecting
80	effects of metal contamination.
81	
82	Materials & Methods
83	Study site
84	Field sampling of macroinvertebrates, fishes, and physicochemical characteristics was performed
85	at nine sites in the Tokushibetsu River system in Hokkaido Island, northern Japan (Figure 1)
86	from 26 to 28 June 2018. Five of the nine sites (sites S1a–S4) were in the Ofuntarumanai River,
87	a metal-contaminated stream receiving treated mine discharge, and four reference sites (R1-R4)
88	were in the main stream of the Tokushibetsu River. The reference sites were established at
89	similar elevations as the contaminated sites, and study sites with the same numbers had similar
90	elevation levels, for example, S1 (a and b) and R1. Sites S1a and S1b were upstream and

downstream of the inflow of treated mine discharge, respectively (Figure 1). Permits for field

sampling in the river were obtained from the local municipal office and Hokkaido government.

93

97

99

100

101

103

104

105

106

107

94 Water-quality parameters

95 During field sampling, three water samples (50 ml) were filtered from each study site for

96 dissolved metals analysis (0.45 μm pore-size) and refrigerated in the field. Ultrapure nitric acid

was added to those water samples on the day of sampling so that the pH was less than 2.

Oncentrations of dissolved Cu, Zn, Cd, and Pb were measured by using an inductively coupled

plasma mass spectrometer (Element XR, Thermo Fisher Scientific, Tokyo, Japan) according to

method 200.8 of the U.S. Environmental Protection Agency (U.S. EPA 1994). The limits of

quantification were 0.001 μg/L for Cu, 0.06 μg/L for Zn, and 0.005 μg/L for both Cd and Pb.

Water temperature, dissolved oxygen, pH, and electrical conductivity were measured by

using multi-parameter portable meters (Multi 3630IDS, Xylem Analytics Germany, Weilheim,

Germany). Filtered water samples were also collected for measuring concentrations of dissolved

organic carbon (DOC) and major ions (Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, and SO₄²⁻). DOC was measured

with a total organic carbon analyzer (TOC-L CPH, Shimadzu, Kyoto, Japan). Concentrations of

major ions were measured with an ion chromatograph (Dionex ICS-1100/2100, Thermo Fisher

Scientific). We calculated water hardness as $2.497 \times [Ca^{2+}] + 4.118 \times [Mg^{2+}]$.

As an index of contamination by multiple metals, we calculated the cumulative criterion unit

(CCU; Clements et al. 2000) as the sum of the ratios of measured concentrations of four metals

to the U.S. EPA hardness-adjusted water-quality criteria (WQC; U. S. EPA 2002):

112

110

113
$$CCU = \sum (m_i/c_i),$$
 (1)

1 1	4

where m_i is the concentration of dissolved metal i and c_i is the corresponding WQC. Hardness-adjusted WQC for Cu, Zn, Cd, and Pb were calculated at a water hardness of 10 mg/L based on the observed range of water hardness in this study (Table 1) and a previous study of the same river (Iwasaki et al. 2020). Note that, because the hardness of 10 mg/L is below the lower end of the hardness range of toxicity data used in the WQC development (20 mg/L; U. S. EPA 2002), caution is required for the interpretation of the calculated CCU values. Also, we did not consider water quality variables other than water hardness (e.g., pH and DOC) in this calculation (Iwasaki et al. 2020). This is because these variables varied little among study sites (Table 1), and U.S. EPA WQCs based on biotic ligand models that can consider the influence of water chemistry on metal toxicity were available only for Cu (U. S. EPA 2007).

127 Physical parameters

Average channel width (surface-water width measured at run) and riffle width were measured at each study site. Riffle width was averaged if benthic macroinvertebrates were collected at multiple riffles within individual sites. The catchment area of each site was quantified using a digital elevation model (50-m grid; Geographical Survey Institute of Japan, www.gsi.go.jp/ENGLISH/index.html) and a geographic information system (ArcGIS 10.2 for Desktop, Esri Japan, Tokyo, Japan). Maximum water velocity and depth were evaluated on the basis of measurements at multiple places in riffles that macroinvertebrates were collected at each study site. Current velocity was measured at 60% of water depth using an electromagnetic velocity meter (VR-301; Kenek, Tokyo, Japan).

Macroinvertebrates	Ma	croi	inve	rtehi	rates
--------------------	----	------	------	-------	-------

At riffles at each site, we collected macroinvertebrates from five randomly chosen stones (maximum diameter, 14–27 cm) using a Surber net (mesh size, 0.355 mm). Samples were preserved in the field in 99.5% ethanol and washed through a 0.5-mm sieve in the laboratory. Macroinvertebrates remaining on the sieve were preserved in 70% ethanol and identified generally to genus or species level. For each stone from which macroinvertebrates were collected, water depth and current velocity (at 60% depth) were measured above its upper surface before collecting macroinvertebrates. The relative surface area of each stone was estimated as the product of its maximum diameter and maximum boundary length.

We analyzed eight community metrics for abundance (the number of individuals per stone) and richness (the number of taxa per stone): total abundance, total taxon richness, and the abundance and richness of three major aquatic insect orders in the benthic samples collected: Ephemeroptera (mayflies), Trichoptera (caddisflies), and Diptera (true flies). We also determined the abundance of the dominant families (i.e., Ephemerellidae, Baetidae, Heptageniidae, Hydropsychidae, Chironomidae, and Simuliidae) of the three major aquatic groups, which were defined as those families that accounted for more than 5% of the total abundance at each sampled stone and that were collected at more than 30% of the sampled stones (i.e., more than 14 stones of a total of 45 stones collected). For all macroinvertebrate metrics, the means and standard errors (as indicators for the uncertainty in site mean) of five stones at each site were calculated and used for further analyses. Macroinvertebrate abundances were \log_{10} -transformed (x + 1) before calculation of the site means to satisfy the assumptions of further analyses.

Fishes

161	At each site, we established five fish-sampling areas of approximately 5 m \times 10 m to cover all of
162	the habitats available (e.g., run, riffle, pool, and backwater) as much as possible. The distance
163	between sampling areas was set to be >20 m. Fishes were collected from the downstream to the
164	upstream end of each sampling area by using a backpack electrofishing unit (200-300 VDC; LR-
165	20B, Smith-Root, Inc., Vancouver, WA, USA) and by throwing a cast-net. After one pass
166	electrofishing, we used a cast-net four or five times within each sampling area to catch fishes in
167	places where the pool was too deep for electrofishing to work. The captured fishes were
168	anesthetized with phenoxyethanol and identified to species level if possible. The fork length was
169	measured to the nearest 1 mm and body weight was measured to the nearest 0.1 g onsite.
170	A total of five fish species were collected: Oncorhynchus masou (masu salmon; Salmonidae),
171	Salvelinus leucomaenis (white-spotted char; Salmonidae), Barbatula oreas (stone loach;
172	Nemacheilidae), Lethenteron spp. (lamprey; Petromyzontidae), and Tribolodon spp.
173	(Cyprinidae). We excluded <i>Tribolodon</i> spp. from the analyses because of their very limited
174	abundance in our samples (only two individuals collected at R4) and determined the abundance
175	(the number of individuals per sampling area) and condition factor of the other four species. The
176	abundances of fishes were log_{10} -transformed ($x + 1$), and the means and standard errors of the
177	five replicate samplings at each site were used for later analyses. Also, the condition factor (CF)
178	was calculated as an indicator representing the health status of individual fish by using the
179	following equation:
180	
181	CF = body weight (g)/[fork length (cm)] $^3 \times 1000$. (2)

The condition factor is relatively easy to measure in the field and is a sensitive measure to detect the population-level consequences (Environment and Climate Change Canada 2015; Munkittrick & Dixon 1989a). Condition factor data were pooled at individual sites and used in later analyses.

Approximately 128,000 individual hatchery-reared masu salmon fry (*O. masou*; mean fork length: 5.6 cm) were released at a location between S2 and S3 on the contaminated river (44°41′49″N, 142°30′20″E; Figure 1) on 6 June 2018. Masu salmon were also released at three other locations including a tributary between R1 and R2 in the Tokushibetsu River basin in April and June 2018 (not shown). All released fry have thermally induced otolith marks (Volk, Schroder & Grimm 1999). To estimate the proportion of wild (natural-origin) and hatchery fish at each site, we sampled and checked the otolith marks of 20–27 masu salmon captured from each site in the laboratory. We then tested whether the inclusion of hatchery fish affected the results of our analyses.

Data analysis

All statistical tests were performed using R version 3.6.1 (R Core Team 2019). A significance level (α) of 0.05 was used. All the data used are available in the Supplementary File. In order to evaluate any effects at the five contaminated sites in the river receiving the mine discharge (i.e., S1a–S4), we first evaluated whether the site mean for each biological metric was within the 90% confidence interval for the four reference sites calculated on the basis of the standard deviation of the reference site means. We refer to the 90% confidence intervals as "reference ranges" that are assumed as likely observed ranges at reference sites. We then examined whether there were statistically significant differences in biological metrics between each contaminated site and the corresponding reference site with a similar elevation (R1 vs. S1a, R1 vs. S1b, R2 vs. S2, R3 vs.

206 S3, R4 vs. S4) by using a multiple comparison test (the single-step P-value adjustment; Bretz, Hothorn & Westfall 2010) followed by analysis of variance. 207 We used the results of these two analyses to operationally interpret the findings in three 208 ways. If the mean of a given biological metric at a contaminated site was lower or higher than 209 the corresponding reference range and was significantly lower or higher than that of the 210 corresponding reference site by the multiple comparison test, we report that as an "adverse 211 212 effect". If either one of these two results was observed we report that as "some effect of concern" and if neither was observed, we conclude that there was "no effect of concern." 213 214 **Results** 215 216 Physicochemical parameters Concentrations of the four trace metals (Cu, Zn, Cd, and Pb) at the contaminated sites (S1a–S4) 217 were approximately 2 to 190 times higher than the concentrations at the corresponding reference 218 sites at similar elevations, except for the concentration of Zn (25 µg/L) at reference site R1, 219 which was similar to the concentrations at S1a and S1b (Table 1). Concentrations of the metals 220 excluding Cu at many contaminated sites were higher than the values of the U.S. EPA WQC, 221 222 with higher concentrations and CCU values at the upstream sites. As previously observed (Iwasaki et al. 2020), there was little difference in metal concentrations between the site just 223 upstream (S1a) and just downstream (S1b) of the inflow of treated discharge. This was most 224 likely due to the high concentrations of metals in an upstream tributary draining the mining area 225 226 (Iwasaki et al., unpublished data; Note that this is beyond the scope of the present study). CCU values were greater than 1 at all of the contaminated sites except for S4, indicating potential 227

ecological risks based solely on the concentrations of the trace metals measured.

There were marginally lower values of pH, DOC, and water hardness at the metal-contaminated sites compared with reference sites (Table 1), all of which generally increase the bioavailability of metals (Adams et al. 2020). The estimated catchment areas of the metal-contaminated sites were generally larger than those of the corresponding reference sites with similar elevations (particularly between S2 and R2 and S3 and R3; Table 2), but other physical parameters were similar at those sites.

Macroinvertebrates and fishes

All eight community metrics for macroinvertebrates at S3 and S4 were within the reference ranges and were not significantly different from those at the corresponding reference sites (Figure 2), indicating that there were no effects of concern at those contaminated sites. On the other hand, there were adverse effects or some effects of concern for several of the community metrics at the upstream contaminated sites (S1a, S1b, and S2). For example, the mayfly richness at S2 (46% lower than at R2), the mayfly abundance at S1b (58% lower than at R1), and the caddisfly abundance at S1b (83% lower that at R1), were lower than the reference ranges and significantly lower than at the corresponding reference sites.

As with the metrics for the macroinvertebrate community, there were no effects of concern for the abundances of any of the six dominant macroinvertebrate families at S3 and S4 (Figure 3). Although the variations within individual sites (i.e., the 90% confidence intervals of site means) were relatively large, the abundances of heptageniid mayflies at S1a and S1b (68% lower than R1) and the abundance of hydropsychid caddisflies at S1a (84% lower than R1) were lower than the reference ranges and significantly lower than at the corresponding reference sites, indicating adverse effects. Furthermore, there were some effects of concern for the abundances of Simuliidae and Chironomidae at some of the upstream contaminated sites (S1a, S1b, and S2).

No adverse effects were detected for the abundances or condition factor of the four fish species sampled, except for the abundance of *O. masou* at S3. Although there were some occasional effects of concern (e.g., the abundances of *B. oreas* at S2–S4; Figure 4), the sites where significant differences were observed or the mean value was higher or lower than the reference range varied depending on species. An adverse effect was detected for the abundance of *O. masou* at S3, whereas there were no effects of concern for this metric at other contaminated sites. The estimated proportions of released hatchery masu salmon at three of the reference sites (R1, R3, R4) and two of the contaminated sites (S1a, S1b) were 0%, whereas at R2, S2, S3, and S4 the proportions were 9% (2 of 23), 48% (13 of 27), 5% (1 of 21), and 18% (4 of 22), respectively. We estimated the abundances of wild *O. masou* at each site using these proportions and reran the two analyses. The reanalysis did not change the conclusions on the effects of mine contamination on the abundance of *O. masou* at contaminated sites.

Discussion

Our results suggest that macroinvertebrate communities and fish populations at the two downstream sites in the contaminated river in northern Japan, with CCU values <4, were little affected by metal contamination. This is consistent with the results of a previous study in 2017 sampling benthic macroinvertebrates (see Iwasaki et al. 2020 for the detailed discussion about the relationship between CCUs and effects on macroinvertebrate richness and abundance).

Although we observed a significant decrease in the abundance of *O. masou* at S3, this is unlikely due to metal contamination because no such decrease was observed at the contaminated sites farther upstream with higher metal concentrations (Figure 4).

The concentration of dissolved Zn at the most upstream reference site (R1; Table 1) was relatively high compared with other reference sites and the U.S. EPA WQC (the CCU value was

2.1 at this site). The relative standard deviation for Zn based on three replicate water samples
was small (2%) at R1. Although there were no measurements before the sampling campaign, the
Zn concentration at R1 was comparable to other reference sites in the sampling conducted in
September 2018 (1.0 μ g/L; Table S1). It is impossible to determine the underlying reasons for
the relatively high Zn concentration at R1, but it is reasonable to regard R1 as a reference site
given that we detected no effects on macroinvertebrates and fishes at S3 and S4 with CCUs <4.
At the two upstream sites (S1a and S1b) with CCU values of approximately 9, we detected
adverse effects with some macroinvertebrate metrics, such as the mayfly abundance and the
abundance of heptageniid mayflies. Similar results were obtained in the benthic
macroinvertebrate sampling in September 2018 (Figures S1 and S2). Among the
macroinvertebrate metrics, mayfly richness and abundance are relatively sensitive to changes in
metal contamination levels (Carlisle & Clements 1999; Clements, Vieira & Church 2010) and
heptageniid mayflies are also well known as one of the families most sensitive to metal
contamination (Clements et al. 2000; Iwasaki, Schmidt & Clements 2018). These results suggest
that the metal contamination levels at sites S1a and S1b might have been close to the threshold
where some adverse effects on sensitive macroinvertebrates would be detected.
We observed several significantly lower values for some macroinvertebrate metrics at S2
compared with the corresponding reference site (R2), but few effects were observed at S2 in a
previous study (Iwasaki et al. 2020) or in the field sampling in September 2018 (Figures S1 and
S2). The lower values at S2 could have been attributable to factors other than metal
contamination, given that such lower values in the macroinvertebrate metrics were not often
observed at the more upstream sites (S1a and S1b). One possible factor is the presence of
stenopsychid caddisflies (3.4 individuals/stone at R2; they were absent at S2). The biomass of
macroinvertebrates can increase following colonization of the riverbed by net-spinning stream

caddisfly larvae, which construct fixed "retreats" that increase riverbed stability and modify the microhabitat structure (Nunokawa et al. 2008; Statzner 2012; Takao et al. 2006; Tumolo et al. 2019). Thus, we speculate that the differences in macroinvertebrate metrics between S2 and R2 might have been associated with the presence of stenopsychid caddisflies at R2. While biological assessments like this study are useful to detect ecological impairments in the field (Barbour et al. 1999), diagnostic tests of metal exposure and biomarkers may be valuable to further examine the causes (Forbes, Palmqvist & Bach 2006; Miller et al. 2015).

With the exception of *S. leucomaenis*, there were no effects of concern for fish abundances or condition factor, even at the two most contaminated sites (S1a and S1b). Although the abundance and condition factor of *S. leucomaenis* at S1a and S1b were significantly lower than at the corresponding reference site, they were still within the reference ranges. Given the relatively large variation and the limited number of individuals collected (a total of 13), further study is likely required to reach a more firm conclusion for this species as well as for *Lethenteron* spp. Results from fish sampling in September 2018 were generally similar to our results (Figure S3), but there are inconsistencies; the contaminated sites showing significant differences from reference sites varied between the two sampling periods. However, these results at least suggest that there is little need for concern about the effects of metal contamination on the abundance and condition factor of *O. masou*, for which there is a local stocking program.

Conclusions

Overall, the results from our field study suggest that the richness and abundance of macroinvertebrates (e.g., mayfly richness and abundance of heptageniid mayflies) are more sensitive to metal contamination than the abundance and condition factor of fishes in the river studied. These differences in responses to metal contamination have been reported in several

studies, and metrics based on fishes are generally less responsive to metal contamination than
those based on macroinvertebrates (Clements, Vieira & Church 2010; Freund & Petty 2007;
Namba et al. 2020), which is consistent with our results. Although it is difficult to determine the
underlying reasons for these differences, spatial-temporal characteristics of organisms'
responses to metal contamination should have an important role; macroinvertebrates tend to
reflect local and more recent conditions than fishes, which are more mobile and relatively
longer-lived. Compared with macroinvertebrates, however, the number of fishes captured and the
associated metrics were limited in our study. For instance, benthic fishes such as sculpins can be
more responsive to metals than salmonids (Maret & MacCoy 2002; Munkittrick & Dixon
1989b), and physiological and biochemical responses of fishes have been employed as early
warnings for the population level effects (Forbes, Palmqvist & Bach 2006; Hanson 2009). It
would therefore be valuable to accumulate empirical evidence for ecological indicators sensitive
to metal contamination within and among biological groups to choose which groups to survey for
general environmental impact assessments in contaminated rivers.

Acknowledgements

This paper does not necessarily reflect the policies or views of any government agencies. We are grateful to Susumu Norota, Tatsushi Miyazaki, and Kazutoshi Ueda for their kind help to conduct the field sampling.

References

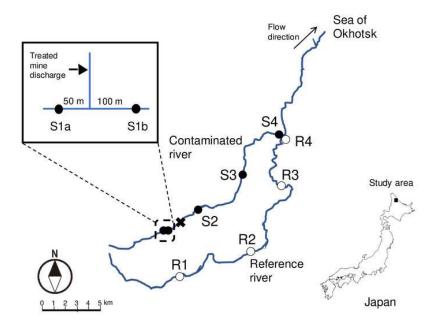
- Adams W, Blust R, Dwyer R, Mount D, Nordheim E, Rodriguez PH, and Spry D. 2020.
- Bioavailability assessment of metals in freshwater environments: A historical review.
- 348 Environmental Toxicology and Chemistry 39:48–59. 10.1002/etc.4558

349	Barbour M1, Gerritsen J, Snyder BD, and Stribling JB. 1999. Rapid bloassessment protocols for
350	use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish
351	(second edition). Washington, DC, USA: Office of Water, U.S. Environmental Protection
352	Agency.
353	Bretz F, Hothorn T, and Westfall P. 2010. <i>Multiple comparisons using R</i> . Boca Raton, FL, USA:
354	CRC press.
355	Carlisle DM, and Clements WH. 1999. Sensitivity and variability of metrics used in biological
356	assessments of running waters. Environmental Toxicology and Chemistry 18:285–291.
357	Clements WH, Cadmus P, and Brinkman SF. 2013. Responses of aquatic insects to Cu and Zn in
358	stream microcosms: understanding differences between single species tests and field
359	responses. Environmental Science & Technology 47:7506–7513. 10.1021/es401255h
360	Clements WH, Carlisle DM, Lazorchak JM, and Johnson PC. 2000. Heavy metals structure
361	benthic communities in Colorado mountain streams. <i>Ecological Applications</i> 10:626–638.
362	Clements WH, Vieira NKM, and Church SE. 2010. Quantifying restoration success and recovery
363	in a metal-polluted stream: a 17-year assessment of physicochemical and biological
364	responses. Journal of Applied Ecology 47:899–910.
365	de Morais GF, dos Santos Ribas LG, Ortega JCG, Heino J, and Bini LM. 2018. Biological
366	surrogates: A word of caution. Ecological Indicators 88:214-218.
367	10.1016/j.ecolind.2018.01.027
368	Environment and Climate Change Canada. 2015. Third national assessment of environmental
369	effects monitoring data from metal mines. Gatineau, QC, Canada.
370	Forbes VE, Palmqvist A, and Bach L. 2006. The use and misuse of biomarkers in ecotoxicology.
371	Environmental Toxicology and Chemistry 25:272–280.

372	Freund JG, and Petty JT. 2007. Response of fish and macroinvertebrate bioassessment indices to
373	water chemistry in a mined Appalachian watershed. Environmental Management 39:707-
374	720. 10.1007/s00267-005-0116-3
375	Hanson N. 2009. Population level effects of reduced fecundity in the fish species perch (Perca
376	fluviatilis) and the implications for environmental monitoring. Ecological Modelling
377	220:2051–2059.
378	Heino J. 2010. Are indicator groups and cross-taxon congruence useful for predicting
379	biodiversity in aquatic ecosystems? Ecological Indicators 10:112–117.
380	10.1016/j.ecolind.2009.04.013
381	Hickey CW, and Clements WH. 1998. Effects of heavy metals on benthic macroinvertebrate
382	communities in New Zealand streams. Environmental Toxicology and Chemistry 17:2338-
383	2346.
384	Iwasaki Y, Fujisawa M, Ogino T, Mano H, Shinohara N, Masunaga S, and Kamo M. 2020. Does
385	a sum of toxic units exceeding 1 imply adverse impacts on macroinvertebrate assemblages
386	A field study in a northern Japanese river receiving treated mine discharge. Environmental
387	Monitoring and Assessment 192:83. 10.1007/s10661-019-8047-2
388	Iwasaki Y, and Ormerod SJ. 2012. Estimating safe concentrations of trace metals from inter-
389	continental field data on river macroinvertebrates. Environmental Pollution 166:182–186.
390	Iwasaki Y, Schmidt TS, and Clements WH. 2018. Quantifying differences in responses of
391	aquatic insects to trace metal exposure in field studies and short-term stream mesocosm
392	experiments. Environmental Science & Technology 52:4378–4384.
393	10.1021/acs.est.7b06628
394	Kimball KD, and Levin SA. 1985. Limitations of laboratory bioassays: The need for ecosystem-
395	level testing. <i>Bioscience</i> 35:165–171.

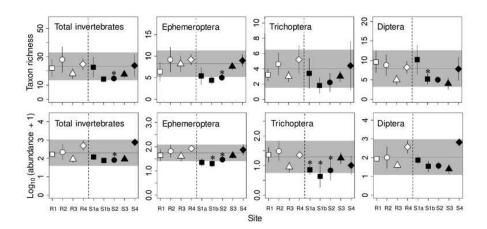
396	Maret 1R, and MacCoy DE. 2002. Fish assemblages and environmental variables associated
397	with hard-rock mining in the Coeur d'Alene river basin, Idaho. Transactions of the
398	American Fisheries Society 131:865–884. 10.1577/1548-
399	8659(2002)131<0865:Faaeva>2.0.Co;2
400	Miller LL, Isaacs MA, Martyniuk CJ, and Munkittrick KR. 2015. Using molecular biomarkers
401	and traditional morphometric measurements to assess the health of slimy sculpin (Cottus
402	cognatus) from streams with elevated selenium in North-Eastern British Columbia.
403	Environmental Toxicology and Chemistry 34:2335–2346. 10.1002/etc.3064
404	Munkittrick KR, and Dixon DG. 1989a. A holistic approach to ecosystem health assessment
405	using fish population characteristics. <i>Hydrobiologia</i> 188:123–135. 10.1007/BF00027777
406	Munkittrick KR, and Dixon DG. 1989b. Use of white sucker (Catostomus commersoni)
407	populations to assess the health of aquatic ecosystems exposed to low-level contaminant
408	stress. Canadian Journal of Fisheries and Aquatic Sciences 46:1455–1462. 10.1139/f89-
409	185
410	Namba H, Iwasaki Y, Heino J, and Matsuda H. 2020. What to survey? A systematic review of
411	the choice of biological groups in assessing ecological impacts of metals in running waters
412	Environmental Toxicology and Chemistry 39:1964–1972. 10.1002/etc.4810
413	Niederlehner BR, Pontasch KW, Pratt JR, and Cairns J. 1990. Field evaluation of predictions of
414	environmental effects from a multispecies-microcosm toxicity test. Archives of
415	Environmental Contamination and Toxicology 19:62–71.
416	Nriagu JO, and Pacyna JM. 1988. Quantitative assessment of worldwide contamination of air,
417	water and soils by trace-metals. <i>Nature</i> 333:134–139.

418	Nunokawa M, Gomi T, Negishi JN, and Nakahara O. 2008. A new method to measure substrate
419	coherent strength of Stenopsyche marmorata. Landscape and Ecological Engineering
420	4:125–131. 10.1007/s11355-008-0044-5
421	R Core Team. 2019. R: A language and environment for statistical computing. Vienna, Austria:
422	R Foundation for Statistical Computing.
423	Statzner B. 2012. Geomorphological implications of engineering bed sediments by lotic animals
424	Geomorphology 157–158:49–65. 10.1016/j.geomorph.2011.03.022
425	Takao A, Negishi JN, Nunokawa M, Gomi T, and Nakahara O. 2006. Potential influences of a
426	net-spinning caddisfly (Trichoptera: Stenopsyche marmorata) on stream substratum
427	stability in heterogeneous field environments. Journal of the North American
428	Benthological Society 25:545–555.
429	Takayasu M, Eguchi H, Kimura G, and Hayasaka S. 1964. Research on the death of salmon in
430	the Tokushibetsu River (1). Scientific reports of the Hokkaido Salmon Hatchery:27–39.
431	Tumolo BB, Albertson LK, Cross WF, Daniels MD, and Sklar LS. 2019. Occupied and
432	abandoned structures from ecosystem engineering differentially facilitate stream
433	community colonization. Ecosphere 10:e02734. 10.1002/ecs2.2734
434	[U. S. EPA] U. S. Environmental Protection Agency. 1994. Method 200.8: Determination of
435	Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry
436	Revison 5.4. Cincinnati, OH.
437	[U. S. EPA] U. S. Environmental Protection Agency. 2002. National Recommended Water
438	Quality Criteria: EPA822-R-02-047. Washington, DC.
439	[U. S. EPA] U. S. Environmental Protection Agency. 2007. Aquatic Life Ambient Freshwater
440	Quality Criteria—Copper 2007 Revision, EPA-822-F-07-001. Washington, DC.


- Volk EC, Schroder SL, and Grimm JJ. 1999. Otolith thermal marking. Fisheries Research
- 442 43:205–219. 10.1016/S0165-7836(99)00073-9

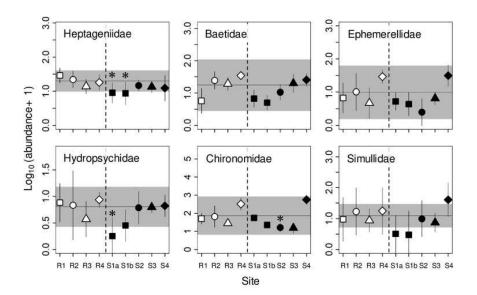
Map showing location of the study area and sampling sites.

The cross mark indicates the location where hatchery-reared masu salmon were released (see text for details). Map was created using Quantum Geographic Information System (QGIS version 3.10; http://qgis.osgeo.org) based on National Land Numerical Information provided by Geospatial Information Authority of Japan (http://nlftp.mlit.go.jp/ksj/).



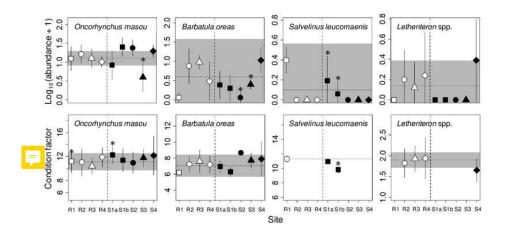
Abundance (number of individuals) and taxon richness (number of taxa) of macroinvertebrates at reference (R1–R4) and contaminated (S1a–S4) sites.

The same symbols indicate sites with similar elevations. Error bars indicate 90% confidence intervals of site means. Horizontal lines and gray areas are the means and 90% confidence intervals calculated from means for the four reference sites, respectively. Asterisks indicate contaminated sites with values significantly lower or higher than the corresponding reference sites with similar elevation (P < 0.05).



Abundance (number of individuals per stone) of dominant families of macroinvertebrates at reference (R1–R4) and contaminated (S1a–S4) sites.

The same symbols indicate sites with similar elevations. Error bars indicate 90% confidence intervals of site means. Horizontal lines and gray areas are the means and 90% confidence intervals calculated from means for the four reference sites, respectively. Asterisks indicate contaminated sites with values significantly lower or higher than the corresponding reference sites with similar elevations (P < 0.05).



Abundance (number of individuals per 50 m²) and condition factor of fishes at reference (R1-R4) and contaminated (S1a-S4) sites.

The same symbols indicate sites with similar elevations. Error bars indicate 90% confidence intervals of site means. Horizontal lines and gray areas are the means and 90% confidence intervals calculated from means for the four reference sites, respectively. Asterisks indicate contaminated sites with values significantly lower or higher than the corresponding reference sites with similar elevations (P < 0.05). For *S. leucomaenis*, the 90% confidence interval was not calculated from reference site means because this species was only captured at one reference site (R1).

Table 1(on next page)

Water-quality measurements at study sites in the Tokushibetsu River system, northern Japan (26–28 June 2018)

Table 1. Water-quality measurements at study sites in the Tokushibetsu River system, northern Japan (26–28 June 2018)

Site	Cu	Cd	Pb	Zn	CCU	Temp	рН	DO	DOC	Conductivity	Hardness
	Dissolved (µg/L)					(°C)		(mg/L)	(mg/L)	(µs/cm)	(mg/L)
Contaminated sites											
S1a	1.0	0.13	0.69	24.0	8.4	9.1	7.1	11	0.3	54	13
S1b	1.1	0.16	0.71	27.5	9.4	9.3	7.0	11	0.4	52	13
S2	0.8	0.17	0.25	25.9	6.8	9.4	7.2	11	0.3	57	14
S3	0.5	0.07	0.23	11.5	3.8	11.5	7.4	11	0.4	56	13
S4	0.3	< 0.005	0.05	4.8	0.9	10.2	7.5	11	0.7	60	14
Reference sites											
R1	0.1	< 0.005	0.09	25.3	2.1	10.6	7.5	10	0.8	41	10
R2	0.1	< 0.005	< 0.005	0.1	0.1	10.2	7.5	11	0.7	46	11
R3	0.1	< 0.005	0.04	0.1	0.3	11.7	7.7	11	0.6	48	11
R4	0.1	< 0.005	0.03	0.3	0.3	9.7	8.0	12	0.7	50	12
WQC	1.3	0.05	0.19	16.8							

² DO, dissolved oxygen; DOC, dissolved organic carbon; CCU, cumulative criterion unit (see text for details); Temp, temperature;

³ WQC, U.S. EPA chronic water-quality criterion at a water hardness of 10 mg/L (U. S. EPA 2002). Limits of quantification for Cu, Zn,

⁴ Cd, and Pb were 0.001, 0.06, 0.005, and 0.005 μg/L, respectively.

Table 2(on next page)

Physical parameters at the study sites in the Tokushibetsu River system, northern Japan

1 Table 2. Physical parameters at the study sites in the Tokushibetsu River system, northern Japan

		area	Channel - width (m)		Studied riff	les	Sampled stones		
Site	Elevation (m a.s.l.)			Width (m)	Maximum depth (cm)	Maximum velocity (cm/s)	Depth (cm)	Velocity (cm/s)	Relative surface area (cm²)
Contaminated	sites								
Sla	330	18	11	4.5	27	170	6.9 (3.5)	102 (33)	1026 (403)
S1b	330	19	10	8.6	28	170	6.3 (3.2)	73 (27)	851 (169)
S2	230	29	9	9	25	165	7.6 (3.6)	98 (25)	1003 (260)
S3	130	46	11	14	25	200	6.6 (2.5)	98 (31)	1192 (404)
S4	30	117	21	5.1	25	230	6.5 (2.8)	89 (24)	1114 (396)
Reference sites									
R1	285	27	11	11	26	180	7.4 (1.2)	87 (47)	1016 (278)
R2	170	77	14	11	25	170	4.2 (1.6)	91 (40)	931 (311)
R3	75	107	21	16	23	170	6.4 (3.3)	100 (36)	1007 (280)
R4	35	127	24	7.7	24	170	5.5 (1.7)	86 (24)	1039 (322)

² Depth, velocity, and relative surface area for sampled stones are the means (and standard deviations) of five stones sampled.